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Abstract

COMPUTATION OF OPTIMAL CONTROLS BY
QUADRATIC PROGRAMMING ON CONVEX REACHABLE SETS

by Robert Ortha Barr, Jr.

This thesis develops iterative procedures applicable to a wide
variety of optimal control problems. The computational algorithms are
quite different from those which have been described previously and
apply under more general conditions. Convergence of the procedures

is proved and numerical results for example problems are given.

Essential to all the procedures is a method for solving the basic
problem BP: given K a compact, convex set in En; find a point z* € K
such that [z*|? = IZT&? |z|2 (|| denotes Euclidean norm). The con-
straint set K in this quadratic programming problem, in contrast to the
quadratic programming problems usually treated in the literature, need
not be specified by some set of functional inequalities. It is required
only that there be a known contact function of K, i.e., a function s(-)
from E" to K such that y - s(y) = Izré?g y -z for y # 0. The method given
by E. G. Gilbert for solving BP using only a contact function of K is ex-
tended so that on each iteration a quadratic minimization problem is
solved on a convex polyhedron instead of on a line segment. As with
Gilbert's method, computable error bounds are available. Techniques
for readily sclving the minimization problem on a convex pclyhedron
are discussed and extensive computaticnal results for a rather general
example using both Gilbert's method and its extension are presented.
These results indicate that the extended procedure has a much improved
rate of convergence. Furthermore, it is proved that if K is a convex

polyhedron and the range of s(y), y € En, is a finite set of points, then

the extended procedure exhibits finite convergence.



Certain optimal control problems are related directly to BP.
However, it is possible to state an abstract problem which has applica-
tion to a much broader class of optimal control problems. This prob-
lem, called the general problem GP, is: given a compact interval
Q =[o, ﬁ‘)] &> 0, a family of sets K(w) in E" which are compact, convex,
and continuous on 2, and the fact that there exists w* € Q such that
0 ¢ K(w), 0<w<w* and 0 € K(w*); find w*. An iterative procedure for
solving GP, which on each iteration involves the minimization problem
BP, is described and shown to converge. Numerical results for this

procedure applied to a minimum fuel example are given.

Optimal control problems are considered in which there are:

i) a system differential equation of the form
x(t) = A(t) x(t) + fu(t), 1), x(0),

where x is the m-dimensional state vector, x(0) is the initial state, u(-)
is an r-dimensional control vector, admissible if measurable with range
in a compact set U, the matrix function A(t) and vector function f(u, t)
are continuous in their arguments; ii) compact, convex target sets W(t)
in Em which are continuous in t; iii) a cost functional
t
J(u) = yfa(W) cx (o) + £°(u(c), 0)]do + h°(xu(t)),
0

where xu(t) is the solution of the system equation corresponding to the
control u(-), h°(-) is a convex function from Em to El, the vector func-
tion a(t) and scalar function f°(u, t) are continuous in their arguments;
iv) an optimization objective corresponding to fixed or free terminal
time. For a fixed terminal time T >0 the objective is: find an admis-
sible control u*(-) such that Xu*(T) € W(T) and the cost for u*(:) at T

< the cost for u(-) at T where u(*) is any admissible control for which
xu( T) € W(T); if the terminal time is free: find an admissible control

u*(-) and an optimal time t* such that xu:,z(t*) € W(t*) and the cost for



u*(-) at t* < the cost for GJ(-) at?where U(-) is any admissible control
for which XN(TCJ) € W( r’?), any?. The iterative procedures apply to many
u

problems of this class and to other optimal control problems as well.

The set of all solutions of the system equation at a particular
time t which are generated by admissible controls is the reachable set.
This set is (1) compact, (2) convex, (3) continuous in t, and (4) has a
contact function which can be evaluated. These four properties are the

essential features which permit application of the iterative procedures

to optimal control problems.
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CHAPTER 1

INTRODUCTION

Recent advances in engineering and science, especially in space
technology, have stimulated much interest in optimal controls. The
availability of modern computers makes it feasible to consider the
actual computation of these controls. The central theme of this dis-
sertation is the development of new and improved computational

methods for a broad class of optimal control problems.

Some of the early work in this area concerned rather specialized
low-order problems in which an explicit solution could be obtained,
For example, Bushaw [B7] solved the second-order minimum time
regulator by geometrical constructions in the phase plane. More re-
cently, because of the need for solving complex problems, a great
variety of general computational methods have appeared in the litera-
ture. The method of dynamic programming introduced by Bellman [B8]
has application to many optimization problems. However, the large
storage capacity and long computational times that are usually required
limit the practical usefulness of the technique. Gradient methods in
function space also have been proposed [e.g., Bll, Kl]and are quite
commonly used, but are difficult to apply in problems with control con-
straints and usually exhibit slow convergence. The two-point boundary
value problems which arise from the necessary conditions of Pontryagin
[P2] or variational calculus provide the starting point for many other
computational methods. For example, there are techniques [B9, B10,
K2, P1] which consider certain mappings of the boundary values at the
initial or final time. There are also methods which are based on the
convexity of sets related to the reachable set of system states. Such

convexity methods are the principal concern in this thesis.



Most of the convexity methods involve gradient-type minimization
of scalar functions of n variables [e.g., Bl, El, Fl, F2, N1, N3, N4].
These techniques possess inherent difficulties of step-size determination
and exhibit slow convergence in the presence of poor problem condition-
ing. Furthermore, they require an assumption that the reachable sets
be strictly convex. This assumption is not satisfied in certain impor-
tant problems; even if it is satisfied, it may be difficult to verify.
Another convexity method, which provided the motivation for this dis-
sertation, is that due to Gilbert [G1]. Gilbert's method and the pro-
cedures developed here are not gradient-type techniques and do not re-
quire strict convexity. Other desirable features are: rapid monotone
convergence and the availability of computable error bounds. It should
be noted that Gilbert's investigations in this area began by proving con-
vergence for an extension by Fancher [F3] of a procedure due to Ho

[H3].

The outline of the dissertation is as follows. In Chapter 2 a
basic quadratic programming problem BP is stated and Gilbert's algo-
rithm for solving it is presented in detail, The results of many
numerical computations with this algorithm are also given. Gilbert's
method requires a quadratic minimization problem on a line segment
to be solved on each iteration. Chapter 3 contains an extension of
Gilbert's method in which quadratic minimization problems are solved
on convex poclyhedra. The theory is carefully developed and includes
a convergence proof and a sufficient condition for convergence in a
finite number of iterations. Extensive computational results for a
rather general example are presented. These results indicate that the
extended procedure for solving BP is a significant improvement over
Gilbert's method. In Chapter 4 a general problem GP which has appli-
cation to a wide variety of optimal control problems is formulated.

The basic idea of the formulation is due to Fadden [F1], but the



iterative procedure for solving GP and the proof of convergence are
new. Finally, in Chapter 5 the iterative procedures are applied to
optimal control problems of a broad class. Numerical results for a

minimum fuel example are also given.



CHAPTER 2

THE BASIC ITERATIVE PROCEDURE BIP

Gilbert [G1] has presented an iterative procedure for computing
the minimum of a quadratic form on a compact convex set in finite di-
mensional space. This algorithm will be called the basic iterative
procedure since it is fundamental to all the computing procedures de-
veloped in this thesis. The first five sections of this chapter are de-
voted to the theoretical details of Gilbert's method and except for
minor changes are taken directly from his paper [Gl]. In Section 2.6
the results of the author's extensive computer experimentation with

Gilbert's procedure are presented.

2.1 Preliminary Comments on Notation

Letx=(x1,x2,...,xn), y =(y1,yz,...,yn), z =(zl,zz,...,zn)

be vectors in n-dimensional Euclidean space E" and let » be a scalar.
The following notation ils employed: x.y = igl xiyi, the scalar product
of xandy; [x| =(x,x%)?, the Euclidean norm of x, and |x - y|, the
distance between points x and y; L(x;y) = {z cz =X Ty - %), ~0o<w
< oo}, x # y, the line passing through x and y; N(x;w) ={z clz-x| <w},
w > 0, the open sphere with center at x and radius w; ﬁ(x;w) =

{z: |z - x| s w}, the corresponding closed sphere; Q(x;y) =

{z P Z-y =X~ y}, y # 0, the hyperplane (dimension n - 1) through x
with normal y; Q+(x;y) = {z 12y < X- y}, y # 0, the open half-space
bounded by Q(x;y) with outward normal y; Q—(x;y) ={z 1 Z'y 2 X y},
y # 0, the closed half-space bounded by Q(x;y) with inward normal y.
In addition, if X and Y are arbitrary sets in En: 90X denotes the bound-
ary of X; X +Yistheset{z:z=x+y, x€X, yeY}; X - Y is the
set{z tZ =X -y, X€X, yGY}.



2.2 Contact Function; the Basic Problem BP

Consider a set Kc En which is compact and convex. The real-

valued function n(y) = gé?{X z -y is called the support function of K.

Since K is compact, n(y) is defined for all y. Furthermore, it can be

shown that n(y) is a convex function on En, a result which implies that
n(y) is continuous on E" [E2]. Let P(y), y # 0, be the hyperplane
{x P Xy = n(y)}. Since z -y = n(y) for all z € K and P(y) NnK is not

empty, P(y) is the (unique) support hyperplane of K with outward normal

y. For eachy # 0 the set S(y) = P(y) NK is called the contact set of K

and its elements are called contact points of K. It follows that S(y) is not

empty, S(y)c 0K, S(wy) = S(y) for w > 0. If for every y # 0, S(y) contains

only a single point, K is strictly convex.

A function s(y) mapping En into Erl is defined to be a contact func-

tion of K if s(y) € S(y), y # 0, and s(0) € K. From the preceding it may be
concluded that: s(-) is bounded; s(y) = s(wy), w > 0; n(y) = s(y) - y.
Furthermore, on the set {y clyl > 0} each of the following is true if and
only if K is strictly convex: s(-) is uniquely determined, s(-) is con-

tinuous. The continuity result is proved in [N1].

If for every y there is a method for determining a point x(y) € K
such that x(y) -y = rzré?{x z .y =n(y), then it is said that a contact function
of K is available. Such a determination, which corresponds to the solu-
tion of a linear programming problem on K, is possible for the convex
sets which arise in a variety of optimal control problems.!see Chapter 5).
This availability of a contact function is essential to all the computing

procedures which follow. Consider now the basic problem:

BP Given: K a compact, convex set in En. Find: a point z* €K

such that |z*| = 1261}21 |z|.

Since K is compact and |z| is a continuous function of z, a solution

z* exists. The following additional results hold:



THEOREM 2.2.1 (Solution Properties for BP). i) z* is unique;

ii) |z*| = 0 if and only if 0 € K; iii) for |z%|> 0, z* € 8K; iv) for

|z#| > 0, z = z* if and only if z € P(-2) NK = S(-z).

Proof: Properties ii) and iii) are obvious. Property i) is proved
by contradiction. Suppose z’f and z; are distinct solutions. Then by

convexity &=z +42zf €K, which meansI;I 2 Izll = |zz |. But this im-
B3 IZ

plies |3z + 323 1“2 sz "+ 3 |Z>2:<|2 which can be written |Zl - 25 |*

= 0, an inequality which is only true for z;k = z2 Consider iv). The

condition z € P(-z) NK 1mplies z € P(-2) = Q(z;z). But Q(z;z) is the

support hyperplane for the closed sphere N(0; |z I) whose outward

normal is z and whose contact point is z. Therefore, Q(z;z) is a

z|). Thus KNN(O0;

(separating) support hyperplane for K and N(0;

z|)
is empty. Since z € K NN(0; |z|), this implies z = z*. The steps of

this argument may be reversed to obtain the converse result.

Since |z| is the Euclidean norm of z, the above minimization

2 _min|,|2
ZEKIZ‘ ’

Thus BP is a quadratic programming problem. It differs from the

problem is equivalent to finding z* € K such that |z*|

quadratic programming problems which are frequently treated in the
literature [e.g., Al, B2, Hl, V1] in that the constraint set is not de-
scribed by some set of known algebraic equations or inequalities. In-
formation about the set K is obtainable only through a contact function

s(+).

In actual computations it is generally not possible to obtain z%*.
However, it is important to know if z € K is such that |z] - |z*] = ¢
and |z - z*| < ¢, where ¢; and ¢, are specified positive constants. Ex-
pressions for determining if these inequalities are satisfied are given

as part of the iterative procedures which follow.

2.3 The Basic Iterative Procedure BIP

In this section Gilbert's algorithm for computing the solution to



7

BP is described.

As a first step, let s(.) be a specific contact function of K and

consider: .
B(z) = ]Z-S(-z)l 2y (z-s(-2)), z-s(-z) $0 (2.3.1)
=0, z-s(-z) =0
and
viz) = lz| "z s(-2), |z| >0, z-s(-2) >0 (2.3.2)
=0, z=0 or |z| > 0, z-s(-z) = 0.

Thus B(+) and y(-) are functions which are defined on K. Figure 2.3.1
indicates their geometric significance: x = z + B(z)(s(-2z) - z) is the
point on the line L(z;s(-z)) with minimum Euclidean length; vy(z)z is
either the point I(0;z) n P(-z) or the origin, depending on whether or

not L(0;z) NP(-z) is on the line segment connecting z and the origin.

Figure 2.3.1 Geometric significance of p(-) and y().

The functions B(-) and y(-) have the following properties.

THEOREM 2.3.1 E:c K Eg the set described 1_r1 BP @ restrict

z to K. Then: i) p(z) = 0; ii) p(z) =0 i_fglgonlyi_fz = z%; iii)
0=vy(z) =1 iv) if 0€ K, y(z) =0; V) if 04 K, y(2) =1 if and only if



z = z%; vi) vy(z) is continuous.

Proof: In this paragraph z always denotes a point in K. Later in

this chapter (inequality (2. 4. 5)) it is shown that 0 = z - (z - sfz)).
Hence, i) and iii) follow from (2.3.1) and (2.3.2). For the time being
assume |z*| > 0. The conditions p(z) = 0 and y(z) = 1 both imply
z-(-z) =s(-z)-(-2) = n(-2z) which requires z € P(-z). Since z € K,
part iv) of Theorem 2.2.1 yields z = z*. Reversing these arguments
completes the proof of ii) for |z*| > 0 and of v). Now take |z*| = 0.
Inequality (2. 4.4) then implies s(-z) - z = 0 which by (2. 3. 2) yields iv).
If B(z) = 0then it must follow from (2.3.1) that s(-z) - z = |z!2, Be-
cause of s(-2z) - z = 0 this implies z = 0 = z*, Since z = z* = 0 also
yields p(z) = 0, the proof of ii) is complete. For |z| = |z*| >0, the

continuity of y(z) follows from (2.3.2) and the continuity of the support

function n(y) = s(y) - y. For [z* = 0, it is trivially true from iv).

It is of interest to note that B(:) may be discontinuous on K even

though s(-) is continuous on K. See Example 3, Section 2. 5.

For 6 a fixed number, 0 < §=<1, and z € K, define the closed

interval

I(z) = [min{6@(z), 1}, min{(2-6)p(z), 1}] . (2.3.3)
Then Gilbert's algorithm may be stated as follows:

The Basic Iterative Procedure BIP Let s(-) be an arbitrary con-

tact function of the set K specified in BP. Take z € K and choose § in
the interval 0< & =1. Then a sequence of vectors {zk} in BV is gen-

erated according to the rule

= + - - =01 AP 2.3,4

where scalars o, are selected arbitrarily from I(z

k ).

k

For the case 6§ =1 the selection of )y € I(zk) reduces to @ =

sat B(zk), where sat w is w for 0= w =<1 and is 1l for w > 1. Figure



2.3.2 gives the geometric interpretation of BIP for this case.

k+1

Figure 2.3.2 Geometry of BIP for 6 = 1.

If ﬁ(zk) > 0 an improvement is obtained on the kth step, i.e.,

'zk+1| < lzkl; if ﬁ(zk) =0, 2y z* and the iterative procedure is finite,
i.e., the solution has been obtained in k steps. From Figure 2.3.2 it
is also clear that IZkIY( Zk) = |z*| 3 lzkl. Thus on each step upper
and lower bounds on |z*| may be computed. Notice that in applying
the iterative procedure it is not necessary to know beforehand whether
or not 0 € K. A more precise and complete statement of results is

contained in the theorem of the next section.

2.4 Convergence Theorem for BIP

THEOREM 2.4.1 Consider the sequence {zk} generated by BIP.

For k = 0 and k > w: i) z €K; ii) the sequence { |zk|}_1_<_s_ decreasing

('Zki z IZk+11')’ Izkl *'Z*l’ and lzkl = |Zk+1| implies 2, = g%
iii) Zk - z%; iv) IZkI‘Y(Zk) < IZ*I gl’l_(_l_ 'Zkly(zk) - IZ*I; - le _ z*l <
N1 - Y(Zk) IZkl and N1 - y(zk) 'Zkl - 0; vi) IS(‘Z

ls(-zk) - Y(zk)zkl.

- Z:::l <

i)
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Since the bounds given in parts iv), v), and vi) are computable as
the iterative process proceeds, they may be used to generate stopping
criteria for the termination of the iterative process. Example prob-

lems show { |zk|y( zk)} is not necessarily increasing. Thus lzkl

max Izi [v( z,) is more satisfactory as an upper bound for |zkl - |z

isk
than lzkl - lzkly(zk). Since examples also show that { lzk— z#|} and

{ Is(—zk) - z% l} are not necessarily decreasing, it is not possible to

improve similarly the bounds given in v) and vi).

Suppose lz*l > 0 and s(-) is continuous in a neighborhood of -z%*
(the latter is certainly implied if K is strictly convex). Then it follows
from the continuity of y(-) and part iii) that the upper bound in part vi)
converges to zero. Thus {s(-zk)} may be used as an approximating
sequence, an approach which may be advantageous in some situations.

In addition it is clear from part iv) that |s( -2,) | ) |
max

i<k |zi Iy(zi), where the right side converges to zero. Therefore

- IZ*I < IS("Z

meaningful stopping criteria are available.

Proof of Theorem 2.4.1 (due to Gilbert [Gl]): First some basic

inequalities are stated. From z* € P(-z%), 04 K, and s(-y) € P(-y),

y # 0, it follows by the definition of P(-) that
7% . 2% S 7. gk, z€K, 04 K; (2.4.1)
s(-y) -y <z-y, 2€K, yeE . (2.4.2)

These inequalities lead to:

lz%* < s(-y)- 2%, 0d K, yeRES (2.4.3)

s(-y) -y S z*.y, y € B (2.4. 4)

s(-z) -z = lzlz, z€K; (2.4.5)
s 2 3 A, n

ly-z#[ +z% . (y-29) sy (y-s(-y), yeE; (2.4.6)

lz-2%]" sz-(z-s(-2)), z€K 0¢ K. (2.4.7)
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Inequalities (2.4.3), (2.4.4), and (2.4.5) are deduced from (2.4.1) and
(2.4.2 by obvious substitutions. From the identity |y - z* |2+ z* . (y - 2%) +
y - (z* - s(-y)) =y (y - s(-y)) inequality (2. 4. 6) follows by (2.4.4).
Inequality (2.4.7) follows from (2. 4. 6) by use of (2.4.1).

¢ C L.
K I( zk) which insures

0 = . = 1. Thus from (2.3.4), s(-zk) € K, and the convexity of K,

€ K.
1

Part i) of the theorem depends on «

z, € K implies z

k k+
Consider now the inequalities in parts iv), v), and vi). From
(2.4.4) and the Schwartz inequality s(-y) -y < |y]| - |z*|. Thus iv) fol-
lows from (2.3.2). The proof of the inequalities in parts v) and vi)
makes use of z = zke K. Fors(-z).-2>0, z.(z-s(-2))= lzlz(l—y(z))
and from (2.4.7) the inequality in v) is true. Now consider s(-z) - z <0,
which corresponds toy(z) = 0. For z* =0, y(z) =0 (Theorem 2.3.1)
and v) holds as an equality; for z* # 0, the inequality in v) follows
from (2.4.1) which insures |z - z* |2 =|le -2z« zk+ 2| z% lz - |z IZS |zl2°
If z* = 0 the inequality in vi) is trivially true. Consider now z* # 0. If
s(-z) - z =0, part vi) reduces to -2s(-z) - z* + |z* lz < 0 which is true
by (2.4.3). The following identity is easily verified |s(-z) - z*[* =
|s(-2) - y(z)zlz + |z|-z(s(-z) szl + | zx lz - 2s8(-2z) + z*. Assuming
s(-z) - z > 0 and using s(-2z) - z = |[z||z*]| yields |z|_z(s(-z) c g =

|z Iz. Thus |s(-z) - z* * < |s(-z) - y(z)z|2+ 2( |z IZ - s(-2z) - z*¥) and

by (2.4.3) the inequality in vi) follows.

