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Abstract--Anomalous behavior has been observed when molecular band-models incorporating the Curtis- 
Godson or similar approximations are applied to problems characterized by a large variation in temperature 
along the optical path. The nature of this misbehavior has been examined and a procedure has been developed 
for its suppression by the introduction of a less restrictive assumption in the derivation of the band model from the 
basic equation of transfer. 
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NOMENCLATURE 

constants used in analytic form for r/ 
average line spacing 
function providing interpolation between nearly weak and nearly strong approximations 
Ladenburg-Reiche function 
spectrometer slit function 
absorption coefficient 
averaged absorption coefficient for band model 
spectral radiance, W/(cm2-sr-cm- 1) 
black body spectral radiance, W/(cm2-sr-cm - 1) 
black body spectral radiance of ith path element 
spectral radiance computed using a band model 
number of path elements in sum 
line strength 
equivalent line strength 
equivalent width, cm- 1 
optical depth coordinate, gm cm-2 
total optical depth of path of interest, gm cm- 2 
optical depth coordinate of ith path element, gm cm- 2 
dimensionless optical depth for Curtis~3odson approximation 
dimensionless optical depth for nearly weak-nearly strong approximation 
line overlap parameter, 2ny/d 
line overlap parameter averaged over the path extending from the observer to optical depth X 
line overlap parameter averaged over the whole optical depth of interest 
line width, cm- 1 

line width averaged over the path extending from the observer to optical depth X 
line width averaged over the whole optical depth of interest 
interpolation parameter between nearly weak-nearly strong approximation 
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I' 

V 0 

Av 

zn 

wavenumber, cm-  1 
wavenumber of line center, cm-  l 
V-Vo,cm -1 
transmittance 
averaged transmittance computed using a band model 
averaged transmittance of equivalent non-overlapping lines 

I N T R O D U C T I O N  

A RECENT note (1) was concerned with the application of a molecular band model for in- 
homogeneous radiating gases (2'3) to cases in which large variations in temperature are 
encountered along the optical path. The problem considered was calculation of thermal 
radiation from a small combustion-product source viewed through a long atmospheric 
path. The band model used was originally formulated in terms of a nearly-weak or a nearly- 
strong (NW-NS) line approximation. A simple procedure for interpolation between the 
two approximations provided for intermediate optical depths. Applications of this band 
model in its original form yielded anomalous results; at some frequencies, the calculated 
values of apparent radiance with atmospheric absorption exceeded those for the hot source 
alone. Reasons for these inconsistencies were determined and corrections made. In the 
aforementioned note we presented both results of the use of the modified band model and 
the need for a more complex interpolation procedure. The purpose of this communication 
is to present the details of the revised formulation of the model, which represents a closer 
approximation to the exact equation of transfer than the original model, or comparable 
ones which have been based on the Curt is-Godson approximation. 

The rationale in the development of the new model can be illustrated by considering the 
growth of a single, collision-broadened spectral line along a nonisothermal path. Once the 
formulation for such a single line is developed, it is carted over essentially unchanged to the 
case of a random band of overlapping lines. 

The solution of the equation of transfer which describes the radiance of a single, isolated, 
spectral line from a general nonisothermal source under the conditions of local thermo- 
dynamic equilibrium, negligible scattering, and no significant source of radiation behind 
the gas, is 

X L  X =; .  x, exp[ Lv(v ) L~ (~, X)k(v- v o - - Vo, 
0 0 

Here X is the optical depth (mass per unit cross sectional area) coordinate along the line of 
sight through the gas. L*(v, X), the blackbody spectral radiance, is a function of frequency, 
or equivalently wave-number, v, and temperature, T = T(X); T in turn, is a function of the 
position along the line of sight through the gas. The spectral absorption coefficient of the 
single line being considered, k (v -  %, X), is a function of the spectral distance from the line 
center, v - v  o, and the optical depth coordinate along the path, X. Lv(v) is the spectral 
radiance of the gaseous source at wave-number v resulting from the single spectral line. 
Xr  is the total optical depth of the gaseous source. The total radiance from the line is 
obtained by integration over all frequencies: 

oo X L  X 

L =  f fL*(v ,X)k (v -vo ,X ,  e x p [ - f k ( v - v o , X ' ) d X ' l d X d ( v - V o ) .  (2, 
- ~  0 0 
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If we introduce the transmittance, defined as 

X 

T ( Y - - Y o , X ) ~  exp[-fk(v-vo,X')dX' ], (3) 
0 

and interchange the order of integration, assuming that L*(v, X) does not vary significantly 
over the frequency region involved, the equation for L may be written as 

L = - f L*(v o, X) ~ z(v- Vo, X) d ( v -  v0) dX. (2a) 
0 - - ~  

The equivalent width, W, is defined as 

W(X) = 1 - i v ( v -  v o,X) d(v-vo) (4) 
- o o  

so that the expression for L becomes 

X L  

L f , dW = L~ (v o , X ) ~ -  dX. (2b) 

0 

Since W is only a function of X, the preceding equation may be written as 

W(XL) 

L =f  L*(v o,x)  dW(x). (5) 

o 

| f  we divide the path into N approximately isothermal elements, the expression for L 
becomes 

N 

L ~- ~, L~*,[W(X,)- W(X,_O], (6) 
i = 1  

where X i is the optical path from the observer to the far boundary of the ith isothermal 
element and W(Xi) is the equivalent width corresponding to that path. 

Calculation of the values of W(Xi) shows that, in general, the integrals over X and 
v -  v o are not separable for nonisothermal paths. To allow such separation, an approxima- 
tion for the variation of the line shape along the path is usually made. The Curt is-Godson 
approximation is most commonly used for this purpose. ~4-6) Another, is the nearly-weak 
nearly-strong line approximation, t 1.3) The purpose of both approximations is the separation 
of the integrals over X and v -  v 0 and the replacement of the nonisothermal path with an 
equivalent isothermal path. Both yield satisfactory values of W(X) for many cases, 
especially when the temperature and concentration variations are not too large. 

In the evaluation of equation (6), the accuracy of the integration depends not so much 
on the accuracy of the values of W(X), but on the accuracy of differences between values of 
W(X), i.e. on the derivative of W with respect to X. However, an expression which is a 
reasonable approximation for W will not always yield a reasonable approximation to 
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d W/dX.  To illustrate this, we will compute the derivative of W with respect to X, using 
both the Curt is-Godson approximation and the N W -N S  approximation. 

First it is necessary to obtain an expression for the equivalent width of a collision- 
broadened line in an isothermal path. The absorption coefficient in this case is 

s ( x ' )  y ( x ' )  
k(v -  v o , X') - (7) 72(X t) --F ( F -  1,o) 2, 

where S is the line strength and 7 its half-width. Upon substitution into equation (3) 
specialized to an isothermal path, and with the use of equation (4) the following expression 
for W is obtained after some reduction :(7) 

W(X) = 2~7" f(x) ,  (7a) 

where f is the Ladenburg-Reiche function, 

f ( x )  - x e-X[d0(i • x ) - i d  di .  x)]. (7b) 

and x = SX/2rc7 is the dimensionless optical depth. J0 and dl are Bessel functions of the 
first kind of order 0 and 1 respectively. Tables o f f (x )  are found in the literature. ¢s'9) 

We have used the form of the Curt is-Godson approximation described by GOODY. ~4) 
It is a method in which the equivalent width of an absorption line as viewed through a 
nonisothermal path can be approximated by the equivalent width through some correspond- 
ing isothermal path. The approximation involves the definition of an equivalent average 
half-width and line strength for the path extending from the observer to some point, X, 
in the path, viz. 