In order to complete the proof of the theorem, the function

T'(z) = lzlz - l-z*lz = Iz - z*lz + 2z% . (2 - z%) (2.4.8)

is introduced. For 0 ¢ K inequality (2.4.1) gives
05 |z-2%]° =T(2), z€K, (2.4.9)

a result which is obviously true for 0 € K. In the following paragraphs
it will be shown that {I‘(zk)} is decreasing and I‘(zk) - 0. By (2.4.8)

and (2.4.9) this proves the first two results in ii) and iii). From
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(2.3.4) 'Zk+1| < lzkl +ak|s(—zk) - zkl SO lzkl = |zk+1| implies
akl k| = 0. Thus either o =0 or 2, = s(-zk), both of which

yield B(zk) =0 by (2.3.3) and (2.3.1). Then part ii) of Theorem 2.3.1

s(—zk) -z

implies z, = z%, which completes the proof of ii). The remaining re-

k
sults in parts iv) and v) follow from the known value of y(z*), the con-

tinuity of y(+), and part iii).

For simplicity let
A(z;e) =T(z) - T(z + a(s(-2) - 2)) (2.4.10)

and assume tacitly in what follows that z € K. Then from (2.4.8)
Alz;a) = 2ol|z]* - s(-2) - 2) -e?|z-s(-2)|° (2.4.11)

Because the coefficient of o is not positive, aénl(lél) Alz;a) is attained at

the end points of I(z). It is readily shown that A(z;6B(z)) = A(z;(2 - 8)p(z)).

Thus from the definition of I(z),

- - -1
0 A(z;a) = Alz;68(z) ,  Plz) =8

«€l(z) j , (2.4.12)
A(z;1) . Blz) =8

Equation (2.4.12) is now used to obtain a lower bound on Alz;w),

a €1(z). From (2.4.11) and (2.3.1) it follows that

Alz;8p(z)) = Iz—s(—z)]_z[z-(z—s(-z))]z(26—62). (2.4.13)
Let
e Z?;;‘GKIZI - 75| (2.4.14)

denote the diameter of K and recall that 0 < & =1. Then

A(z;68(2) 2 1 6[z - (z - s(-2)] (2.4.15)
From (2.4.8) and (2.4.6)

T'(z) = le - z* IZ +2z% . (z-2% <2z (z-s(-2)) (2.4.16)

(for z* = 0 this may be sharpened to I'(z) = z- (z - s(-2z))). Thus
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Alz;6p(z)) 2 +u %0 (z2). (2.4.17)

For B(z) 21, z-(z - s(-2)) 2 lz - s(—z)l2 and consequently

Z(z;l) =2z-(z - s(-2)) - ]z—s(—z)]2 2z-(z-s(-2)).

Therefore (2.4.16) yields

A(z;1) = 3T(z), Blz) 2 1. (2.4.18)

Finally, utilizing (2.4.17) and (2.4.18) in (2.4.12) yields

A(z;a) 2 min{3u %0 %z), 3T(2)} (2.4.19)
o€I(z)
Letting z = z, in (2.4.19), using (2.3.4), and returning to

k
(2.4.10), it is seen that

L(z) -Tlz, )2 min{:i}fzsrz(zk), irzp}h = 0. (2.4.20)

Therefore the sequence {F(zk} is decreasing and, since it is bounded
from below by zero, has a limit point. Thus passing to the limit on the
left side of (2.4.20) gives zero and therefore from the right side

I‘(zk) -0,

2.5 Nature of Convergence; Examples

This section gives some further results of Gilbert on the conver-
gence of BIP. Theorem 2.5.1 establishes upper bounds on the elements
of the sequences {lzkl} and { ]zk - z* I} Three example problems are
analyzed to demonstrate still more fully the nature of convergence.
Emphasis is on the case 0 § K, since it is most important in applica-

tions.

THEOREM 2.5.1 Let

8, = Oo(L+ 4" 800k) ", 0 = |zof - |z (2.5.1)
and assume that |z, 'z < |z Iz

+ 2926_1 . Then if {zk} is generated by
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BIP, the following inequalities hold for k = 0:

Izkl = V9k+ [z, (2.5.2)
<~Np_ . (2.5.3)

The assumption on |zy| is often met in practice. For example,
it is easily shown that it must be satisfied if |z*| = %(26—l -Dp. In
any case, zp may be interpreted as a suitable intermediate point in the
iterative process, and inequalities (2.5.2) and (2.5.3) may be used to

estimate the subsequent rate of convergence.
For |z*| > 0 and k = 1 inequalities (2.5.2) and (2.5.3) imply

'-1 -1, -1

|z, | - |z*| < 2u?|z*] "6 "k (2.5.4)

|

1
2

1
|z, - z%| < 2u6 2k 2, (2.5.5)

k
results which conform closely to (2.5.2) and (2.5.3) for k sufficiently
large. In Examples 1 and 2, which appear later in this section, it is

demonstrated that within a constant multiplicative factor it is impos-

sible to obtain bounds on |zk| - |z*| and |zk - z*%| which approach

zero more rapidly than those given in (2.5.4) and (2. 5. 5)

2
Proof of Theorem 2.5.1: Since |z]

-1
< |z#|* +24%6 it follows
-1
from the previous section that P(zk) ST (zg) = 2926 , k2 0. From
s impli < R > i
(2.4.20) this implies I‘(zkﬂ) s F(zk) an or (zk), k2 0, Since

1-4u7%60 <(1+2,7°6T)! for all T 2 0, it is possible to write

T(z,,,) S Tz)(0+ 3 6T(z) ", k= 0. (2.5.6)

Zk+1
But substitution shows that ek is the solution of

-1

) (2.

(9]
~
-

=2
0 =9k(1+%u 60

k+1 k
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with 89 = |z IZ - |z*[ =T(z¢). Thus comparison of (2.5.6) and (2.5.7)
yields l"(zk) -3 ek, k 2 0. Finally, (2.5.2) and (2. 5. 3) follow from
(2.4.8) and (2.4.9).

The complexity of the difference equation (2.3.4) makes it diffi-
cult to obtain more specific analytic results than those obtained in
Theorem 2.5.1. Thus the remainder of this section is limited to the

presentation and discussion of three example problems.

Example 1. Take § =1 and let K be the convex hull of three
points in 2-space, (1, v), (-1, v), (0,1 + v), where v > 0. Clearly z* =(0,v)
and |z*| = v. Simple inspection shows that the iterative process is
finite (z, = z*) if and only if zo is on the line segment connecting (1, v)
and (-1, v). Moreover when the process is not finite Zk’ k 2 1, is de-

termined by the scalar ka = Izll{ |(z Thus the second order non-

2, "1
Ko
linear difference equation (2.3.4) may be replaced by a first order dif-

ference equation in ¢k. It is not difficult to show that

-1

- 2 -
Uy, ~ Y- )Atvgy +240) 0, k=2 1. (2.5.8)

~Jy ~ ~ _l
. . . . - +
For q,nk <<1 this equation is approximated by ¢k+1 ka(l 2v¢k) , an
equation of the same form as (2.5.7). These observations and some
tedious, but straightforward, computations lead to (the notation o(w)

means lmg™! o(w) = 0)
w0

z | - |z%| = (2vk) "+ o(k Y, (2.5.9)
k
|2, - 2] =(2vk) NT +02 + o(k ) (2.5.10)

Equation (2.5.9) demonstrates that is is impossible to obtain an
upper bound on |zk| - lz*l which approaches zero more rapidly than
(const.) k-l. For large k the upper bound in inequality (2.5.4) is con-
servative by a factor of sixteen. This factor can be traced to two

sources each of which contributes a factor of four: in equation (2.4.15)
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p 1s an unsatisfactory estimate of |zk - s(-zk)l, in the derivation of

inequality (2.4.6) the term y - (z* - s(y)) has been omitted. For this

example the upper bound in inequality (2. 5. 5) is a poor estimate be-
1

-1 -1
cause it is order k ¢ rather than order k

It is also possible to show that

2] - z)lz | = (2vk) +o(k™) (2.5.11)
-1 -1
N1 - v(z,) Izkl =k 2 +o(k ? (2.5.12)

By comparing (2. 5.11) with (2.5.9) and (2.5.12) with (2.5.10) it is seen
that in Theorem 2.4.1, part iv) provides a reasonably good stopping

criterion while part v) does not.

Example 2. Take 6§ =1 and let K be the convex hull of three
points in 3-space, (1,0,v), (-1,0,v),(0,1, v), where v> 0. Thus
z* =(0,0,v) and |z*| = v. The iterative process is much the same as

in Example 1, the points Z, € K, k 2 1 being determined by the scalar

= lel{l(z2 —l. The first order difference equatlon for 4; is (2.5.38)
-1
with v = 0, By usmg the fact that q; = o (1 + 4% k) ¢is the solution of

~

Yrpy © L|J (1+ 4¢ "2 and that (1 + 44; )z =1+ Zka for P, << 1, the follow-
ing results can be derived:
|2, | - 2%] = (8vK) +o(k™) , (2.5.13)
1, o1
|zk - zx| = (2k?  + ok ?), (2.5.14)
2] - Wzplz, | = 3(8vk)7 +o(k™), (2.5.15)
-1 21
N1 -y(zk)|zk] =(2k) 2+ ok ?. (2.5.16)

Equation (2. 5.14) shows that the asymptotic behavior of Izk -z |
matches the bound given in inequality (2. 5. 5), except for a multiplica-
tive factor of eight. The bound given in inequality (2.5.4) is conserva-

tive by a multiplicative factor of 64. Comparison of (2. 5.15) with
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(2.5.13) and (2. 5.16) with (2. 5.14) shows that parts iv) and v) of Theo-

rem 2.4.1 both provide reasonable stopping criteria.

Example 3 (The Hyperparaboloid Problem) Take 6 = 1 and in n-

space let
I L
K={z‘212v —;Z ) ZISZV}, v,)\z,)\3,...,)\n> 0.
i=2
(2.5.17)
In the neighborhood of the optimum z* =(v,0,...,0), 9K is the elliptic
-1
hyperparaboloid z! = v + 4 E (z PN ,» where\ ,...,\, are the principal

radii of curvature at the vertex z*. Many other convex sets K have a
boundary surface which in the neighborhood of z* can be closely approxi-
mated by such an elliptic hyperparaboloid (see Chapter I of Busemann

[B6]). Thus this example is of general interest.

n © .
For y! < 0 and 4 Z(y} z)xi(yl)2 < v it is easy to show that
i=2

n . .
si(y) =v+4 D (y) "N (y , siy) = -(yH) Ny i=2,...,n. (2.5.18)
1

i=2

Let ) = izzmax n{)\i} and assume the conditions

3 e e

=vNL+ 2T >y, -vz (2.5.19)
. . . . . n 1'2 iZ
are satisfied, which in turn imply - ,Ez(y ) )\i(y ) <v. Thus (2.5.19)
1:
defines a set on which (2. £.18) is valid. Using this fact, z! =2 v for

z € K, and (2.3.1) gives

n .
(z'-vP+u(z'-v) + 2 (43 () )2
B(z) = - . < IR
(21 =P+ Z (L4 (2N, +(2) 5 +(2) A (2P +E B (2) PN (23
1=2 1 1 1 1=2 1

(2.5.20)
z tz% zE€K, lz| < t.
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n .
Because z € K, |z| < ¢ imply z!2 v and 4 I (2! )\i(zl)?' <v it follows
i=2
that

(2o + 2 (P
i=2

5T  ~1 —a2 -2

(2.5.2])
z+#z% z€K, |z|<¢.

Because B(z*) = 0 this inequality implies that p(z) is discontinuous on K

at z*,

By starting with (2.4.13) and repeating the derivation of Section
2.4 with [z - (z - s(-2))]|z - s(-z)’l2 = B(z) =z B it can be shown that

D(z, ) ST(z)(1 -5 ps), 7, F 2%, (2.5.22)

For Z, ~ Z%, I‘(zk+1) = 0 and (2.5,22) is trivially true. Thus I‘(zk) =
T(zo)(1 ——;_)k, k20, z0€ K, |zo| <. Using(2.4.8) and (2.4.9) this
leads to
2, | -l =3v 7 0g (1-456), (2.5.23)
k
|2, -z = Noo (1-5P8)7

where 6o is given as before in (2.5.1). Since B > 0 inequalities
(2.5.23) and (2.5.24) guarantee that the convergence of { | zkl} and
{lzk - z*l} is geometric. However, the guaranteed rate of conver-

gence is not rapid if B<<1, i.e., v® <<%

2, 6 Numerical Results for BIP

Actual computations with BIP were carried out for Example 3 of
Section 2. 5 at the University of Michigan Computing Center. The pro-
grams were written in the MAD language and an IBM 7090 digital com-

puter was used. In all the experiments v = 1, i.e., z%=(1,0,...,0).
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Also, the extent of K was increased beyond z! = 2v so that (2. 5.18) is
valid even though (2. 5.19) is violated. Data was obtained for n = 2 and

3 and various combinations of \,, \;, zé, z?

. and zg. The figures and

tables included in this section contain an important part of these results.

In optimal control applications (see Chapter 5) the evaluation of a
contact function is the most time-consuming part of the iterative pro-
cedure. Since such an evaluation is required on each iteration of BIP,
the number of iterations to satisfy certain error criteria is used as a

measure of the speed of convergence.

The results for n = 2 are presented first. Figure 2. 6.1 shows the
strong dependence of BIP on the parameter \, v_l, convergence becom-
ing very slow as xzv_l - . Additional data for various performance
measures and \, values, given in Tables 2. 6.1 through 2. 6. 4, illustrate
further this dependence. It is interesting to note that f( zk) shown in
Figure 2. 6. 2 is large immediately preceding major improvements in
Izkl— |z*|. Table 2. 6.5, which displays the case A, = 100 for different
points zo, shows a somewhat random dependence of BIP on the initial
point zo. As a rough average, about 16 iterations are required for a

decade of improvement in lzkl- |z*| (n = 2, X, =100).

The results for n = 3 are presented in Figures 2. 6.3, 2. 6. 4 and
Tables 2. 6. 6 through 2. 6.9. The behavior of |z, |-|z*], |z, - 2%,

|z - lzkly(zk), and |s(-z,) - z*| shown in Figures 2. 6. 3 and 2. 6. 4

k
is typical of that observed in all computations with BIP. It can be stated
that |z*|- izkly(zk) decreases most rapidly, followed in order by
lzkl— Iz*l, Izk - z*l, and |s(—zk) - z*l. The results indicate that

convergence is quite slow when v <<\. Furthermore, compared with
the parameter v ', the ratio N, /\3; has little effect. By way of con-
trast, for iterative procedures of the gradient type [e. g., Bl, El, Fl, F2,
N1, N3, N4], \;/\; has an important influence.
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Attempts to improve convergence for this example by taking

& 1 and choosing oy € I(z,) in a variety of ways were unsuccessful.

k
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Figure 2.6.1 |zk|-|z*| for n=2, zo =(6, 2): A) \, =10, B) \, =100,
C) \, =200, D)\, =500, E) \, =1000; BIP,
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Figure 2.6.2 ﬁ(zk) forn =2, zo = (6,2), N, = 100; BIP.
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Table 2. 6.1 Number of iterations to satisfy lzk |-|z%| = ¢;

n=2, zo=(6,2), BIP.

\, e 1 {1 o1 J107® 0™ J107® 107"
10 4 | 13| 17 |18 | 271 | 29| 40
100 2 9| 25 | 42| 60 | 60 | 75
200 18 | 49 | 98 |147 | 148 |167 | 216
500 36 | 113 | 126 |134 | 150 |158 | 241
1000 69 | 96 | 200 |215 | 281 |376 | 443

Table 2. 6. 2 Number of iterations to satisfy Izk - z*| = e
n =2, zo=(6 2), BIP.
€ 4 6
N, 1 | .1 |.o1 [107% 107" 107 |10”
10 4 | 14| 19| 26| 39 |>40
100 4 | 11] 29| 46| 64| 83| >98
200 18 | 49| 99 | 151 | 166 | 213 [>269 |
§
500 38 | 115 | 129 | 139 | 157 | 165 [>300 |
1000 71 | 98| 203 | 224 | 301 | 443 [>500 |
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Table 2. 6. 3 Number of iterations to satisfy |z |- izkly(zk) e

n=2 zp=(62), BIP

N, < 1 |1 .01 |10 fi07*{107° | 107"
10 o | 9 | 16| 16| 23| 26| 33
100 0 1 8| 8| 24| 41| 59
200 0 | 3 | 17| 49 | 99 | 146 | 146
500 0 1 2 | 34|12 |112 {125 | 141

:
1000 0 j 4 | 68 | 85 | 95 | 199 |321

Table 2. 6. 4 Number of iterations to satisfy |s(-zk) -7k | S e
n=2 zo=(6,2), BIP.
) -3 -4| ., -5 -6
\, 1 .1 .01 10 10 10 10
10 9 16 26 39 |>40
100 8 | 24 59 84 |>98
200 17 {146 166 | 253 [>269
500 112 {125 157 1299 [>300

1000 85 {199 392 487 |>500
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Table 2. 6. 5 Number of iterations to satisfy Izkl- |z%| < ¢;

n=2 \, =100, BIP.

Zg 72 e 1| .1 .01 |0 0| 107% 107
6 1 18 |19 |44 | 44| 62| 102 | 137
6 1.5 5 |36 |57 | 79| 90| 100 | 129
6 2 2 | 9 |25 | 42| 60| 60| 75
6 2.5 13 |24 |34 | 34| 44| 49 | 49
6 3 4 |11 |30 | 30] s51] 69| 92
6 3.5 11 |34 |34 | 34| 34| 29| 49
6 4 18 |22 |34 | 34| s9| 81| s
6 4.5 10 |10 |22 | 37| 38| 71| 89
6 5 3 |15 |47 | o1 | a1 | @7 | w7
2 6 5 |14 |33 | 61| 62| 115|136
3 5. 57 25 |67 |72 | 89 | 122|160 | 160
4 4.9 6 |16 |28 | 59 | 93 | 106 | 134
4.5 4. 44 10 |20 |62 | 73| 88 | 113 | 137
5 3. 87 3 123 |50 | 50| 71 92 |121
5. 5 3. 12 s |40 les |10z | 120 | 136 | 175 |
6. 2 1. 25 10 |21 |23 | 36| 36 36| 36

Note: For zg = (6, 2) and the last seven cases in the table,

40.

1R

1
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L0l p—

10 7 }— B

10 }—

10~° | | | K

0 10 20 30 40 50

Figure 2.6.3 Results forn =3, z, = (6, 2, 2), \, = 100, Ny = 10:

A) lz:kl.. r]-%akxlzily(zi): B)

For k = 14, 'zk - z*l o] lzkl_lz*l-

zkl—Iz*l,C) |z, - z*| BIP.

k
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10R4-

L0l p—

10 7 p—

L ML

0 10 20 30 40 50 k

Figure 2.6.4 Results for n = 3, zq = (6, 2,2), \, = 100, \; = 10;

A) |z*|-|zk|y(zk), B) |s(-z,) - z*|; BIP.

k
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Table 2. 6. 6 Number of iterations to satisfy lzk]—lz*l <e;
n=3, z=(6 2 2), BIP.
¢ -3 -4 -5 -6
N, \s 1 1 [.o1 107107 [107% 10
1 1 1 2 3 1.3 5 5 5
10 10 4 9 21 28 31 38 41
100 100 10 19 31 59 59 74 (111
1000 1000 82 82 126 |216 | 250 |290 | 340
100 1 2 6 24 35 46 46 57
100 10 11 15 21 27 52 73 81
100 50 20 33 78 124 J124 |151 | 151
100 90 15 38 38 58 | 112 1137 137
1000 1 14 198 218 |[218 | 274 |[321 !321
1000 10 83 174 1207 229 {267 |298 | 359
1000 100 81 88 |108 197 | 221 273 |358

Table 2. 6.7 Number of iterations to satisfy |zk - zk| <S¢

n =3, z9=(6,2,2), BIP.