E~ S(X') dX'] 
s ~ ( x )  - 

X 

and 

yx 7(X,)S(X ) dX' 
7e(X) = j.~ S(X') dX'  (8) 

The denominator in the nonisothermal absorption coefficient, given by equation (7), is 
taken to be independent of X', of the form 7~(X) + ( v -  Vo) 2, so that 

It now follows that 

X, 
f ~2e(X)Se(X)X 

k (v -  v o , X') dX' = g[yZ(x) + ( v -  Vo)/]" 
0 

W(X) = 2xye(X)f(x ), 

where x, the dimensionless optical depth, is defined as 

Yo S(x') dX' 
x ( X )  = 

2zrTe(X) 

(9) 

(10) 

(11) 
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Equation (10) can now be used to investigate the behavior of dW/dX in a nonisothermal 
gas. If we differentiate equation (10) and make use of equation (8) we get 

dW . . . .  fdf(x)[-~ ? (X)]  . f(x)[?(X) .]) 
- -  a[A),~ ~ I / - - - - t  (12) 

The variation with optical depth X may be mapped into a variation with dimensionless 
optical depth, x, and equation (12) rewritten as 

1 dW_~df(x)[2_7(x)]+f(x)[Y_(x)_l]}. (13) 
S(X) dX [ dx L 7e J X LTe 

We can now place physical limitations on [1/S/X)](dW/dX). At X = O, the quantity 
[1/S(X)](dW/dX) must be unity corresponding to the region of linear growth for small 
optical depths. It must also be less than one at larger optical depths as the square root 
region is approached;  and, finally, it must remain non-negative for all x, so that the 
equivalent width continues to grow as x increases. The variation of [1/S(X)](dW/dX) 
in equation (13) is shown in Fig. 1 as a function o f x  with 7/?e as a parameter.  Y/Te is the 
ratio of the half-width at x to its average value taken over all the path before it. For  ?/Te < 2, 
the function is well behaved, but not for ?/Te > 2. In the latter case the function becomes 
larger than one for intermediate values of x, indicating a rate of equivalent-width increase 
greater than that in the linear region. These errors, mentioned by GOODY t4) are treated in 
detail by DRAYSONJ 5~ However, the analyses dealt only with the absorption (or equivalent 
width). On the other hand WALSHAW and RODGERS, ~1°~ analyzed the effect of the C u r t i ~  
Godson approximation on the derivative of transmittance with optical depth, for several 
band models. 
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FIG. i. Equivalent width derivative in the Curtis-Godson approximation. 
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N E A R L Y - W E A K - N E A R L Y - S T R O N G  L I N E  A P P R O X I M A T I O N  

This approximation, like the Curtis Godson approximation, defines an average for the 
line half-width. However, this average is fixed for the path in question and is defined as the 
average over the total path, XIj: 

fo L 7(X')S(X') dX '  
7eL = SO L S(X, )dX,  (14) 

Then the dimensionless optical depth is defined as 
X 

,2(X) - S(X' )F(X' )  dX' .  (15) 
2nTeL 

0 

F(X') is a function which must be unity in the nearly weak approximation and 7/TEL in the 
nearly strong approximation. (11) A form must be chosen for the variation of F(X') so that it 
produces a reasonable transition between the two approximations for intermediate optical 
depths. The equivalent width is given again as 

W(X) = 2n'/eLf(Y~ ). (16) 

If we take the derivative of equation (16) for the nearly weak approximation we obtain 

dW - S(x)dJI (E), (17) 
dX d E  

and for the nearly strong approximation, we obtain 

dW _ S(X)7(X) dJ(g) (18) 
dX 7eL d~ 

Values for [1/S(X)](dW/dX), according to equations (17) and (18) are shown in Fig. 2. It 
can be seen that the nearly weak approximation never becomes physically unrealistic, i.e. 
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FIG. 2. Equivalent width derivative in the nearly-weak and nearly-strong line approximations.  
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[1/S(X)](dW/dX) < 1; however, for the nearly strong approximation, the quantity 
[1/S(X)](dW/dX) becomes greater than one at small values of £ for 7(X)/TeL > 1. This is 
accounted for by the proper choice of F(X'). However, we are left with no information 
upon which to base F(X') at this stage. 

It appears that neither the nearly weak nearly strong approximation (unless F(X) is 
accurately specified) nor the Curt is-Godson approximation give sufficiently accurate 
values for dW/dX over the full range of optical depths and for all possible values of 7/7e' 
On the other hand, it should be noted that the anomalies and errors in the curves for 
(1/S)(dW/dX) as given by the Curt is-Godson approximation are not serious as long as 
7/7e never exceeds a value of about two. This condition exists ~4'5'x°) for most atmospheric 
paths but not for highly nonhomogeneous paths. For  example, hot products of combustion 
viewed through long atmospheric paths yield values of 7/7e as large as 20. 

To obtain a more acceptable expression for dW/dX, consider the growth of an isolated 
spectral line. The equivalent width is given exactly by 

W(X) = 1 -  exp - ~ k(Av, X') d(Av), (19) 

- - o o  0 

and its derivative, in terms of a Lorentz profile, by 

i ] d W 1 S(X)7(X) S(X')7(X') 
dX - ~ 72(X)+(Av) 2 exp - 72(X,)+(Av)2 dX' d(Av), (20) 

where Av = v -  v 0. In the original treatment of the Curt is-Godson and the nearly weak- 
nearly strong approximation, the separation of frequency-dependent and path-dependent 
variables was accomplished by substitution of an effective value, 7e, in both parts of the 
integrand. The only difference in our treatment from previous treatments is that we will 
use such an approximation only in the exponential term. Thus, in terms of 7~ = 7e(X) 
defined by equation (8) and x defined by equation (11), equation (20) becomes 

dW 1 ~ S(X)y(X) l- ,, , ,  7~(X) ] 
dX -- ~ a 72(X)+(Av) 2 expL--ZX7e(a)72(X~(Av)i] d(Av). (21) 

- o o  

This is equivalent to making a Curt is-Godson substitution in the expression for the 
derivative of W, rather than in the expression for W itself. The process of taking a derivative 
after an approximation has been made is reversed, a treatment which should be inherently 
better than the techniques described earlier for the calculation of radiances. This new 
approximation can be compared to the previous two ifdW/dX is considered as the limiting 
value of the contribution to W from a small element of path, AX, viewed through the path 
ahead of it. In the previous two approximations, the line shape of the element AX and the 
path in front of it are both given by the line shape for the equivalent, homogeneous path. 
In the current approximation we assumed that the element AX has its true line shape, while 
the path in front of it has an equivalent homogeneous shape. Equation (21), checked against 
the exact relation, equation (20), for a two-layer, nonisothermal path, has been found to be 
very accurate. Further investigation of its accuracy is to be the subject of future work. It 
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would be possible to fully develop a procedure for treating isolated Lorentz lines. However, 
our interest is ultimately in a random band model which treats the average of many lines. 

BAND-MODEL CONSIDERATIONS 

The calculation of an average spectral radiance at the boundary of a radiating body of 
gas, in a frequency interval encompassing a number of rotational lines, is represented by 
the relation 

f,~ g (v ' -  v)L~(v ) d~, (22) 
d 
0 

where g(v, v') is an averaging function, e.g. the slit function of a spectrometer of moderate 
resolution, such as those which produce original absorption spectra from which band-model 
parameters are extracted. The exact spectral radiance, L~, is given by the equation of 
transfer, equations (1) and (3). Thus, equation (22) can be written as 

i r(x;9 L~ = g(v ' -  v) L*(v, V) dV dr', (23) 

0 0 

where r is the perfectly resolved transmittance, and the primes denote variables of integra- 
tion. 

The order of integration in equation (23) can be inverted, and when frequency intervals 
are small enough that the Planck function is essentially constant, the result is the band-model 
expression : 

~(X L) 

Lv(V) | * ' = L,, 0, ~') d~', (24) 

1 

where 

~(v) -- f g(v ' -  v)r(v') dv'. 
0 

(25) 

Thus, ~ is seen to be the spectral transmittance measured by a conventional instrument or 
calculated by a band-model. 