N2 N QU 1 {.o1 {107 107 [107% 107°
1 1 1 3| 4| 4| s 5| >5
10 10 4 11 | 25 | 30 | 40 |>41
100 100 || 10 20 | 35 | 63| 73 pp111

1000 | 1000 || 82 84 [130 |247 | 309 [>340

100 1 2 15 | 36 | 45 |>57

100 10 {1 17 | 26 | 47| 64| 92|>101
100 50 || 20 35 | 81 [127 | 146 [>151

100 90 || 17 38 | 42 | 67 | 132 137

1000 1 [l1e 199 232 |238 | 318 [>321

1000 10 |l 84 |177 |216 |249 | 291 [>359| |

1000 100 81 90 |112 [203 | 259 | 337/>358




Table 2. 6. 8 Number of iterations to satisfy |z* | - lzkly( Zk)
n =3, zo=(6,2,2), BIP.

29

' o ——
\, } E 11 o Ilo'3 10 *107% 107"
1 1 0 2 2| 4| 4| a4
10 10 0 5 20| 27 | 30] 37
100 100 0 9 | 9 18| 35 | 58| 58
1000 | 1000 0 26 | 47 81| 8l | 125]165
100 1 0 1 |19 31| 38 | 45/ 45
100 10 0 11 |14 14| 26 | 51| 51
100 50 0 13 | 19 67 77 | 123|123
100 90 0 14 | 37 37 | 371157 127
1000 1 0 | 13 |41 |146: 197 241 |255
1000 10 || o |34 |s2 | ss|173 |223|264
1000 | 100 0 9 |8 | so| 87 |107]196
Table 2. 6.9 Number of iterations to satisfy |s(-zk) - z%| S e
n =23, z¢=(6,2,2), BIP.
¢ f
N NN ! o1 [.01 107 107" |107%107®
1 1 o | 2| 4 4] 4| 4 |>5
10 10 5 i 20 | 30 40| >41
100 | 100 19 35|73 pua) |
_ 1000 '} 1000 1181 | 125 1165 | 292|>340 ]
100 1 | 23 | 45 | 56| >57 L
100 10 14 26 | 51 | 92[>101 L
100 50 19 77 | 123 | 150 [>151
100 90 37 37 [127 { 136[>137
1000 1 96 243 | 286 1>321 ; i
1000 | 10 |[159 | 241 [295 359 T
| 1000 100 80 | 107 |232 >358 I




CHAPTER 3

THE IMPROVED ITERATIVE PROCEDURE IIP

The examples of Section 2. 5 and results of Section 2. 6 indicate
that for many problems BP the convergence of BIP is not rapid. In
Example 3, Section 2. 5 slow convergence is obtained with BIP for
cases in which the surface 0K at z* has at least one principal radius
of curvature large compared with |z*|. For problems in which S(-z*)
contains more than one point such as Examples 1 and 2, Section 2. 5,
the convergence of BIP is especially poor. Since a large number of
convex sets K which occur in practical problems either have a boundary
surface near z* approximately like that of Example 3 or have contact
sets containing more than one point (K not strictly convex), it is im-

portant to seek ways to improve BIP.

By using more than one contact point at each iteration to gain in-
formation about 9K, it is possible to develop an iterative procedure for
solving BP which exhibits much more rapid convergence than BIP.
Such an improved iterative procedure 11 P is discussed in this chapter.
First some background material on convex polyhedra is given after
which ITP is stated and shown to converge. In the last two sections a
sufficient condition for finite convergence of IIP and the results of

many numerical computations are presented.

3.1 Convex Sets and Polyhedra

It is convenient to introduce here some basic definitions and re-
sults for convex sets and polyhedra which will be needed in the pre-
sentation of ITP. The proofs of all the results except Theorem 3. 1. 2
are omitted since they can be found in standard references such as

Eggleston [E2] and Valentine [V2].

30
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If X is an arbitrary set of points in En, then the convex hull of X,
written AX, is the set of points which is the intersection of all the con-
vex sets that contain X. AX is convex, and a necessary and sufficient
condition that X be convex is that X = AX. Furthermore, if X is com-

pact, then AX is compact.

The convex hull of a finite number of points from E" is called a

convex polyhedron. This set is compact and may be viewed as the

intersection of a finite number of closed half-spaces. Thus it has a
representation in terms of a finite set of linear equations and/or in-

equalities. Given y;, ya2,.««,Ym € Eny the convex polyhedron

A{yl, Y2soeeos ym} is identical with the set of points of the form y =
m m

 20.y., where o, =lando, 2 0(i=12,...,m). Each such pointy

1=1 171 1=1 1 1

is said to be a convex combination of y,,y2, ..., ym-

A point y € E" is said to be an extreme point of a convex set X if

y € X and there do not exist two distinct points y;, y, € X such that
y € A{yl, yz}, vy #y1, vy #y2. The set of extreme points of a convex
polyhedron is finite and is called the skeleton of the convex polyhedron.

Furthermore, a convex polyhedron is the convex hull of its skeleton.

The dimension 9_f a convex set Xc En, written dim X, is the

largest integer m such that X contains m + 1 points y;, y2, .- .. Ym+
for which the collection of vectors {yl - Ym+tscc s Ym - Ym+1} is
linearly independent. It follows that dim X <n. A non-empty set in

E" is called a linear manifold if it consists of a single point or if for

every y;,yz in the set, y; # y,. the line L(y,;y,;) is in the set. If
dim X = m, then X is a subset of an m-dimensional linear manifold
(i.e., apoint if m = 0, a line if m =1, a plane if m = 2, a hyperplane

if m =n -1, the whole space E" if m =n). The relative interior and

relative boundary of a convex set X having dimension m are defined to

be the interior and boundary of X relative to the m-dimensional linear

manifold which contains X.



32

A convex polyhedron in E" having dimension m is called an m-
polyhedron. The relative boundary of an m-polyhedron is the union of
a finite number of (m - 1) -polyhedra. Furthermore, the skeleton of

each (m - 1)-polyhedron is a subset of the skeleton of the m-polyhedron.

A simplex is a special case of a convex polyhedron and is de-

fined as follows: an m-dimensional simplex, or more briefly an m-

simplex, in E" (m = n) is the convex hull of m + 1 points from E" which
do not lie on a linear manifold of dimension m - 1. The set of m +1

points is the skeleton of the m-simplex.

THEOREM 3.1.1 (Carathéodory [C1]) Let Xc E'. If y€ AX,

there is a set of m points y;, y,, ..., ym all belonging to X with

m = n + 1 such that y is contained in the (m - 1) -simplex A{yl s Y2500 ym},

The following theorem is a collection of some rather obvious re-

sults on convex polyhedra which will be useful in the sequel.

THEOREM 3.1.2 Given m points y,, ¥z, ..., ym € E, consider

the convex polyhedron H = A{yl, Y25 o0 e ym}, Let the dimengion of H

be q. Then: i) q= min{m -1, n}; ii) the skeleton of H, which isa

subset of {yl, Y25 oeos ym}, contains at least q + 1 points; iii) if q = n,

o0H = H (a g-polyhedron); v) if m 2 nand A,,4,,...,A

m'! - .
n!(m-n)!’ =
points chosen from {yl s Y2 oo ym}, then 8Hc U Aj; vi)ifm = n and
s i1 L el

m =

ran— )

denote the convex polyhedra formed by the convex hull of n

y € 0H, then y has the representation y = X oY where X o= 1, v, 2 0
1=1 i=1
(i=12,...,m), and at least m - n values (_)icri, 1=i=<m, are O;
coy m!
vii) if m 2 n+1and Ay, 4,, ..., Az_, 7= M ) (m-n-1 "’ denote the

convex polyhedra formed by the convex hull of n + 1 points chosen from

{YI’YZ: --.,:Ym}’ then H z‘]ﬁ:lAJﬂ

Proof: Clearly q <n so i) is true for n <m - 1. Consider

n>m-1. Ifg>m -1 then there exist x;,x%;, ..., Xy, € H such that
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the set of vectors {xl - Xm+1s e Xy T Xm+1} is linearly independent.
m m

Every y € H has the representation y = X o.y., X 0. =1. That is,

m m m i=1 171 3=1 1

y=yill-2e¢)+Zo0.y.=y1+Z o.(y. -y1). Thus each vector x, -
i=2 1 i=2 1”1 1=2 171 J

xm+1(j =1,2,...,m) can be written as a linear combination of Y, © ¥

(i =2,3,...,m), contradicting the fact that the xj - Xm+1 are linearly

independent. Hence, 9 £ m - 1 which completes the proof of i).

Consider ii). Suppose there is a point x #y,, 1 i =m, which is

m U om
an extreme point of H. Sincex€H, x = X oy, where X o, = 1,
i=1 i=1
o, 2 0(i=1,2,...,m). Butx #yi, 1<1i=<m, implies O'i<].(i =1,2,..., m)

and at least two o, are > 0, For definiteness, suppose o >0. From
(1-o0)  E o =land(l- o1) o, 20(i=2,3, ..., m), it follows that
y = (1 - crll)‘zl :Ezlzcriyi €H. Thenx =0,y; +(l - ¢;)¥ where x # y, and

x # §, violating the assumption that x is an extreme point. Let p be
the number of points in the skeleton of H. Suppose p = q. Since q =n,
p =n. Then H is the convex hull of p points, and part i) implies
dimH=p -1. Butp=gqyieldsq =dim H =q -1, a contradiction.

Thus ii) is established.

If g = n, 9H equals the relative boundary of H and thus is the
union of a finite number of (n - 1)-polyhedra. This proves iii). In iv)
the fact that H is a subset of a g-dimensional linear manifold, q <n,
implies that if y € H and ¢ > 0 then N(y;e) contains a point not in H.
Thus oH = H.

Consider v). By iii) and iv) 8H is the union of a finite number of
convex polyhedra each having dimension = n - 1. From the remarks
following the definition of m-polyhedron, the set of extreme points of
each of these convex polyhedra is a subset of {yl, Y2seees ym}. Thus
given y € 0H there is a set X ¢ {yl, Y2seees ym} such that y € AX and X
is contained in a linear manifold of dimension n - 1. Since dim X=n-1,
Theorem 3.1.1 applied to X yields: there existy,,¥,,..., yp_e X with
p £ n such that y € A{yl, Vs eoes yp}, But for p < n and any set
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- _ — . - _ m
{ylyz, cees yp} of points from {yl, Y2s oo ym}J A{yl,yz,m, yp} cjizjl Aj
and therefore v) is true.

Part vi) follows at once from v) since y € 8H implies y is contained

in at least one A,, 1 =j=m. Thus y may be written as a convex com-
m

bination of n points from {yl, Y2 e00s ym} and the remaining o, in X v.y
i=1

i
may be set equal to 0.

Consider vii). LetX ={y,,y2,. }. Then Theorem 3.1.1

.,ym

yields: given y € AX = H there exist ¥, V2, .. -, yp € X withp=n+1

such that y € A{3,,¥,, ..., yp}. If A, 1=js17, are defined as in vii),

then A{yl, Y25 oo yp}cﬁlAj for any set {yl, V2,0 ,yp}g ps<n+1, of
J= _

points from X. Hence chtjl Aj° Now suppose X € jél Aj. Then x € Aj

for some j, 1 =j = £, which means x is a convex combination of n + 1
points from X. By giving the remaining m -n - 1 points in X a zero
coefficient, x can be written as a convex combination of all the points
in X, Hencex€ H andjl_ﬁ1 Ajc H. This completes the proof.

3.2 The Subproblem 1

On each iteration of I1 P the following minimization problem,

which is a special case of BP, will occur.

SUBPROBLEM 1 Given: H, the convex hull of m points

YisYa2, ‘..,ym from En= Find: EpO]-nt y>:<€ H such that Iy*' :;’Iéi._ll’_lly'

Since H is compact and |y| is a continuous function of y, a solu-
tion y* exists. Let PH(x), x # 0, be the support hyperplane of H with

outward normal x. Then:

THEOREM 3.2.1 (Solution Properties for Subproblem 1) i) y* is

unique; ii) |y*|= 0 if and only if 0 € H; iii) for |y*| > 0, y* € 8H;

iv) for |y*| > 0, y = y* if and only if y€ P.(-y)nH; v) if m = n and
—_— _——— H — -
y* € 8H, y* has a representation y* = _Elciyi where Elci =1,
— 1= *i:
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o, 20(i=12,...,m), and at least m - n values p_fcilSiSm, are 0;
D— —— I - ﬁ -
vi) fm2n, |y*|> 0, and y* = rzl)cFi}_fi where = m, lt?i =1, oTi >0
- — i=1 1=
(i=1,2,...,n), and yi (i=12,...,0) are vectors from {yl,yz, ym},

then ?i (i=1,2,...,0) are contained in PH( -y*).

Proof: Parts i) through iv) follow by the same arguments used

in proving Theorem 2.2.1 and v) comes directly from part vi) of

Theorem 3.1.2. Consider vi). By iv) y* € PH( -y*) so vi) is clearly
true for n =1. Thus take 1 < T = m. Suppose any ii, say vy, € PH( -y*).
Then (y, - y*) - y* # 0. This, ¥, € H, and the fact that P, (-y*) is a

H
support hyperplane of H with outward normal -y* imply(y, -y%) - y* > 0.
o o)
Since y* = X (r"iy'i where X cFi =1, w22, ando,.>0(i=1,2,...,0n),
i=1 i=1 =

o; < 1and__y=:< =51y1 t(1 -7,)y where '}7 =(1 -0y) lingFiyi, From
(1- fl)-ligzc'r'i =1and (1 - c?l)_lc?i >0(i=2,3,...,n), it follows that
y € H which implies (§ - y*) - y* 2 0. But y* =¢,y; +(1 - c?l)}A'J,

0 < ¢y <1, only if there exists € > 0 such that y* - ; =e(y; - y*).
Then (y, - y*)- y* > 0 yields %(yﬂ< - ¥)* y* > 0. This leads to

(¥ - y*) « y* < 0, which contradicts the earlier result and completes

the proof.

It is important to note the distinction between BP and Subproblem
1, both of which are quadratic programming problems on a compact,
convex constraint set. The set K in BP is described only by a contact
function s(-) of K whereas the convex polyhedron H in Subproblem 1
is the convex hull of m known points. Thus Subproblem 1 is much
simpler than BP. It is shown in Section 3. 6 that Subproblem 1 is

amenable to solution by standard quadratic programming techniques.

3.3 The Improved Iterative Procedure I1P

In this section the improved iterative procedure for solving BP

is described.
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First let s( ) be a specific contact function of the set K in BP and

consider:
-1
| "z s(-2) , z#0 (3.3.1)

1]
N

u(z)
=0, z=0.

Thus the function p(:), which is closely related to y(:) of (2.3.2), is

, z +0, is the Euclidean distance

defined on K. Geometrically, |u(z)
from the origin to the support hyperplane P(-z) of K. The following

properties also hold.

THEOREM 3.3.1 &(_a_t K ll_e_ the set described in BP and restrict

z to K. Then: i) ufz) = Izly(z) < Iz*l; ii) if W(z) 2 0, w(z) = Izly(z);
, S(-2) = 8(-2z%); v) if 0 ¢K,

i) p(z*) = |z*[; iv) if 0§ K and w(z) = |z*

w(z) is continuous on K.

Proof: In this paragraph z always denotes a point in K. The
inequality |z|y(z) £ |z*| was shown in the proof of Theorem 2.4.1.
Part ii) and the remaining result in i) follow from equations (2. 3. 2) and
(3.3.1). Consider iii). If 0 € K, z* = 0 and clearly w(z*) = |z*]| = 0.

If 0 § K, part v) of Theorem 2.3.1 yields y(z*) =1. But y(z) > 0 implies
wz) = lzly(z) > 0 and thus p(z*) = lz*ly( zZ*) = |z*|° In iv) 0 € K implies
|z| =2 |z%| > 0 so P(-z), the support hyperplane of K with outward
|7 (-2)
= - z)} is also the support hyperplane of ﬁ(O; w(z)) with outward normal

normal -z, is defined. But P(-z) = {x X lzl_l(—z) =g(-2z) - lz

z and contact point y(z) |z]—lz. Thus if p(z) = |z*|, P(-z)is a (separ-
ating) support hyperplane for K and N(0; |z*|). This implies P(-z) =
P(-z*) and S(-2z) = S(-z*). Consider v). From (3.3.1) and the continu-
ity of the support function n(y) =y - s(y), y€ En, it follows that u(z) is
continuous except possibly atz = 0. For 0¢ K, |[z| >0 for all z€ K

so the proof is complete.
Now consider:

The Improved Iterative Procedure IIP Let s(-) be an arbitrary
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contact function of the set K specified in BP. Take zy € K and choose
a positive integer p. Then a sequence of vectors {Zk}3 k=0,1,2...,

in E" is generated as follows:

Step 1 Select any p vectors y;(k), y2(k), ...,y (k) in K and let

p
¥y = Ikl a0, oy (0 (3.3.2)
H = Ayi(kLye(K), ooy (), s(-z), 2, ) (3.3.3)
Step 2 Solve Subproblem 1 on the convex polyhedron Hk: find
z,,, €Hy suchthat [z |- ;féglk{zi.

Steps 1 and 2 constitute one iteration, called iteration k, of IIP.
Note that ITP differs from BIP (with § = 1) only in the fact that Zy 11 is

obtained by minimizing over H, instead of A{s(—zk), zk}.

k
There are a great variety of selection rules for choosing the
elements of Yk in Step 1 and each choice of a selection rule gives a dif-
ferent version of II P. As is discussed in Section 3.5 the function i)
forms the basis of selection for several versions of II P which exhibit

good convergence.

3.4 Convergence Theorem for IIP

THEOREM 3.4.1 Consider the sequence {zk} generated by ITP.

Fork= 0andk - «: i)z € K; ii) the sequence { |zk|} is decreasing

) IZk' *IZ* ,» and Izkl = IZk+1| implies z, = z%;

(lzkl z lzkﬂ
1ii) 2, > z%; 1v) lzkly(zk) < Iz*l and lzkly(zk) -
|s(-

= ‘Vl—y(zk)IzkI@Vl-y(zk)lzkl»O; vi) Zy

-yl zk) zkl. Furthermore: vii) “(Zk) < |zkly(zk); vii) if 0 § K,

k
25]5 ) |z, - 2]

) - 2| = [s(-2)

“(zk) - Iz*l.

It should be observed that parts i) through vi) are identical to the

corresponding parts of Theorem 2.4.1 (convergence theorem for BIP).



38

The remarks in the two paragraphs following the statement of Theorem

2.4.1 also apply here.

Proof of Theorem 3.4.1: Since chK and s(—zk)

from the convexity of K and the definition of convex hull that Z € K

implies ch K and Zy 4y € K. ThusDby induction zo € K proves part i).

€ K, it follows

As in the proof of Theorem 2.4.1, the inequalities (2.4.1) through
(2.4.7) and 2, € K yield the inequalities in iv), v), and vi). Part i) of

Theorem 3.3.1 and i) prove vii).

Consider ii) . Since IIP differs from BIP (with 6§ = 1) only in the

fact that Zp 4 is obtained by minimizing over Hk

it follows from A{s(-zk), Zk} ch that Izk+1l using I1IP = lzkﬂI using

instead of A{s( —zk), Zk}s

BIP (6 =1). By comparison of the sequences {Izki}, the first two re-
sults in ii) are a consequence of the corresponding results in part ii) of

Theorem 2.4.1.

Now suppose lzkl = | | and Z, # z*%. Since lzkl > |zx| 2 0,

) and

Z
k+1

2, # z* implies lzkl > 0 so that support hyperplanes P(-z,_

PHk(-zk) of K and H. respectively are defined. Clearly s(—zk) EP(-zk)

k

= Q(s(-zk);zk) and part iv) of Theorem 3.2.1 yields zkﬂePHk(—Zkﬂ)

= ; = = min ;
Qz,, 3z, ). From 202, €H, lzkl lzkﬂl Zer[zi, and part

i) of Theorem 3.2.1, it follows that 2, = Zk+1 and Q( 2,32 ) :Q(Zkﬂ; Zk+1)°
Then Q( zk; Zk) is the support hyperplane of Hk with outward normal g2

and s(-zk) € ch Q“(zk; zk). Furthermore, Hk

c Q_(s(-zk); zk). The last two statements can be true only if Q( zk; zk
= Q(s(—zk);zk). Hence 2, € P(—zk) which by i) and part iv) of Theorem
2.2.1 implies Zy = z*. This contradiction completes the proof of ii).

Let the function I'(z) satisfying (2. 4. 8) and (2.4.9) be introduced

< K implies Q(zk; zk)

again. Part ii) and (2. 4. 8) imply that {P(zk)} is decreasing and
l"(zk) - 0. By (2.4.9) this proves iii). The remaining results in

parts iv) and v) follow from the known value of y(z*), the continuity of
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v(*). and iii). Parts iii) and v) of Theorem 3.3.1 and iii) give viii).

Thus the proof is complete.

3.5 Selection Rules for I1P

In this section several rules for selecting the vectors
yi(k), y2(k), ..., yp(k) € K in Step 1 of iteration k of II P are presented.
Each selection rule yields a particular version of IIP and it is desired

that the iterative procedure converge much more rapidly than BIP.

Consider the case z* € 9K which is most important in applications.
If after a few iterations of 11 P the surface 8Hk in the vicinity of Z1
closely approximates 9K in the vicinity of z*, then it is likely that IIP
will exhibit improved convergence. If aHk is to approximate 9K, the
dimension of H must be sufficiently large, namely n, and Y, must in-

k k
clude boundary points of K. To illustrate these remarks, consider
Figure 3.5.1 which is Example 3 of Section 2.5 withn =2, v =1, A, = 1.

In Figure 3.5.1(a) BIP is shown, where dim H, =1 and convergence is

k
slow. In Figure 3.5.1(b) IIP with Selection Rule A (to be described

subsequently) is shown, where dim H, =< 2 and convergence is notably

improved. An even more startling irlflprovement is exhibited in Figure
3. 5.2 which is Example 1 of Section 2.5 withv =1. Theorem 3.7.1
shows that when K is a convex polyhedron, I1IP (with a suitable selec-
tion rule and contact function) converges in a finite number of iterations.

Furthermore, the extensive numerical results of Section 3.8 provide

strong evidence that IIP is far superior to BIP.

Let the p points in Y, be contact points of K. Observe that 8l

is a better local approxim:tion to 9K for larger values of p. Howevel;,
the larger p is, the more difficult it is to solve the Subproblem 1 in
Step 2 of IIP. The computational results of Section 3.8 indicate that
convergence is good for p = n and little improvement is obtained for

p > n. The desirability of choosing p = n is also evident from the
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(b) IIP Selection Rule A, p = 2.

Figure 3.5.1 Example 3 of Section 2.5, n = 2, v

Hi
[
é

[\S]

it

s

finite convergence material in Section 3.7.

In optimal control applications (see Chapter 5) it is advantageous
to limit the number of times the contact function is evaluated. Thus in
the selection rules which follow Y, | , k =2 0, contains every point in Y

k+1
except perhaps one. There remains the question of how to reject one

k

contact point in favor of another. The approach in the selection rules
given here is to use p(z) as an indication of the quality of the contact

point s(-z), z € K. Roughly speaking, contact points corresponding to
larger values of u(-) are preferred. Other quantities, e. g., Is('z) 5

|z|, y(z), may be suggested for judging the merit cf s(z). Howewver,
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s(-z1) z:“ /Z:/ s(-z¢) =s(-2;)

(a) BIP
O
s(-zy) z¥ = 7, s(-2o)

(b) IIP Selection Rule A, p = 2.

Figure 3.5.2 Example 1 of Section 2.5, v =1,
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careful examination of example problems such as Example 3, Section

2.5 withn = 3, X\, >> \; shows that these quantities are less desirable
than u(z).
It is convenient to view each selection rule as two phases, 1 and

2. Phase 1 is to be used for the first few iterations of IIP until a cer-

tain condition is satisfied, and Phase 2 is to be used thereafter.

Selection Rule A
Phase Al: For k = 0 set yi(O) =g(-z¢), 1=1,2,...,p, and de-

fine scalars py, p2s - - s pp equal to p(ze). When-
ever 0 <k = p, set yi(k) = yi(k -1),i=12,...,p.

Then set yk(k) = s(-z. ) and o = p(zk_l). When

k-1
k > p is satisfied, begin using Phase AZ2.
Phase A2: For each k set yi(k) = yi(k -1, i=L2,...,p.
Then let p = min{m, M2s oo p.p} and let j be the
smallest integer in [1, p] for which by T When -
< -
ever pj < p(zk_l), replace yj(k) by s( Zk-l) and Hj
by p(zk_l).
Selection Rule B
Phase B1l: For k =0 set yi(O) =s(-2¢), 1=1,2,...,p, and de-

fine scalars pi, pz2, - - s bp equal to u(ze). When

k > 0 is satisfied, begin using Phase B2.
Phase B2: Same as Phase A2,

COMMENT 3.5.1 In Phase A2(B2) there is nothing crucial about
the way of handling the possibility of two or more by 1 =i=p, being
equal to u. Moreover, B <l Zk-l) may be used as the condition for

).

replacement instead of g = p(zk_1

For selection rules such as A and B in which Yk+1 is a subset of

the set {y,(k), y2(K), .. ., yp(K), s(-zk)}, all k 2 0, it is possible to state

additional results. Let
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S, ={yi(k),y2(k), ...,y (K, s(-z )}, k=0,1,2,..., (3.5.])
k p k
and consider the determination of Zy in Step 2 of iteration k of IIP.
: . . Ptz 4

Since 2y € Hk, it has a representation: zk+l = 1:2‘3 Xy, where

pt2 i
= k 1 = 1, 2, s b ey 5 = - ) = ) = ]-J
y, = yk (4 Py Yo = 8lez ) v, T2 X
xlz 0(i=12,...,p+t2). Letl bethe set of superscriptsi, 1=1i=

k
. i
p + 2, for which x = 0. Observe that Ik may be empty. The following

results hold.

THEOREM 3. £.1 Consider the sequence {zk} generated by ITP.
1cSkf_O_ng_l_IkZ 0. Ifin

i) Suppose the selection rule is such that Y

k+

Step 2 o_f iteration k, k > 0, the integer p + 1€ Ik, then Zk = Zk+1 = z%,

ii) Suppose p is chosen so thatq =p +2 -n 2 0. Then in Step 2 of

= 0 (which implies
p+2)

iteration k, k =2 0, either z =z* =0) or

“k+1
such that the corresponding

k+1
1
, X%, ..., X

there exists a vector x = (x

Ik containg at least q elements.

Now assume z— _ # z* for some k20, Then forallk, 0 <k <k:

k+1
chCQ_(z ); iv)ify

+
K k+1° Zk+1 e © Sy stz ) €Q(zy s

); v) if Y, Sp, S; contains two distinct points; vi) if Yk+1c Sk,

contains p distinct

iii) Yk cS

zZ

k+1

Yk+1 contains every point in Sk except one, and Sk

points (1 =p = p +1), it follows that there are at least p distinct points

in Skﬂ; vii) if Phase Al is used as the first phase in any selection rule

and z_ # z*, Sp contains p + 1 distinct points.

Proof: Consider i). Note that k >0 and let H = A{y,(k -1),

y2(k - 1)mm yo(k - D, s(-z, ), zJ. Since HcH  andz €H,
= +1€ 3 i
- z|. But p+1 Ik and ch bk-l imply o

|z|. Thus by part ii) of Theorem 3. 4.1 lzkl = Izk_HI and

,Zlfnlin: € H and Izk+1l
> Mmih
" z€H

z =z = z%, In ii) suppose 2 # 0. Part iii) of Theorem 3.2.1

yields z , € oH Then part v) of the same theorem andp +2 -n2 0

k+ k'
imply that a vector x with the desired property exists. Consider iii).
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Since Z T # z*, part ii) of Theorem 3.4.1 implies Izkl > |z%| 2 0 for
)

allk, 0 <k <k +1. Hence, for 0 < k <k, the hyperplane Q( 21ty Pty
is defined. For w # 0 let PHk(W) be the support hyperplane of Hk with

outward normal w. By part iv) of Theorem 3. 2.1 it follows that z

) = Qz

k+1

k+1;zk+1)' Thus Hk is contained in the closed half-

) and iii) is true. In iv) suppose for some Kk,
;zk+1). Then s(-zk+1) €Q (Zk+1;zk+1)’

) also contains Sk and Zk+1 . Since Yk+1c Sk’

By part ii) of Theorem

k+1
space Q (Zk+1 -

0<k<k s k+1 dQ

and by iii) Q (zk

e S (2, 5% k+1I ) |Zk+z"

3.4.1 this implies Zk+1 = z% for some k, 0 =k =< E, which contradicts

, 0=j<%k +1, and thus established iv). From iii), iv) and

€ PHk( -Z

+1° %k+1
) and |z

|zj|> |z*
— +
Y: « Sp it follows that Y; € Q (z;;2z,) and s(-2z;) € Q (z,;z,). Hence S,

must contain two distinct points. Similarly iii), iv), and Yk+ Sk im-

_ - , .
ply Yk+1€ Q (Zk+1’zk+1) and s(-zk_H) €Q (zk+1’zk+1)’ which means

) is distinct from the points in Yk+1 . If Yk+1 contains every

contains p distinct points, then there are

s(-zk+1

point in Sk except one and Sk

at least p -1 distinct points in Yk+1 . Since Sk+n is the union of Yk+1

and s(-z, ), the conclusion in vi) is true. Consider vii). From

k+1

Zp # z*, it follows that iii) and iv) hold for 0 =k <p - 1. Thus Yk+1csk

<l 1 _ e . . .
and 0 =k = p -1 imply s( Zk+1) is distinct from the points in Yk+1' For

Phase Al Y, and So contain only s(-z0), Y, and S; contain only s(-zg)
and s(-z;), ..., Yp and S -1 contain only s(-2z), s(-2z;), ..., s(—zp_l).
Consequently the fact that s(- 2y )€ Y 4 applied successively for

k =0,1,...,p - 1yields the result: s( zo), s(-z1), ..., s(~zp) are dis-
tinct. Since Sp is the union of these p + 1 points, vii) holds and the

proof is complete.

COMMENT 3.5.2 Observe that if either Selection Rule A or
Selection Rule B is used‘m I1P, Yk+1c Sk and Yk+1 contains every
point in Sk except one for all k 2 0. However, Rule A is generally
better than Rule B because only p iterations are required with A to en-

sure that Sk contains p + 1 distinct points (assuming zp # z%),
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Now consider two additional selection rules.

Selection Rule C (Assume that p 2 n and that in Step 2 of every itera-

tion k of ITP a vector x is determined such that the corresponding Ik

contains at least p + 2 - n integers. By part ii) of Theorem 3.5.1 such

an x must exist or Zyty = 0., Terminate IIP in Step 2 of iteration k if
=0 i i i = ok = ; + : : .

Z)h (which implies zk+1 z O)orifp+1le Ik (which implies

2 T Py T2

Phase C1l: For k = 0 set yi(O) =8(-2¢), 1=12,...,p, and de-
fine scalars wy, pz, - .., Mo equal to u(zp). When
k > 0 and in Step 2 of iteration k - 1 the condition

pt2€l is satisfied, begin using Phase C2.

k-1

For 0 <k =p, setyi(k) =yi(k -1),1i=12,...,p.

Then set yk(k) = s(—zk_l) and My = p(zk_l). For

k > p, set yi(k) = yi(k -1), i=1,2,...,p. Then

let u = min{m, M2s o e “p} and let j be the small-

est integer in [1, p] for which by T B Whenever

< -

p,j p(Zk_l), replace yj(k) by s( Zk-l) and pj by

"L(Zk-l)°

Phase C2: For 0 <k =p, set yi(k) = yi(k -1),1i=12,...,p.
Then setyk(k) = s(-zk_l) and o8 = p(zk_l). For

k > p, set yi(k) =yi(k -1), i=1,2,...,p. Then

let ' = ™I andlet j be the smallest
= i€l i
k-1
ifp-H, p+2
integer in {i : i€ Ik—1’ i#p+1, p+2} for which
= ! -
pj p'. Replace yj(k) by s( zk_l) and Hj by p(zk_l).

COMMENT 3.5.3 For a particular problem it is possible that

the conditionp + 2€I , k > 0, for entering Phase C2 may never be

k-1
satisfied. In that case Selection Rules A and C are identical. The

computational experience with IIP indicates, however, that this
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condition is satisfied after only a few iterations for a broad class of

problems.

Selection Rule D (Assume that p 2 n, that zq = s(-z_l) for some

z €K, and that in Step 2 of every iteration k of II P a vector x is

determined such that the corresponding Ik contains at leastp + 2 - n
integers. By part ii) of Theorem 3.5.1 such an x must exist or

z = 0. Terminate IIP in Step 2 of iteration k if z = 0 (which

k+1 k+1

implies z =z%*=0)orifp+1¢€ Ik (which implies z, = z

k+1 . = 2%)).

k+1

Phase D1: For k =0 set y;(0) = z¢ = s(—z_l), set yi(O) =s(-2zg),
1=2,3,...,p, and define p, = p(z_l), p.i:p,(Zo),
i=2,3,...,p. When k> 0 is satisfied, begin
using Phase D2.

Phase D2: For 0 <k <p, set yi(k) = yi(k -1), i=12,...,p.
Then set yk+l(k) = s(—zk_l) and Mt = p(zk_l).
For k 2 p, set yi(k) = yi(k -1, i=12,...,p.

Then let p' = i&nm b, and let j be the smallest
k-1
ifp+1, pt2

integer in{i : i€1 iy i# p+1, p+ 2} for which

k-

b = u'. Replace yj(k) by s(—zk_l) and pj by Wz, ).

k-1

COMMENT 3.5.4 The assumption p 2 n is required for Selection

Rule C and Selection Rule D so that the set {i : i€ Lo 1 Fp+1, p+2}

which occurs in Phases C2 and D2 is not empty. Sincep +2 -n 2 2,

I, _, contains at least 2 integers in [LLp +2]. Moreover, p+14€ 1

or ITP would have terminated in Step 2 of iteration k - 1.

k-1

COMMENT 3.5.5 Observe that if either Selection Rule C or

Selection Rule D is used inIIP, Y 1<: S, and Y contains every

k+ k k+1
point in Sk except one for all k 2 0. Furthermore, arguments like
those used for Selection Rule A show that if zp f oz, Sp (with Rule C)

and Sp—l (with Rule D) contain p + 1 distinct points.
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THEOREM 3.5.2 Consider IIP and assume that Selection Rule

A
C or Selection Rule D E used. Let k be th_e firstk 2 0 E)_r which

p+2€ Ik if Selection Rule C is used and let ﬁ = 0 if Selection Rule D is

used. Then in Step 2 of iteration k, all k 2 ﬁ, Subproblem 1 can be
That is, let z

solved on ASk instead of H satisfy z € ASk,

i K k+1 k+1
Izk+1| i ZGHZISn lzl and find EVEC'EOI‘ X = (XI:XZ, ce e Xp+2) such -@
p+z . —
zkﬂ—lz1 X y where y; =yi=L2...,p), You s(-z,), e = 2
ptz . N
S x =L x20(=L2..,p+]) ¥ =o0.

i=1

A
Proof: Since p + 2 €1, (with Rule C) and y,(k) = Zﬁ (with Rule
k

A
D), on iteration k Subproblem 1 can certainly be solved on ASQ instead

of H,. Thus zA € &S,. By comment 3.5.5Ya <Sp. Further-
f k+1 £ kv Tk
more, Selection Rules C and D are such that Yo  contains every point

k+1
in Sﬁ except one which has a coefficient of 0 in the convex combination

expression for z . Hence z,\ € AY and AS, =H , S0 that
£ fn e+ f+1

on iteration k + 1 Subproblem 1 can be solved on ASQ+ to yield Zﬁ
+2

€ ASQ . By induction Subproblem 1 can be solved on AS instead of
+1

Hk for all iterations k, k 2 k This completes the proof.

Note that it is simpler to solve Subproblem 1 on ASk rather than
on Hk: the constraint set for the quadratic programming problem is
the convex hull of only p +1 points instead of p + 2. It will henceforth
be assumed that whenever Selection Rule C or Selection Rule D is used

A
in ITP, Subproblem 1 is solved on ASk for all k = k.

Section 3.8 contains computational results for I1 P with Selection
Rules A, B and C. These results indicate that it is good to choose
p = n and that for a broad class of problems, IIP (with p = n and any
of the Selection Rules A, B, C) exhibits much more rapid convergence
than BIP. Selection Rule D is identical with Selection Rule C for

k> max{p, EJ}, where K is the first k 2 0 for which p+2€ Ik when
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Rule Cis used. For all the computations in which Selection Rule C was
used, k was observed to be very small. Thus it can be stated that

ITP with Selection Rule D also converges much more rapidly than BIP,

The computational results show, furthermore, that IIP converges
at about the same rate with Selection Rule A or Selection Rule C. Thus
the decision of which selection rule to use may be based on other con-

siderations.

By comment 3.5. 2 Selection Rule B may be rejected in favor of
Selection Rule A. From Theorem 3.5.2 Selection Rules C and D have
an advantage over Rule A in that for iterations k, k 2 ﬁ, Subproblem
1 can be solved on the convex hull of p + 1 points instead of p + 2.
However, the requirement with Rules C and D that Ik contain at least
p + 2 - n integers adds complexity to the solution of Subproblem 1 in
Step 2 of every iteration k, k = 0 (see Section 3.6). Selection Rule D
is most desirable for guaranteeing finite convergence in certain prob-
lems (see Section 3.7) and Rules C and D are advantageous for certain

optimal control applications (see Chapter 5).

3.6 Solution of Subproblem 1

Since each iteration of 11 P requires the solution of Subproblem
1, it is important that methods exist for readily computing its soclution.
As mentioned in Section 3.2 Subproblem 1 is a quadratic programming
problem on a convex polyhedron constraint set. This is the type of
problem that is usually described in the literature [e.g., Al, B2, Hl,
V1] under the heading ''quadratic programming'. However, the com-
putational algorithms which are suggested always begin by assuming
the constraint set is described by a set of linear equations and/or
inequalities rather than by the points whose convex hull is the con-
straint polyhedron. Thus to apply the standard quadratic programming

techniques directly to Subproblem 1 it is necessary to first determine
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from these points a description of the constraint set in terms of linear
equations and/or inequalities. Such a determination presents nearly

insurmountable computational difficulties.

There is an alternative method of attacking Subproblem 1 which
makes possible the use of the standard algorithms. It is shown in this
section that the solution to Subproblem 1 is given by the solution to
another quadratic programming problem, Subproblem 2, which has a
constraint set described by linear equations and inequalities. Sub-
problem 2 is solvable by any of the well-known quadratic programming
techniques such as those due to Frank and Wolfe [F4], Wolfe [W1],
Beale [B4, B5], Houthakker [H4], Hildreth [H2], Markowitz [Ml], and
Lemke [L2].

Lety,,y2, ..., Y € E” be the known points whose convex hull is

the convex polyhedron H = A{yl, Y25 eees ym} specified in Subproblem 1.

Note that since || is the Euclidean norm, an equivalent statement of
2 i 2
Subproblem 1 is: find y* € H such that |y*| = ;}é%_? ly|".

m

m . o
Each y € H has the representationy = X lei where X x" = 1,
=1 1=1

-

x'20(i=12...,m). Thus

2 m iz m m i

ly| = IExyil =ZExnyi=y. . (3.6.1)
i=1 i=1 3=1 J

If x is the m-vector (x', x%, . .., xm) and D is the m X m symmetric

matrix with elements dij =Yy yjj then

|z

ly =x-.Dx . (3.6.2)

. 2 . . . .
Since Iy] 2 0, the quadratic form x - Dx is non-negative definite, a fact
which implies it is a convex function of x on E™. Consider now the

following quadratic programming problem.

SUBPROBLEM 2 Given: D, an m X m symmetric non-negative

definite matrix, and the constraint set
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m . .
X={xeE™: > x' =1, x20(i=12 ..., m)}.
i=1

Find: a point x* € X such that x* - Dx* = r}:}? x - Dx.