Equation (25) can be evaluated to obtain the average spectral radiance, L~, by first 
computing "~ at a number of points along the path. The blackbody radiance is then 
represented as a function of "~, with, for instance, the use of a simple summation. The 
various band models in current use, including those based on the Curt is-Godson approxi- 
mation and the present model in its original form, do yield values for the transmittance 
with an accuracy sufficient for most engineering applications. However, as for the case of 
isolated lines, equation (25) involves a differentiation of the expression for ~ with respect to 
the optical path. As in the case of an isolated line, an expression which yields reasonable 
values for ~ will not necessarily yield reasonable values for d~ and, hence, for f,~. It was 
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necessary, therefore, to develop an expression for ~ which has a derivative which will yield 
realistic values of the difference in transmittance with a specified incremental increase in 
physical path. 

The transmittance for a band of spectral lines with some overlapping may be expressed 
a s  (4) 

= e x p f f , -  1), (26) 

where ~. is the transmittance for an equivalent band of well-isolated nonoverlapping lines. 
Differentiation of equation (26) with respect to the optical depth, X, yields 

d~ _d~. 
- "c  (27) 

dX dX'  

which indicates that, with a reasonably accurate value for g, the accuracy o fd U d X  depends 
directly on the accuracy of d~./dX. 

In our current work, we have used the N W - N S  approximation exclusively and at this 
point our consideration is limited to this model to find specification of the function F(X') 
which yields accurate values of a transmittance derivative. For  this approximation (1 ~) 

~, = /3~Lf(~), (28) 

where the argument of the Ladenburg-Reiche function is, in this case 

X 

1 f -  [ X ~ l " ( x ' )  
= k ( X ' )  

0 

dX'. (29) 

Here k = J~(v, T) is the first band-model parameter, the average absorption coefficient, 
identified as the average line strength to spacing ratio, and/3 = fl(v, T) is the second band- 
model parameter, the line-overlap factor, identified as 2n times the average line width to 
spacing ratio. The effective value,//eL, is defined analogously to 7eL for the case of a single 
line : 

fleL = ~X~ ~(X')fl(X') dX'  
.i'o dX (3o) 

F(X') has here been replaced by Efl(X')/fleL] "tx'), a suitable functional form for F(X'). Here 
r/is an interpolation parameter between the nearly weak and nearly strong approximations, 
varying from 0 for the nearly weak to 1 for the nearly strong. 

In an earlier study, ~11) an investigation of the form for r/is described. As a result of that 
study, several reasonably useful empirical forms for r/ were determined. However, the 
information used to make these determinations was not sensitive enough to values of q 
to provide accurate information about  its form. One of these empirical forms is: q = 0 
for ff < 1, r / =  ( i f -  1)/9 for i < x < 10, r / =  1 for ~ > 10. This appears to make i/a function 
of ~ rather than X', so that the determination of ~ appears as an iterative procedure. 
However, in practice, the integral for 2 is evaluated by a summation and a value for r/for 
a particular term is determined from the value for ff calculated from the sum of the preceding 
terms. Thus, r/is uniquely defined for each X'. 
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Differentiation of equation (28) and utilization of equation (30) yields 

d~. df F fl(X)q ~(x) 
- k(x), (31) 

which shows that the derivative of df , /dX varies with the absorption coefficient, (as would 
he expected), the derivative of the function f(~), and the local values of fl(X) and ~(X). The 
physical significance of equation (31) can be seen in Fig. 3, a normalized plot of - ( l / k )  dr , /  
dX vs. x, with fl/fleL as a parameter. In the limit, as x ~ 0, the band model reduces to a 
linear growth law, so that - ( l / k )  df , /dX approaches unity. This function must be less than 
unity for all values of X greater than zero, as the square root growth law becomes operative. 
However, Fig. 3 shows that the empirical specifications for 1/do not conform to this require- 
ment for certain values of fl/fleL and if, an inconsistency analogous to that shown earlier for 
isolated line growth, d'?./dX is correctly given by (4) 

d~. 1 d W 
dX = d" d X '  (32) 

IO 0 

#/tZ~eL = 50"0 \ //~,~, ~ 

2 0 0 " -  I1 
,o ,o.o / / / . , . . .  