IfD = [olij

with Subproblem 1. For this case (3.6.2) implies that minimization of

] = [yi . yj], Subproblem 2 is said to be associated

2
x - Dx on X is equivalent to minimization of |y| on H. Thus, if x*

solves Subproblem 2, y* is given by

2
y¥ = 2, x* y; - (3.6.3)
=1

=

A solution x* € E™ to Subproblem 2 may have as many as m non-
zero elements. However, if Selection Rule C or Selection Rule D is
used in Step 1 of ITP, it is required that a solution to the Subproblem
2 associated with Subproblem 1 in Step 2 of II1 P be obtained which has
at least m - n zero elements. If no such solution exists, then IIP
terminates and y*, the solution to Subproblem 1, and z*, the solution

to BP, both equal 0,

Assume m 2 n and consider Subproblem 1 and the associated
Subproblem 2. Suppose a solution x’l" to Subproblem 2 is obtained for
which more than n elements, say n, are nonzero. It will now be shown
how a second solution x;" to Subproblem 2 which has at least m - n zero

elements can be determined, provided it exists.

. e, . m :':i m \v,i
The point y* is given by y* = £ x| ¥ Thus y* = '21 X, ¥y, repre-
i:I O3 ' 1= At
sents a system of n equations in m unknowns: x'z“l, x?z, e s x';m The

n X m matrix of coefficients [y,,y;" - -ym] has rank =n so that at

least m - n of the unknowns le may be given arbitrary values. There

o,

* so set the corresponding elements of x;::

are m - n zero elements of X

equal to zero. It is required to find o' - n of the remaining N’ unknowns

which can be set equal to zero.
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This can be determined by trial-and-error where the number of
! ~J
trials is at most S L N . Suppose n - n of the remaining unknowns

T
are selected arbit(rr‘lari;l;.;r.ld set equal to zero. There results a set of

n equations in nunknowns. These equations may present computational
difficulties because a solution does not necessarily exist, and even if it
exists it may not be unique. If there is a solution such that the result-
ing x’; satisfies ;Zi x;ki =1, xji 20(i=12...,m), then this is the de-
sired x?_ Otherwise another set of n - n unknowns are selected and the

procedure is repeated.

If the solution x’l“ indicates that y* # 0, there is another way of

m m
obtaining y* in the form y* = ¥ o.y, where ¥ ¢. =1, ¢.2 0

i=1 i7i i=1 i i
(i=12,...,m), and at least m - n of the 0. 1<i<m, are zero.
Parts iii) and v) of Theorem 3.2.1 and y* # 0 imply that this form ex-

m!

ists and that y* € 8H. The method is to consider the m = Tm-nnl
convex polyhedra Ay, 4,, ..., Aﬁ formed by the convex hull of n points
chosen from {yl, V25 ones ym}. For each Aj (j =1,2,..., m) a Subprob-

lem 1 and its associated Subproblem 2 (D an n X n matrix here) can be
. j min

= min b
inl 15jsm ij I, then part v) of Theorem
3.1.2 and y* € 0H imply that y* = y35<m. Thus y* can be written as a

solved to vield a point v € A such that |y¥| = min|y|, 1f
y point y € A, il = geaclyl- 1y

< imin < @ . ps o
(1 < jmin < m) satisfies ijm

convex combination of n points from {yl, Y25 oo ym}, which is the de-

sired form.

Of the two methods just described the former is simpler because

it requires a Subproblem 2 to be solved just once instead of m +1 times.

It may be possible to avoid entirely the possibility of trial-and-
error or solution of subproblems on A, (j =1,2,...,m). This is the
case if a quadratic programming tecthique can be found for Subproblem
2 which yields a solution with a maximum number of zero elements.
Considering the simple nature of the constraint set X it is likely that

this would not be difficult to do.
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3.7 A Finite Convergence Theorem

The following theorem gives a sufficient condition for IIP to ex-

hibit finite convergence.

e an arbitrary contact function of the

THEOREM 3.7.1 Lets(-) b
>

set K specified Hl BP, choose p 2 n, and consider IIP with Selection

Rule D. Assume that K is a convex polyhedron and that the range of

s(y) for y € E" is a finite set of points. Then the sequence {zk} gen-

erated by ITP converges in a finite number of iterations.

If K is a convex polygon in En(n = 2), then the range of s(y) for
y € E" is a finite set of points. This conclusion is not necessarily
true, however, for a convex polyhedron K in E”, n2 3. For example,
in E* an entire edge of K could lie in the range of s(y), y € E’. Never-
theless, for many convex polyhedra K such as those which arise in
optirhization problems for linear sampled-data systems, it may be
possible to choose a contact function s(y) of K whose range for y € E"

is a finite set of points.

Proof of Theorem 3.7.1: Consider first the following result.

LEMMA 3.7.1 If K is a convex polyhedron in E and s(-) is an

arbitrary contact function of K, then every extreme point of K lies in

the range of s(y), y € E",

Proof: Let x be any extreme point of K. It can be shown that

there exists a support hyperplane of K that contacts K in the single
point x. Therefore, if y is the outward normal to this support hyper-

plane, x = s(y) and the lemma is proved.

Now let 1,82, ..., §£ denote the points in the range of s(y) y € Erl
and define S = {§1, S25 e 00 EE}' By Lemma 3.7.1 every extreme point

of K€ S. This and Sc K imply K = AS. Thus z*€ AS,

Suppose that the convergence of II P is not finite. From
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Comment 3.5. 5 and part vi) of Theorem 3. 5.1, Sk’ k 2 p -1, contains
p +1 distinct contact points when Selection Rule D is used. Each of
these points is in S. Ifg< p +1, a contradiction has already been ob-

tained so henceforth consider £ 2 p +1. Since p = n, this implies

£ 2 n+1l.
- L'
A A PR A— ) = D)

Let Ay, A, 7 i m+D (L -n-D denote the convix
polyhedra formed by the convex hull of n +1 points chosen from S. By
part vii) of Theorem 3.1.2, AS = _2 Aj. Thus z* € AS implies z* € Aj

- J=1 —
for at leastone j, i=j=<4. Letd6.(j=12,...,1¢) be the distance of
each set A, from z¥; thatis, 6, = "0|z - zx|. At least one 6.,
] ] ZEA; J

l1=j=1, is 0 and 6J.=Oifandonlyifz*€Aj

Since Sk’ k 2 p - 1, contains p +1 distinct points from S and

p 2 n, there is at least one Aj, 1<j<14, such that Ajc AS Further-

K
more, part vii) of Theorem 3.1.2 implies U A. = AS . Let 6(k)
Acasy | k
i Isj=t min
. > ) _ min : _
be defined for k 2 p - 1 by: &(k) A CAS 63. . That is, &(k) ZEAS
J k k
1sjsT

|z -z*|. By Theorem 3.5.2 it follows that 2, €AS, =H, k20, when

2 §(k) 2 0, allkz p - 1.

Selection Rule D is used. Hence lzk - z%
Part iii) of Theorem 3.4.1 implies [z, - z%| >0 as k > o0, s0 &(k) >0
as k ~w. But 6(k) has £ values at most. Consequently there exists
k 2 p - 1 for which §(k) = 0. This implies z* € ASE and thus ZEH = z%,
contradicting the supposition that convergence is not finite. This com-

pletes the proof.

COMMENT 3.7.1 If there exists k 2 0 such that the condition

p + 2€1 is satisfied in Step 2 of iteration k, then Theorem 3.7.1 holds

k
for 11 P with Selection Rule C.

COMMENT 3.7.2 If 0 4 K, the assumption in Theorem 3.7.1

may be replaced by the following two less restrictive assumptions:
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i) there exists ¢ > 0 such that for z € K and ]z. - z*[ <e, s(-z) € S(-z%);
ii) S(-z*) is a convex polyhedron and there are only a finite number of

contact points contained in S(-z*) which lie in the range of s(-z), z € K.
Then the sequence {zk} generated by II P with Selection Rule D con-

verges in a finite number of iterations.

The proof of this result is based on the fact that for 0 § K,
ul Zk) > |z |. By supposing convergence is not finite it can be shown
that there exists k' such that for k 2 k': Skc S(-2z%), 2, € S(-z%*), and
Sk contains p +1 distinct points. Then in much the same manner as in

the proof of Theorem 3.7.1 a contradiction can be established.

Figure 3. 7.1 illustrates a set K in E* which satisfies assumption
ii) but not i). By inspection it is clear that unless z, € K is such that

Zo = wz*, w> 0, convergence is not finite.

Figure 3.7.1 A Kc E? which does not satisfy
assumption i) of Comment 3.7.2.
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3.8 Numerical Results for IIP

This section contains results of extensive computations with I1P
for Example 3 of Section 2.5. As in Section2.6 v=1, z* = (1,0, ..., 0),
and the extent of K is increased beyond z' = 2v so that (2. 5.18) is valid.
Data is presented forn = 2,3, ..., 6; various p, N2, A3, ..., N¢, Zo: and

Selection Rules A, B, and C.

The quadratic programming technique of Frank and Wolfe [F4] was
used to solve the Subproblem 2 which occurs on each iteration of II1P.
This technique, which exhibits finite convergence, makes possible the
use of the simplex method of linear programming [D1] as a subroutine.

Briefly, the technique is as follows.

If Disthe mX m matrix in Subproblem 2, definethe (m+1)X(2m + 2)

matriXBby
1 1...1 0 0 0 0...0]
-1
D = -1l (3.8.1)
-2D I
L 1l )

Furthermore, if r is the column vector (x, ¢, &, v), wherex, v€ Em
and ¢, £ € E!, let r' denote the row vector (v, 0, 0, x). Note that
rfr = 2x - v and consider

? — +
SUBPROBLEM 3 Given: D as in(3.8.1). Find: r€E" ' such

that Dr = (L0,...,0), r20, and r'r is a minimum.

By employing the Kuhn-Tucker conditions [K3] Frank and Wolfe
show that if a solution x* to Subproblem 2 exists then there is a solution
r to Subproblem 3 for which r*r = 0. Moreover, if such an r is found,

its first m components are a solution to Subproblem 2.

Subproblem 3 is solved in the following two phases (a feasible

+ —
vector r € EZMT? satisfies the constraints Dr = (1,0, ...,0), r= 0: a
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. 2m-+2 .
basic vector r € E contains no more than m + 1 nonzero elements):

Phase I

Phase II

A basic feasible vector ry is found with which to begin Phase
II (the simplex method with one artificial vector [H1] is easy

to use here).

There are a finite number of iterations in this phase. On the
hJCh iteration a feasible vector Wy and a basic feasible vec-
tor o are available (on the first iteration use w; = ry).
Employ the simplex method to minimize the linear form

W;I‘, obtaining the sequence of basic feasible vectors {rJ},
':O . 0: +..0 8 +l> +2>_'.'
j , 1,2, s TET such that whr.' > Wy T Wy T

Stop at the first r/ such that either (r))Tr! = 0 or w;r:|
) solves Subproblem 3.

S%Wiflwh.
If the first condition is satisfied, r

W+(W -r)

Otherwise let r, = rJ, a, = min{ h h & ,1}, and
b h (rr-wh(r -w)
h h''"h h
Wy = Wh + ozh( rh - wh); then repeat Phase II using Wh+1 and
ry

It is interesting to note that in all the computations with ITP,

every solution x* to Subproblem 2 obtained by Frank and Wolfe's tech-

nique had at least m - n zero elements. Thus the difficulties (trial-and-

error or solution of additional subproblems) mentioned in the latter part

of Section 3.6 were not encountered.

Tables 3.8.1 through 3.8.9 (for II P Selection Rule A and p = n)

correspond directly to the nine tables in Section 2.6 (for BIP). Further-

more, Figures 3.8.1, 3.8.3, and 3.8.4 are similar to Figures 2. 6.1,

2.6,3, and 2.6.4. These tables and figures show the marked improve-

ment of IIP over BIP. This improvement has three facets: (1) much

more rapid convergence, (2) very little dependence on the parameter

— =1 .
A v , and (3) no noticeable influence of the initial point zq.
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o1zl ey -

) - z*’ shown in Figures 3.8.3 and 3. 8.4 is typical of that ob-

The behavior of |z |z - ’Zkf\'(zk)y and

ls(—zk
served in all computations with II P. As with BIP it can be stated that
|z | - ,zkly(zk) decreases most rapidly, followed in order by Izkl— |z |,
|zk - z*l, and ls(-zk) - z*%|. Some other quantities related to the se-
quence {zk} are displayed in Tables 3.8.10, 3.8.11, and 3.8.12 (for

n =p =3 andII P Selection Rule A), and Table 3. 8,13 gives more data

on |zk |- |z*| for different \,/\; ratios. As with BIP the parameter

A, /N3 has very little effect.

It is clear from Table 3. 8.14 that Selection Rule A is superior to
Selection Rule B. Note that with Selection Rule B it may happen that a

large number of iterations are required to satisfy |z, |-|z*| <1, after

kl-
which convergence is quite rapid. This shows the significance of Sk,
k 2 p, containing p +1 distinct points (see Comment 3. 5. 2).

Table 3.8.15 differs from Table 3.8.1 in that p equals 1 instead
of 2, Tables 3.8.16 (for n = 2) and 3.8.17 (for n = 3) compare results
for a variety of p values. This data and Table 3.8. 20 (for n = 4) show
that convergence is good for p = n and little improvement is obtained
for p > n. The desirability of choosing p = n is also indicated by the
actual computing time required to satisfy Izkl - |z = 10—6° However,
as mentioned in Section 2. 6 the evaluation of a contact function in opti-
mal control applications is the most time-consuming part of the itera-

tive procedure. Thus the number of iterations to satisfy given error

criteria is a better measure of the performance of the procedure.

Results for n =p =4, 5, 6 and IIP Selection Rule A are given in
Tables 3.8.18, 3.8.19, 3.8.21, 3.8.22, and 3.8.23. Roughly speaking,
the rate of decrease of Izkl- |z*| is dependent on n alone. The number
of iterations per decade after a few initial iterations, is approximately

2forn=2, 4forn=3, 6 forn=4, 9 forn =5, and 13 forn = 6.
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Finally, Tables 3.8.24 and 3.8. 25 give results for II P Selection
Rule C. Observe that the rate of convergence in all cases is about the
same as that for I1 P Selection Rule A. The sequences {]zk - 2|},
{ | | -|zk|y(zk)}, { |s(—zk) - z% l}, as well as { |zk|-|z>-< '} behave
similarly for I1 P Selection Rules A and C.
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| | 1,

0 10 20 30 40 50
Figure 3.8.1 lzkl—lz*l forn =2, p =2, z5=(6,2): A\, = 100,

B) N\, =1000; IIP Selection Rule A.



10

107°

60

0

10

20

30

40

50

Figure 3.8.2 Results forn =2, p =2, z¢=(6,2), \, = 100:

A) IZ*I_IinS-%(X,ZiIY(Zi): B) 'Z

k

- z*|[; 11 P Selection
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Table 3. 8. 1 Number of iterations to satisfy |z, |-|z*| < ¢;

k"
n=2 p=2, zo =(6,2), IIP Selection Rule A.

21 o110 107 107% 1078

4 6 7 10 11 13

100 2| 7 9 11| 12| 14| 15
200 4| 5| 7] 9 10 10 12
500 3 s| 7| 7] w0 12| 14

1000J 5 6 9 9 12| 13 ] 15

104 8 11 14 16 18 18 20

10° " 8 9 10 12 14 16 18

10"." 10 11 14 15 17 18 | 20

Table 3. 8. 2 Number of iterations to satisfy lzk - z2%| ¢

n=2 p=2, z¢g =(6,2), IIP Selection Rule A.

X, ] en [0 a0 10°] 107°
I — _
10 3 5 6 91 12 |>13
100 4 7 9| 11| 14 |>15
200 4 5 8 9 [>12
500 3 5 7 9 11 | >14
1000 5 6 9| 10 12| 14| >15
10 8 11 14| 16 18 | >20
10° 8 9 101 12 14| 16| 18
106 10 11 14| 15| 17| 18|>20




Table 3. 8.3 Number of iterations to satisfy |z*| —;zk'"y(zk) Se;

n=2 p=2, z¢=(6,2), II1P Selection Rule A.

A, y 1 .1 .01 1073 ]107* [10™5] 107¢
10 0 3 3 6 8 9 | 12
100 0 1 8 9 | 11 | 11 | 14
200 0 4 4 7 9 9 9
500 0 2 6 6 6 | 11 | 11
1000 0 5 5 8 8 | 12 | 14
10* 0 4 4 | 15 | 17 17 17
10® 0 7 9 9 | 13 | 15 | 15
10¢ 0 | 10 | 10 | 13 | 16 | 16 | 19

Table 3. 8.4 Number of iterations to satisfy |s( -z,) - z%| < ¢;

n=2 p-=2, z9=(6,2), IIP Selection Rule A.

n, SN 1 .1 .01 {107 [10™*|107% 107"
10 3 6 9 | 12 p13

100 8 | 11 | 14 |>15

200 7 9 9 [>12

500 6 | 11 | 14 [>14

1000 8 | 12 | 14 |>15

10* 17 17 20 |>20

10° 15 |18 |>18 ) | |

10° 19 |>20




Table 3. 8. 5
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Number of iterations to satisfy Izk|~ |z%| < ¢;

n=2 p=2, N\, =100, IIP Selection Rule A.

zg |z | 01 |10 107 107% [ 107"
6 1 2 | 5 9 |12 | 13 | 14 | 15
6 1.5 2 | 4 8 | 11 | 14 | 16 | 16
6 2 2 | 7 9 |11 |12 |14 | 15
6 2.5 3|6 7 010 [ 11|12 | 13
6 3 2 |7 |10 |12 |14 |15 | 17
6 3.5 2 | 6 g8 | 9 |11 |13 14
6 4 3| s 6 | 8|10 |11 ] 13
6 4.5 a4 |8 |10 |11 |12 ] 14] 15
6 5 3 |7 8 | 10 | 12 | 13 | 14
2 6 2 |6 9 |12 | 12 | 13 | 15
3 5. 57 2 |3 71 8] 10 |10 12
4 4.9 3|7 9 [ 10 | 12 | 14| 16
4.5 | 4.44 2 |6 8 | 11 | 13 | 16 | 18
5 3. 87 2 |7 9 | 10 | 10 | 12| 13
5.5 | 3.12 3|6 9 | 11 | 13 | 14 | 15
6.2 | 1.25 3 |5 7| 8|10 |12 14

Note:

For zg = (6, 2) and the last seven cases in the table,

| 20| = 40.
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107° | | | | .
0 10 20 30 20 50

Figure 3.8.3 Results forn =3, p =3, z¢ = (6, 2, 2), A, =100,
3 max .
A3 =10: A) |zx]|- =k lzily(zi), B) |zk|-|z'-|,
; IIP Selection Rule A. For k <9,

C) lzk—z*
,zk - Z*l = ,Zkl'lz*l'
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10 H+

01— A

10 ° }—

107* | | l 1

0 10 20 30 40 50

Figure 3.8.4 Results forn =3, p =3, z5 =(6,2,2), \, = 100,
= 10: [ . -
A3 A) ]z l lzkly(zk), B) Is( Z
ITP Selection Rule A.

) - z¥%|;

k
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Table 3. 8.6 Number of iterations to satisfy {zk |- lz*‘ Se;

n=3 p-=3, zg=(6,2,2), II1P Selection Rule A.

N, A QR R e E e AT AT
1 1| 1 2 | 3 | 3| 3| 4| 4

10 10 | 3 3 161 74 9 o] 12
100 100 || 4 5 | 70 9 |11 |13 13
1000 1000 || 4 6 | 8 |10 |11 |12] 12
100 R 4 | 8 10 {12 |14 17
[ 100 10 | 6 |11 |14 [17 |21 |26 | 32
100 50 [ 7 {11 [15 (18 | 22 |26 | 30
100 90 || 6 9 |12 |17 |23 |28 | 31
1000 L 6 7 1 8 {11 |13 |15 | 17
1000 10 || 7 9 |13 {20 |23 |26 | 29
1000 100 | 8 |14 [17 |23 |26 |29 | 32

Table 3. 8.7 Number of iterations to satisfy lzk - z%| S ¢

n=3 p-=3, zo=(6,2,2), IIP Selection Rule A.

€ -3 -4 -5 -6
\, ", 1 |.1 |.o01 {107 107" |107%|10
1 1 1 2 3 4 4 >4
10 10 3 5 6 8 PPl2
100 100 4 5 8 10 12 P13
1000 1000 4 6 8 10 11 pl2
100 1 2 6 10 16 [>17
100 10 6 11 16 20 31 P32
100 50 7 11 15 21 27 P30
100 90 6 9 13 23 31 D31
1000 1 6 7 l12 |12 |16 17
1000 10 7 i0 17 24 28 '>29
1000 100 8 14 ]18 25 30 32




67

Table 3. 8. 8 Number of iterations to satisfy |z*| —Izkfy( Zk) <e;
n=3 p=3, z0=(6,2,2), I1I1P Selection Rule A.
€
A Ns 1| .1 ].01 107|207 [107%|107
1 1 0 2 2 2 2 3 3
10 10 0 2 2 6 8 81 11
100 100 0 4 4 8 9 10 | 12
1000 1000 0 5 7 8 9 11 [ 11
100 1 0 1 7 9 17 13116
100 10 0 8 12 16 20 20 | 31
100 50 || 0 9 [ 13 [ 15 19 | 24 27
100 90 0 7 11 1 18 25 | 27
1000 1 0 5 7 10 12 14 | 16
1000 10 0 7 12 14 22 25 | 28
1000 100 0 12 16 16 25 27 | 30
Table 3. 8.9 Number of iterations to satisfy ls(-zk) - z%| < ¢
n=3 p=3, zo=(6,2,2), IIP Selection Rule A.
¢ -3 -4 -5 -6
A, » 1| .1 .01 {10107 [107%] 10
1 1 0 2 3 3 4 4 | >4
10 10 2 6 8 [>12
100 100 4 10 12 |>13
1000 1000 9 11 11 11 >12
100 1 1 11 13 1>17
100 10 10 18 31 [|>32
100 50 13 19 27 [>30
100 90 11 18 |>31
1000 1 7 14 |>17
1000 i0 12 22 |>29
1000 100 16 27 |>32
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Table 3. 8.10 Number of iterations to satisfy Izkl— Izkly(zk) S e
= (6, 2, 2), 1IP Selection Rule A.

\, \s E o1 .ot (107 107|107 107"
! SR I S T O - O S A
10 10 || 3 30 6| 8| 9| 11]>12
100 100 || 4 s | 7| 9| 11 |>13
1000 1000 || 4 6| 8| 10| 11 12]>12
100 1 2 6| 8| 10| 12| 14| 17
100 10 || 7 11 | 14 | 17 | 21| 271 32
100 50 | 8 | 11 | 15 | 19| 22| 271 30
100 90 || 6 9 | 13 | 18 | 24 | 28 |>31
1000 1| 6 70 8 | 11| 1 16 | 17
1000 10 || 7 9 | 14 | 20| 24 | 271 29,
1000 100 || 9 14 117 | 24 | 27 | 30| 32

Table 3. 8.1l Number of iterations to satisfy N1 - y(z,) |zk| < e
n=3, p=3, z9=(6,2,2), IIP Selection Rule A.

\\*\\\\j{-- R Y B R
", | ! 1101 107 {107 f107% 10
1 1 2 30 4 | >4
10 10 | 3 6 | 9 P12 o
100 100 5 8 | 11 B13
1000 1000 5 8 | 11 p12
100 1 3 9 |12 p17 |
100 10 8 | 14 | 24 >32
100 50 || 9 15 | 23 p3o0
100 90 || 7 13 | 25 31 |
1000 1 6 9 | 14 B17 |
1000 10 8 14 | 24 P29 | |
1000 | 100 fJ10 [17 a7 p32 ! || ]
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Table 3. 8.12 Number of iterations to satisfy s(-zk) I- ,z*l <e;
n=3,p=3, zp=(6,2,2), IIP Selection Rule A.
VO ¢ 1| .1 |.o1 107 [107* 1077 |107°
1 1 1 2 3 4 4 4 |>4
10 10 2 2 6 8 8 11 pl2
1(;0 100 4 8 " 9 10 12 12 P13
1000 1000 8 9 11 11 11 11 | 11
100 1 1 9 11 11 13 13 B17 il
100 _ 10 10 14 16 20 20 31 131
100 50 12 15 19 24 27 [>30
100 90 9 13 18 25 27 [P31
1000 H 7 12 14 16 [>17
1000 10 12 12 22 22 28 P29
1000 100 16 23 27 30 30 p32

Table 3. 8.13 Number of iterations to satisfy |zk|- lzx| < ¢;

n=3 p=3, z0=(6,2,2), I1I1P Selection Rule A.

N, A E 1 | .1 ].01 ;107 107 |107%] 107"
10 1 5 8 12 14 | 16 17 | 20
;Qf 10 8 11 14 |.19 21 26 | 31
10% 100 || 13 17 19 | 23 | 31 | 34| 40
104 1000 14 19 23 26 | 30 34 | 37
104 5000 || 13 18 | 21 {30 | 33 | 36 | 40
10* 9000 || 13 15 1 |25 | 28 | 37 | 41
10° 1 8 8 | 12 |14 | 17 | 19 | 23 |
105 10 9 13 16 20 25 29 | 33

| l10° 100 || 10 19 123 |25 | 32 | 35|40

108 1000 || 12 15 |18 |22 | 27 | 33 | 38
105 10% 15 17 |23 |28 | 32 | 33| 38
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Table 3. 8.14 Number of iterations to satisfy Izk | - Iz | < ¢;

n=3,p=3, zp=(6,2,2), II1P Selection Rule B.

. N y 1 21 {oon |10 107 107 07| &
1 1 1 2 3 3 3 4 4 4
10 10 3 3 6 7 9 10 12| 12

100 100 4 5 7 9 11 13 13 || 13

1000 1000 6 9 10 | 12 | 14 | 14 ] 15| 12

100 1 2 4 8 | 10 | 12 | 14| 17 || 17

100 10 6 | 11 14 | 17 | 21 | 26 | 32| 32

100 50 8 | 11 16 | 20 | 23 | 27 | 30 || 30

100 90 9 12 |19 | 26 | 30 | 33 | 36 1

1000 i 6 7 8 | 11 13 15 T 17

1000 10 10 | 12 |17 |20 | 23 | 27 ] 30 || 29

1000 100 23 |39 |42 |46 | 47 | 54| 57 || 32 |

10% 1 8 | 11 i4 | 17 i9 21 | 23 || 20

10* 10 10 16 18 | 25 | 28 | 30 | 34 || 31

10* 100 54 | 57 |61 | 63 | 67 | 71 | 73 || 40

104 1000 26 29 33 37 41 44 51 || 37

10* 5000 52 | 63 |67 |70 | 75 | 83 | 88 || 40

10% 9000 155 160 64 1173 [177 180 | 185 || 41

10° 1000 165 168 171 |174 (179 |i85 |191 || 38

10° 10* 55 | 59 |62 (65 |68 | 76 | 79 || 38

A =€
Note: k = the first k for which ]zki- |z#| = 10 ~ with 11 P Selection
Rule A.
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Table 3. 8.15 Number of iterations to satisfy [zk |-]z%| <e;

n=2 p=1 z¢ =(6,2), II1P Selection Rule A.

ol 1 [ [ior [0 0™ {107 107"
10 3 5 8 | 12| 16 | 19 | 22
100 2 7 12 | i5 | 18 | 23 | 27
200 5 9 13 | 16 | 21 | 24 | 27
500 6 9 12 | 16 | 19 | 23 | 27
1000 6 | 10 15 | 19 | 23 | 28 | 32
10% 8 11 14 | 20 | 22 | 26 | 30
10% 10 15 19 | 21 | 25 | 29 | 32
108 10 | 14 18 | 21 | 25 | 28 | 31

Table 3. 8.16 Number of iterations to satisfy izkl— |z | <e;

n =2, zg=(6,2), II1P Selection Rule A and BIP.

E 1 1 o110 107 | 107% 1078 ¢

kz p ° °

0 2 | 9 25| 42| 60| 60| 75| 25 5

1 2 | 7 12| 15| 18| 23| 271 29.1
100

2 2 | 7 9| 11| 12| 14] 15(17.2

3 2 | 7 9| 11| 12| 14] 151189

0 36 | 113 | 126 134 150 | 158 | 241 ||82. 6

1 6 | 9 121 16| 19| 23| 27|l28 5
500 2 3 5 71 7| 10| 12| 14l 15 2

3 3 5 gl 10l 11| 13| 1518 4

4 3 5 sl 10| 12] 13] 15|25

Note: 1) p = 0 corresponds to BIP,
2) t = actual computing time (seconds) for IBM 7090.
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Table 3. 8.17 Number of iterations to satisfy lzkl—lz*] Se;
n =3, zg =(54,2), \, =1000, x; =100,
II P Selection Rule A and BIP.

N 1| .1 .01 [107 1071077 1078 ¢
0 53 | 77 | 138 | 202 | 241 |298 |366 ||125.3
1 30 | 52 | 97| 134 | 171 |249 | 293 |319.1
2 9 |15 | 27| 36| 46 | 52| 58 || 75.9
3 9 | 16 | 23| 26| 29 | 33| 36| 50.1
4 8 | 14 | 17| 24| 27| 321 37 || 77.8
5 8 | 13 | 16| 23| 26| 31| 35| 90.3

Notes: 1) = 0 corresponds to BIP.

L
—+
1

actual computing time (seconds) for IBM 7090,



Table 3. 8.18 Number of iterations to satisfy !zkl- | 2| < e

n=4,p=4, z9=(6,2,2,1), I1P Selection Rule A.

€
A, Ny N 1 o1 |.o01 |07 |07 [107% ] 107"
100 10 1 || 5 9 15 {19 | 23 | 27 | 29
100 10 10 6 10 15 | 20 | 25 | 28 | 33
100 50 10 7 14 |23 |29 | 36 | 43 | 49
100 50 50 7 10 |13 17 | 20 | 23 | 27
100 90 10 7 13 19 |28 | 34 | 41 | 48
100 90 30 9 14 |21 |28 |37 |42 | 49
100 90 50 8 14 119 |23 |31 | 37 | 43
100 90 70 9 17 |23 |30 {35 | 43 | 52
100 100 50 6 9 13 16 | 20 | 22 | 26
1000 50 10 9 15 |21 |26 |32 |38 | 43
1000 100 1 7 9 14 118 |22 |25 | 29
1000 100 10 8 14 21 |25 |29 | 40 | 46
1000 500 100 10 15 |26 |31 |38 | 42 | 48
1000 700 100 13 19 |24 |30 |[38 | 45 | 51
1000 900 500 13 19 |30 |41 | 47 57 | 63
1000 950 900 8 19 |23 |42 | 47 53 | 58
1000 995 990 4 15 |21 |31 |44 |49 | 54
10* {5000 (1000 18 28 |35 |44 |48 |59 | 64
10° |5 x 10%| 10* 16 23 |33 |39 46 52 57
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Table 3. 8.19 Number of iterations to satisfy ,Zk - 7% | < e

n=4 p=4, z9=(6,2,2,1), I1IP Selection Rule A.

¢ -3 -4 -5 -6
A2 A3 g 1 .1 .01 1]10 10 [10 |10
100 10 ] 5 10 |18 | 22 P29
100 10 10 6 10 |19 | 27 | 32 [>33
100 50 10 7 14 |26 | 40 [>49
100 50 50 7 110 |16 @19 |27
100 90 10 7 13 |24 |34 | 46 [>48
100 90 30 9 15 |25 |36 [>49
100 90 50 8 14 |21 135 [43
100 90 70 9 17 |26 |37 | 51 [>52
100 | 100 50 6 9 |15 |19 p26
1000 50 10 9 15 |21 |32 p43 |
1000 | 100 ] 7 9 |16 |21 | 27 P29
1000 | 100 10 8 15 {23 |28 [46
1000 | 500 | 100 || 10 15 |27 |33 | 41 [>48
1000 | 700 | 100 || 13 19 |25 |34 | 48 P51
1000 | 900 | 500 || 13 20 |30 |44 | 56 [>63
1000 | 950 | 900 8 19 |24 |42 | 52 p>58
1000 | 995 | 990 4 16 |21 |38 | 49 P54
10* |5000 |1000 | 18 28 |35 |44 | 51 pea
105 |5x 10% 10* 16 23 133 |39 | 46 | 55 [>57
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Table 3. 8. 20 Number of iterations to satisfy Izk |- lz%]| = e;

n=4, zg=(6,1,22), \, =1000, A5 = 500, h, =100,
II P Selection Rule A.

§§:§\§;§§ 1 { .1 |01 107 10 107% | 1078 ¢
1 23 | 67 | 107 | 152 | 185 | 226 | 264 ||331. 1
2 19 |38 | 79| 101 | 127 | 141 | 158 ||211.4
3 15 {27 | 36| 46| 62 | 74| 78 ||123.1
4 12 |18 | 25| 29| 37 | 48 | 53 || 86.6
5 11 |17 | 22| 30| 39 | 49 | 57 |[113.3

Note: t = actual computing time (seconds) for IBM 7090.
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Table 3. 8. 21 Number of iterations to satisfy Izk|— |z | <¢;

n=5 p=5 2z9=(53,118,2.6),

IIP Selection Rule A.

-3 -4 -5| . -6
VO U VR P 1 | .1 |.o1 107107 107% 10
100 | 50 | 30 10 8 [ 19 | 30 |39 | 42 | 54 | 64
100 | 70 | 50 10 9 | 20 | 29 | 39 | 48 | 58 | 66
100 [ 90 | 50 10 {| 10 | 20 | 31 | 39 | 47 | 58 | 67
1000 | 700 | 500 | 100 !| 19 | 27 | 33 | 42 | 53 | 68 |82
. -,_...v.‘!:,_
1000 | 900 | 500 | 100 {| 17 | 25 | 34 | 43 |51 |72 P79
i
Table 3. 8. 22 Number of iterations to satisfy [zk - 2% < ¢
n=5 p=5 2z¢=(523,1,1 8, 2.6),
IIP Selection Rule A.
€
WO W VR 1 | .1 |.01]|107 107107 107®
100 | 50 | 30 10 8 | 21| 34 | 52 |>64
100 | 70 | 50 10 9 | 20 | 33 | 48 [>66
- ‘_,_.* ,,,,,,,,
100 | 90 | 50 10 || 10 | 20 | 34 | 54 [>67
1000 | 700 | 500 | 100 || 20 | 29 | 39 | 62 | 80 |>82
1000 | 900 | 500 | 100 || 17 | 26 | 37 | 58 [>79
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Table 3. 8. 23 Number of iterations to satisfy error criteria;
n==6 p=6, zo=(4,3,2.6,2.6,1.8,1.8),
ITP Selection Rule A.

Error € ) » ) 6
Criterion A 1 o1 (.01 107 [107*107% | 10
A 10 24 34 53 64 79 93
2, |- 2] =
A, 12 | 26 [ 38 | 45 | 63 | 76 | 91
A 10 |24 |41 | 73 [>93
[zk - z!=| <e
A, 13 | 25 | 39 60 |>91
N 0 23 23 4] 61 73 90
|z*|—|zk|y(zk)$e - -
A, 0 |20 |31 | 39 | 60 | 74 | 85
A 23 |61 |87 [>93
s(-2,) - %] = .
A, 33 |60 |90 [>91
N 10 24 37 56 67 82 [>93
2 -2 Iyt =
A, 14 |26 |39 41 | 65 | 79 [>91
A 16 |39 |69 p93
Vl—y(zk)lzkl <e
A, 16 39 |68 [>91
% i
A 23 41 59 66 ; 82 92 |>93
szl -2+ =< ? -
26 39 | 39 68 85 [>91

Note: Ay : N\, =100, N3 =70, X\, = 50, As =30, g =10.
AZ : >\2 :100: >\-3 90, )\4 :70, )\5 = 50, )\‘6 =10,




78

Table 3.8.24 Number of iterations to satisfy |zk| -lzx| <€

IIP Selection Rule C.

. |

n=p| Nplns | he [hs AN\l 1 .1 lo1 o007 %107 & |k
2 | 100 21 71 911121415 |15 2
3 | 100] 10 5113|1620 24| 28(31132]3
3 | 100] 50 7 (14|17 |21 24|29 |31 30]3
3 | 100} 90 6 |12 (15|19 | 22| 26|29 || 313
3 |1000{100 9 |15 118 |23 |27 |30 (32| 32]7
4 |100} 50| 10 8 |15 |25 |30 |38 45|51 || 493
4 |100] 90| 10 7 |14 121 |28 |34 |42|47 || 4813
4 |100] 90| 50 9 |18 |24 |31 3543 s || 43| 3
4 100} 90| 70 7 (13 |25 |33 |38 |47 |51 || 52| 3
4 [1000{500 {100 10 |17 |28 |35 |40 |44 |50 || 48 | 6
5 1100} 70| 50|10 8 |17 |26 |36 |42 |54 |63 || 66| 5
5 1100 90| 80|70 9 |16 |21 |37 |48 |58 |69 || 70 | 4
61100 | 90| 70|50 | 10|11 |24 |37 |49 |62 |78 |92 ||91 |5
6 %1000 901 7050 | 10/|}15 |29 |45 |60 |73 |84 |94 |95 |7

Notes: 1) k = the first k for which |z, |-|z%| = 10™° with 11 P Selec-
tion Rule A.
2) k' = the first k for which Phase C2 is used.
3) Forn =2, zog =(6,2); forn =3, z¢ =(6, 2, 2); for n = 4,
,2,2,1); forn =5, z9g=(5,3,1,1.8,2. 6); forn =6,
3,2.6,2.6,1.8,18).
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Table 3. 8. 25 Number of iterations to satisfy |zk ] - |z*| Se;

II P Selection Rule C.

€
n Q:§§§§§\ 1 | .1 o]0 07 107% | 1078 ¢
3 2 7 115 | 26| 34 | 43 | 52 | 61 || 72.4
3 3 5 |13 | 16| 20 | 24 | 28 | 31 || 44.3
n
3 4 5 |14 | 18| 21 | 23 | 27 | 30 || 61.7
i I | S
3 5 | s |12 | 15| 20 |24 | 26 | 29 || 80.6
!
4 3 |9 |22 | 37| 51 |61 | 72 | 88 [|137.1
4 4 7 {13 | 25 | 33 |38 | 47 | 51 | 88.3
4 5 7 |16 | 25 | 32 |39 | 44 | 50 [134.3
4 6 7 |13 | 23 | 31 |38 | 44 | 50 [j186.0
4 7 7 |14 |22 | 31 |39 | 45 | 51 |84 4

Notes: 1) t = actual computing time (seconds) for IBM 7090.
2) Forn =3: z9=(6,2,2), \, =100, x; = 10.
3) Forn =4: zy=(6,2,2,1), A\, =100, x5 =90, A, =70.



CHAPTER 4

THE GENERAL ITERATIVE PROCEDURE GIP

By following some of the ideas introduced by Fadden [F1], it is
possible to state a general problem which has application to a wide
variety of optimal control problems. This general problem GP is
formulated in this chapter and a method for solving it, called the gen-
eral iterative procedure GIP, is described and shown to converge.
Each iteration of GIP involves the minimization problem BP, which can

be solved by IIP or BIP.

4.1 The General Problem GP

Let @ = [0, 8], &> 0, be a compact interval in E!. For w € Q
consider sets K(w)c E" which are compact and convex. Also let K(w)
be continuous on £, i.e., for every ¢ > 0 there is a & = §(¢, w) such
that K(w) ¢ K(w + ®) + N(0;¢) and K(w + w) c K(w) + N(0;e¢) whenever

|G| < & where w, w +& € Q.

Before stating GP the support and contact functions for K(w),
w € 2, are introduced. Let n(w,y) = ng{%z) z *y denote the support
function of K(w). Since K(w) is compact, n(w, y) is defined on X E.
As in Section 2. 2, for fixedw € 2 mn(w,*) is a convex continuous func-

tion on E'. The following result also holds.