0 
1 . 0 "  . 

0 5  " - 
0 ' 2 "  

o o  . . . . . . . . . . . . . . . .  I ~ , ,, L ' ~ ' ~  
oo l  o l  i o Joo tooo  

Dimensionless optical depth,  ~ ( X )  

FIG. 3. T r a n s m i t t a n c e  d e r i v a t i v e  in the  o r i g i n a l  b a n d - m o d e l .  

where W is an average width and d is an average line spacing in the spectral interval under 
consideration. For  lines of equal strength and width, after some rearrangement, equations 
(32) and (21) yield 

dX ~ fl2(X) + (2nAy/d) 2 exp fie(X) 
- o c  

where x denotes the dimensionless optical dgpth as defined in equation (11) and used in 
equation (21). Rewritten in terms of the two bandmodel parameters, 

Io k(x') dX' 
x - (34) 

/ L ( x )  ' 
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where fie(X) is the average value of the second band-model parameter over the path from the 
observer to the point X, similar to the definition of 7,(X) in equation (8); thus, 

S x k(X')f(X')  dX' 
f ie(X) = I x ~(X' )  dX'  ( 3 5 )  

The distinction between EeL (a constant determined over the whole path), defined in 
equation (3) and Be(X) (a function of X, the optical depth coordinate) should be noted. 

The change of variables tan 0/2 = 2g(Av/fed ) and a trigonometric substitution yields 

1 d~, 2 f F e x p [ - x ( l + c o s 0 ) ]  
dO. (36) 

k(X) dX 7~fle 0 I ( f l}2  1 I ( f l )  2--11COs l + 
; 

L ~ r ¢ /  J L ~ r e /  J 

Equation (36) has been integrated numerically ; the results are plotted in Fig. 4 as - (I/k) d~,/ 
dX versus x; f(X)/fe(X) is the parameter. The resulting curves exhibit none of the anomalies 
seen in Fig. 3 ; the curve for E/Be = 1 is identical in both figures. 

el r 
1.01 

~°1 ~ I~ z ° ° /  - / ,o -o j  _ ~ ~ ' ~ .  
- 

OOI ()'1 -- L 
ool o l Io Ioo tooo 

Dimensionless optical depth, x(X)  

FIG. 4. Transmit tance derivative in the modified band-model. 

The interpolation parameter, r/, can now be evaluated by equating equations (36) and 
(31). These two equations involve different sets of variables, i.e. equation (36) is given in 
terms of x and fe(X), and equation (31) is given in terms of ~ and EeL. The relationship 
between ~ and x is complex and depends on r/, fet.(X) and fe/. in an integral form. Further- 
more, although x is a unique function of the optical path extending from 0 to X, 2 is not a 
unique function in the same sense, since it depends on the path between X and XL through 
feL as well. Such dependence is not physically realistic but appears as an integral part of the 
NW-NS approximation. In determining a form for r/, this dependence must be accounted 
for so that the computed value of (1//~)(dv./dX) is unique despite the nonunique character 
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of if, although this is very difficult to ensure, except for certain types of paths. In particular, 
if/? differs significantly from its average value,/?eL, in only a very small portion of the optical 
path, then the contribution from that portion of the path to the integral defining ~ is 
negligible compared to the contributions from the remainder of the path. In this case, the 
following approximate relation holds : 

X X 

f f PeL J ~ 
d X ' .  