THEOREM 4. 1.1 Given that the sets K(w) are compact, convex,

and continuous on @. The support function n(w, y) is continuous as a

function of w and y on £ X E"

Proof (due to Fadden [Fl] :It is necessary to show that for every

e > 0 there exists a 6§ = §(¢, w, y) such that In(CS, y) - nlw, y) ] <e¢ when-

ever |(63, y) - (w, y)l < & where w,® €Q and y, 7 € E®. Now

80
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In(@, ) -nlw, Y| = [n@ ) - nlw, F) +n(w, ) -nlw, )|

= ln(°_~)’ ) - nlw, 57-),‘*"1‘]((0,?) - {w, y)l

The continuity of n(w, y) for fixed w implies that given ¢ > 0 there is a
6; = 6;(e, w, y) such that |n(w, 7) - nlw, y)| <—€Z— whenever |y - y| <8, .
That n(w, y) is a continuous function of w for fixed y follows from the
continuity of K(w). For every € > 0 there is a § = §(<, w) such that
K(w) c K(w) + N(0;€) and K(w) cK(w) + N(0;€) whenever |& - w| < 6.
Consider fixed y and note that the support function of N(0;%) is€|¥|.
Hence, n(w, ) <n(®,y) + 2|y| and (&, 7) < nlw, ) + €|y|. Thus

In(@, ¥) - nlw, Y| < T|y| whenever |& - w| <35. Clearly for every

¢ > 0 there exist a 6, = 6,(¢, w, y) and a 65 > 0 such that |n(@, §) -n(w, 7]
< % for all § € N(y;85;) whenever |& - w| < 6,. Therefore, since

(@ %) - (w,y)| = |&-w|+ |7 -yl the desired property is established
if 6 = 6, + min{6,, 6, }.

For w € Q let P(w,y), y # 0, be the hyperplane {xEEni Xy =n(co,y)}.
Since z 'y = n(w,y) for all z € K(w) and P(w, y)NK(w) is not empty, P(w, y)

is the support hyperplane of K(w) with outward normal y. For each

y # 0 the set S(w, y) = Plw.y)NK(w) is called the contact set of K(w) and

its elements are called contact points of K(w). It follows that S(w, y) is

not empty, S(w,y)c 0K(w), S(w,\y) = S(w, y) for » > 0.

A function s(w, y) defined on X Erl is a contact function of K(w)

if s(w,y) €S(w,y), y #0, and s(w, 0) € K(w). Thus for w € Q: s(w,*) is

bounded; s(w, y) = s(w,\y), A > 0; n(w,y) = s(w, y) *y.

If for every w € Q and every y € E there is a method for deter-

. o L € t ° = maX ° - 9, )
mining a peint x(w, y) € K(w) such that x(w,y) +y 26K () z -y = nlw,y)
then it is said that a contact function of K(w) is available. This avail-
ability is essential to the computing procedure GIP presented in the

next section. Consider now the general problem:
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A . :
GP Let 2 =[0,0], &> 0, be a compact interval in E* and for €

n . .
let sets K(w) c E be compact, convex, and continuous in w. Assume

that there exists w* € Q such that 0 § K(w), 0 < w < 0¥, and 0 € K(w¥*).

Find: *.

Note that because K(w) is continuous it follows that 0 € 9K(w*).
The relationship of GP to problems in optimal control is discussed in

Chapter 5.

The computational problem posed by Fadden [F1] differs from
GP in that the sets K(w) are required to be strictly convex. Further-
more, in addition to w* Fadden seeks to find the outward normal to a

support hyperplane of K(w*) which contacts K(w*) at the point 0.

4.2 The General Iterative Procedure GIP

In this section the iterative procedure for computing the solution

to GP is described.

First some preliminary definitions and results are presented.

Let @ and K(w) be as specified in GP. For w € @ define functions 'Z(w)
min |
z€K(w) lz
The compactness of K(w) and continuity of |z| ensure the existence of

and p(w) = |Z (w)| such that Z(w) € K(w) and plw) = |Z(w)] =

these functions. Geometrically, Z(w) is the point in K(w) closest to
the origin and p(w) is the distance of Z(w) from 0. It follows from
Theorem 2.2.1 that: Z(w) is unique; p(w) = 0 if and only if 0 € K{w);
for p(w) > 0, Z(w) € 8K(w); for plw) > 0, z = Z(w) if and only if

z € P(w, -z)NK(w) = S(w, -z). Moreover, the following result holds.

THEOREM 4. 2.1 The functions p(w) and Z(w) are continuous on

Proof: Consider p(w) first and let ¢ > 0 be given. It is required
to find &, = §,(¢,w) such that |p(w) - ple +®)| < ¢ whenever |&| < &,

where w,w + @€ Q2 Since K(w) is continuous, there exists & = 6(¢, w)
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such that K(w) ¢ K(w + @) + N(0;¢) and K(w + @) c K(w) + N(0 ¢) whenever
|@| <& It will be shown that §; = 6. The first inclusicn and

;(w) € K(w) imply that there exist z; € K(w + @) and x; € N(0;¢) such that
2(w) = z; +x,. This yields |z;| = |Zw) - x| £ [Z(@)]+|x1] < |Z(w)]
+e¢. Similarly the second inclusion and Z(w + &) € K(w + &) imply that
there exist z, € K(w) and x, € N(0;e) such that z(w+&) = z, + Xz, |23 |
< |zZ(w +®)| +e. But |Z(w +@)| < |z,| and |Z(w)| < 22| Therefore,
|Z(w +®)| < |Z(w)] +¢ and |Z(w)] < |Z(w +3)| + ¢, which yields the de-

sired property: |p(w) - plw + ®)| < ¢ whenever |&] < &.

Now consider the vector function ;(w)a Let ¢ > 0 be given and
let 8§ = 6(¢, w) be chosen as in the preceding paragraph. The fact that
K(w) is bounded for all w € Q implies that there is an o > 0 such that
plw) <o, w€Q. Since I;(w) - 'Z(w +6)l S plw) + plw + &) < 2a, € may
be restricted to the interval 0 < e < 2¢. Two cases will be considered,

corresponding to plw) <e and p(w) = €.

Suppose first of all that p(w) <e. For |G| < (e, w), |plw) - plw+3)]
< e which yields p(w + @) < p(w) + ¢ < 2¢. Then Ig(w) - Z(w + (Ii')] < p(w)

+ plw + @) < 3e.

Now consider p(w) = ¢ and |G| < &(+ w). Let Ny =N(0;p(w) +¢).
Qi = QF(w); - Z(6). Q = QF(w) - ¢p  (@)Z(w): - Z(w)), and Q; -
QM (F(w) - ep i (w)z(w); - Z(w)). As illustrated in Figure 4. 2.1 Q, is the
support hyperplane of K(w) at Z (w) with outward normal -Z(w). It can
be shown that the parallel hyperplane Q, is the support hyperplane of
K(w) + N(0;¢) at 7 (w) - €p *(w)Z(w). Since |plw) - plo +&)| <e,
Z(w + @) € Ny. In addition, Z(w + &) € K(w) + N(0:¢) implies Z(w+&) € Q;
the open half-space bounded by Q, with outward normal -z(w)- Thus if
X is any point in Q, N 8N, it follows that |Z(w) - z(w+@)| < |Z(w) - x|

Furthermore,
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O

plw) +e —

F(w) -ep ()2 (o)

Q: @

Figure 4. 2.1 Notation for the case p(w) 2 ¢
in the proof of Theorem 4.2.1

|Z (w) - Xlz =¢ + [plw) +e] - [ple) - ¢]’

et + 4p(w)e

n

e [e +4p(w)]

Since p(w) < @ and € < 22, the quantity in the brackets is less than 6a.
1
Thus [z(w) - Z(w +&)| < (6bae) 2.
Clearly the above results imply |Z(w) - 2 (w +@)| <e if |T] <
2
min{ 6(53, w), 6(&;,@}. Therefore Z(w) is continuous on  and the

proof is complete.
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Now let w be an element of Q and s(w, -) a specific contact function

of K(w). Consider

v(w, z) = Izl z - slw, -2), Iz] >0, z-slw, -z)> 0 (4.2.1)

=0, z=0or |z|>0, z-s(w, -z) = 0.

Thus y(w, - ) is a function defined on K(w). It follows from Theorem
2.3, 1that for w€ Qand z€ K(w): 0 = y(w, z) =1; if 0 € K(w), ylw,2z) =0
for all z € K(w); if 0 § K(w), y(w, z) =1 if and only if z = 2 (w); for fixed

w €, y(w, z) is continuous in z. The following results also hold.

THEOREM 4. 2. 2 Let Q, K(w), and w* be as specified in GP.
Then for 0 < w< w* and z € K(w): 1) |z]y(w, 2) < p(w); ii) n(w*, -y) 2 0,

2
y € En; iii) if y(w, z) > 0, N(w, -z) = -lz] viw, z) <0.

Proof: Part i) follows from the definition of p(w) and part i) of

Theorem 3. 3.1. Inequality (2. 4. 4) applied to the set K(w*) yields
s(w*, -y) +y S Z (w*) -y, Y€ E". Since Z(w*) = 0, nlw*, -y) = -y - s(w*, -y)
2 0 which proves ii). Consider iii). The fact that 0 d Klw) for 0 <w<w*
implies |z| > 0, all z € K(w). This, y(w, z) > 0, and (4. 2.1) yield

7 + s(w, -z) > 0. So iii) follows from n(w, -z) = -z - s(w, -2z) and (4. 2. 1)
Now GIP can be stated.

The General Iterative Procedure GIP Let ©, K(w), and w* be

as described in GP. For w € Q let M(w, - ) be the support function of
K(w), let s(w, -) be an arbitrary contact function of K(w), and define
Y(w, *) by (4. 2.1). Setwg=0andi =0. The following two steps con-

stitute one iteration, called iteration i, of GIP.

Stepl Consider W, fixed, 0 = w, < w¥%, and the corresponding set K(wi).

Apply IIP or BIP to the minimization of }z

, Z€ K(wi). If
w, <w¥%, ITP or BIP may be continued (Theorems 3. 4.1 and

2

i
where 0 < 0 < ei <1 and 6, Bi are preselected numbers. When

2. 4. 1) until a point 2, € K(wi) is obtained such that y(wi, Zi) 20
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this happens proceed to Step 2. If w, = w*, IIP or BIP will not
produce a z € K(o.\i) satisfying y(wi, z) 2 ei but will generate
(Theorems 3.4.1 and 2.4.1) a sequence of points in K(wi) = K(w*)

which converges to 0.

Step 2 Consider z, fixed and look at n(e, -z,) for v € [wi, w*]. Since

y(wi, zi) > 0, n(wi, —zi) <0 (Theorem 4.2.2). This, n(w*, —zi) =0,
and the continuity of n(w, z) (Theorem 4.1.1) imply there exists
o€ (wi, w*] such that n(w, —zi) = 0. Letw increase from ©, and

let W, be the first w for which n(w, -zi) = 0. Then increase i by

one and return to Step 1.

It should be noted that in Step 1 with i > 0 the point s(mi, ‘Zi—n) lying on the

hyperplane Q(O;-zi_l) can be used to initiate I1 P or BIP. For i = 0 the

point s(wi, x) for any x can be used.

If the condition w, = w* in the latter part of Step 1 occurs, then the
solution to GP has been obtained in a finite number of iterations of GIP.
If this condition does not occur, then GIP generates infinite sequences
{wi} and {zi} where W, € [0, w*) and z; € K(wi)n To show convergence of

W, to w* and z, to 0 it is necessary to make an additional assumption on

(e .y) - nle,y)
N(w, y), namely, that the difference quotient PR be bounded

a b

from above for all w o €Q, @ i ©,, bounded y € E". This is treated in

the next section.

4.3 Convergence Theorem for GIP

THEOREM 4.3.1 Consider GIPand assume the condition 0y = @* in

the latter part of Step 1 does not occur for i <. Furthermore, assume
e > y) - (e, . y)

that €Q, w Fw,,
— - W

b b a b
bounded y € E". Then GIP generates sequences {g.\i} and {Zi} which for

is bounded from above for a_].l @, ©

i2 0andi - satisfy: i) W, € [0, w*) and z, € K(wi); ii) {wi} is strictly
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increasing (w. < w.
Increasing (w; <w,

) and w, = w*; iii) z. = 0,
— i i
Proof: The first half of i) follows from wy € [0, w*) and the defi-
nition of @ in Step 2. Since all points z generated by II P or BIP

applied to the set K(wi) are in K(wi), z, € K(wi).

Consider ii). The property w, < . follows by the remarks in
Step 2. Thus {wi} is a strictly increasing sequence on a compact in-
terval [0, w*] and must have a limit, say @. To complete the proof of
ii) it suffices to show that w* - € < & < w*, where ¢ > 0 is chosen arbi-

trarily.

Assume the contrary, i.e., @ <w¥ -¢. Let

supremum T](wa’ y) - n(wb’ )
wa,wbEQ,wa #wb W -

a b
) y€(.o%S'ZK( w)

Vv =

2

which exists by hypothesis. Clearly v > 0. At the start of Step 2

w, < w*, ,Zil > 0, and y(wi, Zi) 2 0. By part iii) of Theorem 4. 2. 2,

2
y = . = - . %] . < O- . s = . = 0° 2
T](mi 21) Izll y(m1 zl) But n(w1+1 zl) Hence
~w, 2y Iy )25 |z [e >0 (4.3.1)
wi+1 wi - VvV Zi Y(J.)i, Zi = Vv Zi B o Do
Now consider w € [0, w* - ¢] and the function Z(w). Since Z (w) is con-

tinuous on [0, w* - ¢] (Theorem 4. 2.1), it takes on its minimum, say

7z is i . 7 = min min 511> o, -
Z iy On this interval. Then 'Zminl s [ R () 1z ] Con

sequently lzil 2 |2 | for all i 2 0 which by (4. 3.1) implies

S
., -w. 2V |Z . |"0 = constant >0 for all i 2 0. This contradicts
1+1 1 min

the fact that {wi} has a limit on [0, w* - €] and thus ii) is true.

Now consider iii). From w, > w*, the continuity of Z(w), and
Z(w*) = 0, it follows that E‘(@i) - 0. Part i) of Theorem 4. 2. 2 and
y(wi, Zi) 2 60> 0yield 0 < lzile < |zi|y(wi, Zi) = Ig(wi) |. Since the right
side of this inequality converges to 0, |zi |6 - 0 and thus lzii - 0.

That is, z, > 0, which completes the proof.
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Note that it is not possible to say that Izi_'_1 | < ,Zi | (see Figure
4.3.1).

Figure 4.3.1 A configuration for which lZiﬂ | > IziI in GIP.

Also observe that if on an iteration of I1 P or BIP within Step 1 of GIP a
point z € Klw,) is obtained for which |z| =0, then w. = wk However,

if |z| <e (arbitrary ¢ > 0) is used as a stopping condition for GIP, then
w, may or may not be close to w*. In certain applications where w rep-
resents fuel, cost, effort, time, etc. (see Chapter 5) it may be satisfac-

tory to obtain @, 0 < ® < w¥, provided that a point z € K(w) sufficiently
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near to the origin is found. In such cases |z| < ¢ provides a stopping

condition for GIP. Consider the following:

COROLLARY 4. 3.1 Let the hypotheses of Theorem 4. 3.1 be

satisfied, consider {wi} and {Zi} generatedby GIP, and let ¢ > 0 be

- A
given. Then: i) if w* —wi<e, |Zi| <(ve le)z; ii) if Izil < and for

W we[ow*]w #w EM
a’ b ’ * Ta b’ w -

= -0 < 0, it follows that w* - w,
a b

-1
<o €.

Proof: Inequality (4. 3.1), W, < w < w¥, and w* - w, < e imply
v"|2,[' 8 <¢ which proves i). Consider ii). For 6, = e% w =0 it
plw¥) - p(wi)
follows: ————— < -¢. Since p(w*) =0 and w, < w¥, -p(w.) <
Wk -0, i i
-1 -1
- k- k- < . ) = < K- .
o(w wi) and w w, S0 p(wi) But p(wl) lzll € SOw @, <o e,

completing the proof.

Part ii) of the corollary has importance if the scalar ¢ > 0 exists
and can be calculated. For in that case whenever the stopping condition
|z| < e is satisfied for a point z € K(wi) generated by II P or BIP within
Step 1 of GIP, ii) provides a measure of the error in w, - Moreover, if

|z| < oe is used as the stopping condition for GIP, then w* - W, <e.



CHAPTER 5

APPLICATION OF BIP, IIP, AND GIP TO
OPTIMAL CONTROL PROBLEMS

5.1 Some Optimal Control Problems Solvable by GIP

In this section a class of optimal control problems is formulated
using some ideas of Fadden [F1]. Many problems of this class, and
other optimal control problems as well, can be solved by GIP. Some
can be solved by BIP or IIP alone. Six specific problems which illus-
trate a variety of optimization objectives are stated. The application of
the iterative procedures to these six problems is discussed later in the

chapter.

r A
Let U be a compact set in E* and let 8= [0,1], 4c\ > 0, be a com-
pact interval in E!. A measurable function u(-) defined on ® whose

range is in U is said to be an admissible control.

Consider dynamical systems of the form
x(t) = A(t) x(t) + f(u(t), t),  x(0) specified, (5.1.1)

where x is the m-dimensional state vector, x is its time derivative,
x(0) is the initial state, u(:) is an r-dimensional vector control function
defined on ©, A(-) is an m X m matrix function defined and continuous on
O, (., ) is an m-dimensional vector function defined and continuous on
U X ©. For every admissible control u(-) there is an absolutely contin-
uous solution function Xu( ] )(t) = xu(t), which satisfies (5.1.1) almost
everywhere on ©. An admissible u(-) is said to generate the states
xu(t).

Let there be given target sets W(t) c E™ which are compact, con-
vex, and continuous on ©. An admissible control u(:) is said to transfer

x from x(0) to W(t) in time t € © if xu(t) € W(t).

90
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Let there also be given a cost functional of the form

t
300 =  Tate) - x () +£9(ulo), o) ]do +5°(x, (1), (5.1.2
0

where a(-) is a continuous function from O to Em, f°(v, ) is a continuous
function from U X © to E!, and h°( *) is a convex (continuous) function
from E™ to E!. For every admissible control u(-) Jt(u) yields a parti-
cular cost function, which if evaluated at t € © results in a number

called the cost at time t for this admissible control.

Consider now the following class of optimal control problems:

Fixed Terminal Time Problems

Let T > 0 be a fixed point in ©. Find an admissible control u¥(-),
if one exists, such that: a) u*(-) transfers x from x(0) to W(T) in time
T; Db) the cost at time T for u*(-) is less than or equal to the cost at
time T for any admissible control u(:) which transfers x from x(0) to

W(T) in time T. (For these problems Jt(u) = JT(u) = J(u).)

Free Terminal Time Problems

Find an admissible control u*(-) and an optimal time t* € ©, if
these exist, such that: a) u¥(:) transfers x from x(0) to W(t*) in time
t*; b) the cost at time t* for u*(-) is less than or equal to the cost at
time ? for any admissible control u(-) and time? € O for which

xN(?) € W(?).
u

Any admissible control u*(-) which satisfies conditions a) and b)
in either a fixed or free terminal time problem is said to be an optimal

control.

The above formulation is also appropriate if there are constraints

on the control function of the form

t
§¢1(u<a),c)dae1v11, i=1,2,....4, (5.1.3)
0
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where the q’>1(-, -) are continuous functions from U X © to E! and M  are
closed intervals in E!'. By introducing { additional differential equa-
tions

}.{( m+i) _ (m-+i)

o ult), 1, x

X( m-+{)

(0) =0, i=1,2,...,4, (5.1.4)

+ +
(m+1) (t)) € Em . be the new state vector,

and letting (x(t), x (t), ...,
these constraints can be incorporated into a system description of the
form of equation (5.1.1). The target sets in this case are

W(t) x M X - --x Mz. Since there is no loss of generality, it is

assumed in the sequel that no constraints of this type are present.

Many optimal control problems of the class described above can
be solved by GIP. Furthermore, it is often possible to use GIP on
problems of an extended class which includes other cost functionals
(e.g., equation (5.1.9)) and/or target sets which are closed but not
bounded (e. g., half-spaces or linear manifolds of dimension = 1 which
may or may not vary with t). Some of these problems can be solved by

BIP or IIP alone.

The following six example problems will be used later in the
chapter to illustrate the application of the iterative procedures. The
first five have a fixed terminal time T; the sixth has a free terminal

time.

Problem 1 (Minimum-Error Regulator)

I = |x (T)] (5.1.5)

For this problem, first posed by Ho [H3], the target set W(T) is equal

to the whole space Em.,

Problem 2 (Generalized Minimum-Error Regulator)

J(u) =xu(T)~Gxu(T) +g“xu(T)y (5.1.6)

where G is a symmetric non-negative definite m X m matrix and g is an
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m-vector in the range of G. This problem, treated by Gilbert [G1],
also has the target set W(T) = Em.