0 0 

The above restriction also implies that f ie(X) = constant =/?eL, and that x -~ ~. Thus, if 
/?e(X) is not a strong function of X and if large variations in/?(X) are allowed in very small 
fractions of the optical path only, values for r/can be found in terms of ~ and/?//?eL (except 
for/?/fleL = 1 where q is indeterminate). The resultant values ofq are shown in Fig. 5. Use of 
these values in equation (31) will insure that the derivative dr/dX will equal that given by 
equation (36). For convenience in application, we made simple analytical approximations 
to the curves of Fig. 5 by fitting them with functions as follows : 

.~ + A(/?//?e) 
q(Y~,/?/fie) - x + B(/?//?e)' (37) 

xC(/?//?e) 
q(,2, /?//?e) = E(/?//?e ) + xV(/?//?e). (38 )  

For any particular instance, the choice between equations (37) and (38) is made on the 
basis of the quantity 

E(/?//?e) = 1 +0.185/?/fie" (39) 

Ifff > E, equation (37) is used; otherwise equation (38) is used. Values for A, B, C and D are 
tabulated in Table 1. Values ofdL,/dX obtained when the values in Table 1 are used in place 
of the values shown for q in Fig. 5 are sufficiently accurate for most applications of the 
band-model. 
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D i m e n s i o n l e s s  o p t i c a l  d e p t h ,  ~ ( X ) Z × ( X )  

FIG. 5. In t e rpo la t ion  p a r a m e t e r  as a funct ion of opt ica l  dep th  and  line over lap  factor. 
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TABLE 1. COEFFICIENTS TO BE USED IN EQUATIONS (37) AND (38) 

fl//~e A B C D 

0 -0 .68 -0 .35 0.55 0.07 
2 - 0.37 0.62 0.71 0.43 
5 0.60 3.15 0.90 0.79 

10 3.19 9.25 1.15 1.30 
20 9.10 22.8 1.63 2.26 
50 29.1 67.1 2.78 4.56 

100 105.0 209.0 4.05 7.09 

The limitation on the variation of fl(X) and fie(X) mentioned earlier is not as severe as 
it might first appear. For  instance, in cases where a relatively small hot gaseous source is to 
be viewed through a long, cool path, the value of fl is almost invariant over the whole 
atmospheric path which contains the largest part of the optical path. Only in the relatively 
small portion of the path comprising the hot gaseous source does fl vary substantially. 

The introduction of an interpolation parameter has little physical basis and is not the 
only way equation (36) could be introduced into a computational procedure. An alternative 
method for use of the above results would be the direct application of equation (36) into a 
band-model computer code. The resultant values of dL,/dX could then be used in equation 
(27), if ~, in equation (26) is evaluated in terms of x and fie(X). Such a procedure would 
eliminate the need for a distinction between the NW and NS approximations and, therefore, 
eliminate an interpolation procedure. Unfortunately, when equation (36) is used, an analytic 
form for the solution of the integral is not easily obtained. Although a solution has been 
obtained in the form of an infinite series, this represents little improvement over a table of 
numerical values. Whether there would be a net gain in computational efficiency remains to 
be seen. However, a direct application of equation (36) might be expected to be somewhat 
more satisfactory because the restriction on the variation of fie(X) compared to  fleL required 
in the evaluation of r/ would not be needed. This alternative mode of the band-model 
formulation is one of the subjects of a continuing investigation. 

In summary, we have shown how both the Curt is-Godson approximation and the 
N W - N S  approximation can introduce anomalies into the radiance computed over a 
highly nonisothermal path for an isolated spectral line. The application of a Curt is-Godson 
approximation to the expression for the equivalent-width gradient along the path produced 
a formulation yielding greatly improved radiance values which exhibit no anomalies. 
In the generalization to a random band model, the expression concerning the equivalent- 
width gradient has been used to obtain an interpolation between the nearly-weak and 
nearly-strong approximations valid for that band model, 

The most important result presented herein is the form of the transmittance gradient 
given in equation (36). It is the basis of a computational procedure for computing the 
radiance from highly nonisothermal gaseous sources. This procedure yields significant 
improvements over previously used techniques. It has been shown to be a better approxima- 
tion than those more commonly used and yields physically realistic results for all values of 
the path and band-model parameters. 
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