Problem 3 (Convex Function Minimum-Error Regulator)

(W) =h’(x (T)), (5.1.7)

where hY( -) is a convex (continuous) function from E™ to E! such that
{x : h°(x) < constant} is compact, and W(T) = Em.

Problem 4 (Minimum-Fuel Terminal Control)

J(u) = gEa(t) . xu(t) +£2(u(t), t)]dt , (5.1.8)
0

where a(-) is a continuous function from [0, T] to E and f°(-,+) is a

continuous function from U X [0, T] to E!.

Problem 5 (Minimum Effort)

I(u) =?:§<r| 9l . (5.1.9)

For this problem, which was introduced by Neustadt [N3], the target
set W(T) is a single point w(T) and f(u, t) = B(t)u where B(-) is an m X r

matrix function continuous on [0, T].

Problem 6 (Minimum Time)

Jt(u) =1, (5.1.10)

which corresponds to (5.1.2) with a(-) = 0, f(-,*) =1and h%(-) = 0.

There are no further restrictions on W(t) for this problem.

5.2 The Reachable Set; Determination of a Contact Function

The problem of computing an optimal control can be approached
by considering the set of all possible solutions of (5.1.1) using admis-

sible controls. This set and some of its important properties are
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discussed in this section. In addition, two closely-related sets are

introduced.
Consider the system (5.1.1) and let t € ©. The set
R(t) = {x T X = xu(t), u(-) admissible} (5.2.1)

is called the reachable set. It is the set of all possible states in ™

which can be reached from x(0) at time t using an admissible control.

Since the solution to (5.1.1) can be written as
t
x (1) = &(t) [x(0) +§¢"(a) f(u(v), o) do ] (5.2.2)
0
where &(t) is the m X m matrix solution of & = A(t)®, ¥(0) =1, it is clear

that
t

R(t) = {8(t) [x(0) +‘§§_1(U)f(u(o),0')d0‘] . u(-) admissible}. (5. 2. 3)
0

Neustadt has shown [N2] that for each t € © the set R(t) is: (1)
compact; (2) convex. From (5.2.3) and the continuity of f(-,+) and
®(-) it is easy to prove that: (3) R(t) is continuous on @. Furthermore,
for fixed t € © it will be shown below that: (4) a contact function of the
set R(t) is available. The properties (1), (2), (3), (4) are the essential
features which permit application of the computing procedures of

Chapters 2, 3, and 4 to optimal control problems.

It should be observed that for all but the most elementary systems
(5.1.1) the complexity of (5. 2.3) prohibits explicit calculation of the
boundaries of R(t). Hence, the most satisfactory computing algorithms

are those based solely on properties (1), (2), (3), (4).

Let T € © be given and consider the determination of a contact
function sR( TYy), y€ Em, of R(t). For y a specified m-vector it follows

from (5. 2. 2) that



y - x (7 =y - () x(0)+ S‘([é(ﬂ@_l(ff)]'y') - f{u(e),0) do, (5.2.4)
0

where the prime denotes matrix transpose. But the m-vector yl(t, y)
- i
= [8(7)® ll(t)] y, defined on [0, 7] X E™, is the solution of the adjoint dif-

ferential equation

P(t) = -A'() Y(t), w1 =y. (5.2.5)
Hence,
.
xé%?f) y-x =y(0,y) - x(0) + If,lea[}‘ [Wo, y) - f(v, o) ]do. (5.2.6)

0

It can be shown that there exists an admissible control u(t, y) defined on

[0, 7] X E™ such that for almost all t € [0, T]:
) a
Wt y) - Hult, y), 1) = oy Wt y) - fv, t). (5.2.7)

Then from (5. 2. 6) it is clear that y - x (7) 2 y- Xu(t)(T) for every

u(t,y)
admissible control u(t). It follows that a contact function of R(T) is

sR(T,y) :Xu( (7). (5.2.8)

t,y)

This result agrees with the well-known fact that boundary points of the

reachable set must ''satisfy'' the Pontryagin maximum principle.

In most practical problems it is not difficult to obtain a function
u(t, y) which satisfies (5.2.7). Consider, for example, the case where
f(u, t) = B(t)u, B(t) is an m X r matrix function continuous on [0, 7], and
U is the unit hypercube {u : luil <1, i=1L2,..., r'}. Notice that
(5.2.7) may not uniquely define u(t,y) almost everywhere in [0, t]. For
in the present example, (5.2.7) yields u(t, y) = sgn B'(t) Y(t, y) where the
ith component of sgn v (i =1,2,...,r) is 1 for vi > 0, is -1 for vi <0,
and is arbitrary if Vi = 0. This is of no concern, however, since even

if a component of B'(t) U(t, y) is identically zero on [0, 7] (i.e., LaSalle's
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normality condition [L1] is not satisfied) different choices for u(t, y)
will at most lead only to different contact functions of R(+). Previous
computational procedures [Bl, El, Fl, F2, N1, N3, N4] have required
assumptions which correspond to a unique determination of u(t, y) by

(5.2.7). Such "unique maximum' assumptions imply strict convexity

of R(T).

Computer evaluation of sR( T,y) for a specified y € E™ entails

three steps:

i)  Evaluation of y(t, y) by solving (5. 2.5) backwards from t =
tot = 0;

ii) Determination of u(t, y) from y(t, y) by (5.2.7);

iii) Solution of (5.1.1) with u(t) = u(t,y) fromt =0tot = .

As observed by Fancher [F3], storage of the function u(t, y) can be
avoided by first obtaining (0, y) from the backward integration of
(5.2.5) and then integrating (5.2.5) and (5.1.1) together from t = 0 to
t = v while obtaining u(t, y) from (5.2.7). Thus each evaluation of a
contact function involves the sequential solution of two differential
equations. This situation can be handled effectively by a digital or

hybrid computer [G2].

It is convenient to introduce here two sets C(t) and B_(t) which are
closely related to R(t) and have application to a number of optimal con-
trol problems.

Let t € ® and define
t
C(t) = { S'@—l(g) f(u(e),o) do : u(*) admissible}. (5.2.9)
0

Note that C(t) « E™ is related to R(t) by the continuous, non-gingular

affine transformation

C(t) =3 (1) R(1) - x(0). (5.2.10)
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Consequently, C(t) is compact, convex, and continuous in t for all t € ©,
Furthermore, a contact function sc(t, y), y € Em, of C(t) is available,
as is shown in the following paragraph.

Let re© andy € E™ be specified. If cu( 7) denotes the point in

C(7) generated by the admissible control u(t), then:

-
v Cu('r) = S\([é_l(cr)]'y) - f(u(c), o) do (5.2.11)
0
and
-
ety =\ B (e )] y) - fv. o) do . (5.2.12)

0

It can be shown that there exists an admissible control u(t, y) defined on

[0, T] X E™ such that for almost all t € [0, T]:

-1

([a7 (0]'y) - flutt, y), ) = B8¥ (8 (0)]'y) - 6w, 1. (5.2.13)

Then if

T

SC(T,y) =§§_1(G') f(u(o, y), o) do, (5.2.14)
0

it is clear thaty-s (T, y) 2 y - cu( 7) for every admissible control u(t).

C
Thus sC(T, y) is a contact function of C(71). An alternate formula for

evaluating sC( T, y) is

solmy) =8 (Dx (7) - x(0), (5.2.15)

u(t,y)
where u(t, y) is obtained from (5.2.13). This follows directly from

(5.2.10) and (5.2.14).

In certain optimal control problems such as Problem 4 of Section
5.1 it is useful to introduce a set _R_.(t). For these problems there is a

cost function xg(t) € E' satisfying almost everywhere on © the differ-

ential equation
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x%(t) = a(t) - xu(t) +fO(Ut), t), x°(0) =0, (5.2.16)

where a(-) and f9(-, -) are as in (5.1.2). Then if X = (xo,x) denotes a

+1

point in Em , (5.1.1) and (5.2.16) are equivalent to the equation

X(t) = A1) x(t) + Hu(t), ), x(0) = (0,x(0)), (5.2.17)

where f = (£°, f) and A(t) is given by

0! al(t) a%(t) - -ai(t)
I b
A(t) = 0'
- Al
|
0
L -

Let >_§u(t) be an absolutely continuous solution of (5.2.17) corresponding

to the admissible control u(-). Then for t € © define

R(Y = {x: x=x (), ul) admissible} . (5.2.18)

If (1) is the (m +1) X (m + 1) matrix solution of & = A(t) 8, &(0) = L
% Em+1

y is a specified (m + 1)-vector, and B(t, ¥)s defined on [0, ] , 1s

the solution of

W) = -A0 (), W) =y, (5.2.19)

then equations (5. 2. 2) through (5. 2. 8) may be rewritten with sub-bars

oneachx, & f, R, y, A, and ¢. Thus R(t) is compact, convex, and

continuous on ®. Moreover, for T € ®, a contact function of R(T) is

(™Y }iu(t,y)(T), (5.2.20)

where u(t, y) satisfies for almost all t € [0, 7]:

Yt y) - fult y), 8 = DI UL ) - f(v, ). (5.2.21)
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5.3 Solution of Problems 1 and 2 by BIP or I1 P Alone

Problems 1 and 2 of Section 5.1 can be solved by GIP or by BIP
or ITP alone. The method of solution by BIP or I1P alone is treated

in this section.

In Problem 1 let K = R(T), where T > 0 is the fixed terminal

time. The optimization objective is: find a point z* € K and an admis-

z€EK
is compact, convex, and has an available contact function (equation

sible control u¥(-) such that |z#| = M| z| and z* = xu),:(T)° Since R(T)

(5.2.8)), this is clearly a variant of BP and BIP or IIP may be used to
obtain a point Z € K such that IE' - z%| < ¢ (arbitrary ¢ > 0). There is
no difficulty in initiating the iterative procedures: choose zg =xu°('T) €K,
where ug(-) is any admissible control. (In IIP with Selection Rule D,
an arbitrary admissible control say u_l( ), can be used to generate

k) = SR( T, -z
) satisfying (5.2.7).

z € K.) Furthermore, for all k 2 0 the contact point s(-z

i

is generated by an admissible control u(t, "z,
There remains the issue of finding admissible controls u (') and

u(-) which will generate z, and z. For BIP or IIP (with Selection Rules

A, B,C, or D) 2y k >0, has a reprelfentation z 133 T, s -z, ) +0 lzo
-1
where o, 20(i=-1,0,. -1)and X o, = =1, Suppose that for almost

i=-1
all t € [0, T] the sets f(U, t) = {f(v, t) : V€ U} are convex. Then for k> 0

there exists an adﬁnissible control uk(
-1

[0, T] f(uk(t), t) = );o cr.f(u(t, _Zi)’ t) +o_ fluo(t), t), which implies by

-) such that almost everywhere in

(5.1.1) that 2y = u (t)(T) For example, if f(u,t) = B(t)u + b(t) and U is

k 1
convex, then uk(t) =X o, u(t —z) +0 luo(t), If the sets £ (U,t) are
i=o0 -

not convex for almost all t € [0, T] and additional approximation pro-
cess, the construction of a chattering control, is necessary [B3].
This chattering process yields an admissible control ﬁk( ) which
generates a point arbitrarily close to z, . As a brief illustration, for

k
f(u, t) = B(t)u + b(t) and U not convex, the process is as follows.
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k-1
Consider G(t) =X . O'iVi(t) where the ¢, areas above and the ad-

u(t, -z.),1=0,1,..., k-1.
1 1

missible functions Vi(t) are: V_l(t) = ug(t), Vi(t)

MI”

A
Suppose u(t) does not have its range in U. Since,
i

c.=lande¢.=2 0
-1 1 i

(i=-1,0,...,k-1), the intervals

S S ’
T =<(I"‘1)T+‘Z L TTOLT (r-l)TfZ, cri-r],

rs 1=-1 1=-1 -

T = q-lTy r=12,...,9, s =-,0,...,k-1, are mutually disjoint and
cover (0, T]. Thus Tt =v (), teT , r=12....9,8=-L0,... k-1
is an admissible control defined on (0, T] which '"chatters' among
v_l(t), vol(t), ..., *vk_l(t)g the fractional time spent on Vi(t) being Loy It
is not difficult to show that there exists a q, (dependent on e, A(t), B(t),
b(t), T, and U) such that IXG(T) - X (T)| <e for g > ge. Thus a suf-
ficiently fine division of (0, T] implies IX{)( T) - X (T)] < € (arbitrary

& > 0). Itis clear that chattering can be omitted on any subinterval of

A
(0. T] where u(t) has range in U.

By Thecrems 2. 4.1 and 3. 4.1 Z, ™ z* for BIP and IIP. Thus for
k sufficiently large 2y will satisfy specified stopping criteria. The
approximate optimal state is z = 2y and it is generated by the admissible

contrecl u(-) = k( ). Observe that uk( +) is required only on the final

iteration of the iterative procedures. In some situations, however, it

may be desirable to compute u, () for each k > 0 in a recursive manner,

1

using u () and those u( -, -zi)y 0 =i=<k -1 which occur on iteration

k-1

k - 1. If K is strictly convex, then s(-z,) will satisfy specified stopping

k
criteria for k sufficiently large. Hence Z and G(+) can be taken to be

s( -zk) and u( -, -z This avoids the necessity for finding uk( <), but

k)'
examples show that an increased number of iterations are required.

There are several instances when it is possible to simplify the

finding of an admissible uk( ) which generates z Consider 11 P with

K
Selection Rule D. Then 20 k> 0, has a representationxzk = EAUiS(_Zi)
i€
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A . A
where 1 is a set of p +1 or fewer integers from [0, k - 1], T, 20(i€T)
and EA o = 1. It follows that uk( -) can be constructed from u(t, -zi),

i€l
i €I. Since it may occur that p +1 <<k -1 where k denotes the iteration
on which the stopping criteria are satisfied, the use of Selection Rule D

simplifies the construction of U(+) =u (). For example, f(u, t) = B(t)u

k
+ b(t) and U convex imply G(t) = uk(t) = EAoriu(t, —zi). This same

i€l
simplification is achieved in IIP with Selection Rule C if on some itera-
tion prior to the final one, Phase C2 is entered. Furthermore, even
with II P (Selection Rules A or B) or BIP it may be possible to repre-

sent z, as 2 o.s(-z) where 1 is a proper subset of {O, L..., k- 1}
i€l
(note: I may contain more than p + 1 integers), o 20(i€l), and Z g, = 1.
i€l
This is the case if for some j <k Zj has a zero coefficient in the convex

combination expression for Zj+1 .

Now consider Problem 2. Let q(x), x € E, be the quadratic
form

q(x) =x-Gx +g-x, (5.3.1)

where G and g are as in (5.1.6). It is easy to show that q(x) can be
written as
2
a(x) = |Gx + g|” + qo. (5.3.2)
where G is an £ X m matrix, £ = rank G, G = g“g, g = —i(gg')_lgg (that

min

is, g=2G'g), andqp = -|g|” = ot A(X). Thus if K is defined by

K=1{z:2=Gx+g x€R(T}, (5.3.3)
it follows that K is compact, convex, and
min min

xeR(T) 9% = »K|z|* +qo. (5.3.4)

Consequently Problem 2 can be stated as a variant of BP: find an

x* € R(T) and an admissible control u*( *) such that
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x*e{x : Gx + g = z%, xER(T)}, lz*l2 = rélelfrélzlz, and x* = (T).

X

u):{

. n

Note that x* is not necessarily unique. A contact function s(y), y € E,
of K is

s(y) = g_sR(T, G'y) +g. (5.3.5)

This follows from

ax max
KV 2" xer(m)Y - (Cx +g) = sp(T.G'y) - Gly+y - g

=y-(gsR(T,C_1'y) +g) . (5.3.6)

Since for every x € R(T) there is a corresponding point Gx tg=z€K
BIP or I1P can be extended by simple substitution to Problem 2. For
BIP Gilbert [Gl] has written out the complete details. The procedures
yield a point ¥ € R(T) such that |X - x*| <e (arbitrary ¢ > 0), x* an

optimal state. An admissible control u(+) which generates X is deter-

mined in a way similar to that described in Problem 1.

5.4 The Sets K(w) = X(w) - Y(w)

Before applying GIP to Problems 1 through 6, some results on the
difference of two sets are stated. Let Q = [0, (Q)] o> 0, be a compact
interval in E' and consider sets X(w), Y(m)cEn which are compact, con-

vex, and continuous on 2. Define
Klw) = X(w) - Y(w)
={z: z=xX-y, X€X(w)), .YEY(w)}. (5.4.1)

It is easy to show that the sets K(w) are compact, convex, and continuous
on . Furthermore, the support function n(w, ) of K(w) can be written

in terms of the support functions nX(w, ') and n_(w, -) of X(w) and Y(w) as

Y
follows: (arbitrary y € En)
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max _ _ max (x-v) -7
z€K(w) 2" Y " x€X w; x-y) ¥
yEY (w

N(w, ¥)

max — max
x€X(w) Xyt YGY((.O) y- (-y)

nX(w,?) + nY(w, -y) . (5.4.2)

From (5.4.2) it follows that if sX(w, +) and sY(w, +) are contact functions

of X(w) and Y(w), then a contact function of K(w) is

s, 7) = sy, 5) - s lw -7, Fe E". (5. 4.3)

Clearly 0 d K(w) if and only if sets X(w) and Y(w) do not intersect.

5.5 Solution of Problems 1, 2, and 3 by GIP

Let X(w), w€ Q = [0, 8] be the fixed set R(T) in each of Problems
1, 2, and 3. A reasonable choice for & is X?&XT)g(x) where £(x) equals

|x|, x. Gx + g-x, h%(x) in Problems 1, 2, 3 respectively.

Define Y(w), w € 2, as follows:

Y(w) = {x € E™ . |x| < w} for Problem I, (5.5.1)
Y(w) ={x€Em : x-Gx+g-x5w} for Problem 2, (5.5.2)
Y(w) = {x € E™ : h%(x) S w} for Problem 3. (5.5.3)

Since [x|, x- Gx + g- x, and h%(x) are convex functions on E it follows
that these sets Y(w) are convex and continuous on 2. Clearly Y(w) in
(5.5.1) is compact, and if it is assumed that G is non-singular then Y(w)
in (5.5.2) is compact. The compactness of {x : h°(x) < constant} was
assumed in (5.1.7). (Methods exist for treating convex functions h°( -)
which do not satisfy this assumption.) Thus if K(w) = X(w) - Y(w), K(w)
is compact, convex, and continuous on 2 for Problems 1, 2, 3. Con-
sequently each of these problems can be stated as a variant of GP:

find w* € 2, a point x* € R(T), and an admissible control u*(-) such that
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0§ K(w), 0 =< w¥ 0€K(w¥), x*€Y(w*), and x* = x (T). The quantity

w* is the minimum cost in each problem.

To apply GIP it is necessary that a contact function s(w, y) of K(w)
be available. Since X(w) = R(T), sX(w, y) = sR( T, y) and thus (5. 4. 3)
yields s(w, y) if sY(w, y) can be determined. In Problem 1 sY(co, y)
= wlyl_ly for |y| > o; sylw, y) = arbitrary x € Y(w) for ly| = 0. Finding
SY((.O, y) in Problems 2 and 3 is more difficult. Consider Problem 2.
Since the gradient of x- Gx + g+ x is 2Gx + g, sY(w, y) must satisfy (for

ly| > 0):
ZGSY(w, y)tg=nuy, p>0 (5.5.4)

and

SY(w:y)‘GSY(w,Y) tg- s (wy) = w. (5.5.5)

Y
These are a set of m + 1 equations in m + 1 unknowns: sY(w, y) and p.
Any solution for sY(w, y) will suffice but it may not be easy to determine.
Similarly in Problem 3 if the gradiant of h?(x) exists, it follows that

sy(w, y) must satisfy (for ly| > 0):

grad h°(sY(w, ¥) =y, >0 (5.5.6)
and

ho(sY(w, 7)) = w. (5.5.7)

For convergence of GIP it is required that the support function

e . y) - Nwy > ¥)
N(w, y) of K(w) satisfy: P bounded from above for all
a b

W o W €, N ¢ W bounded by y € E™. Since X(w) does not vary with

w in Problems 1, 2, 3, (5.4.2) implies that this requirement is satis-

o 'ﬂY(wa, y) - nY(wb, y) '

fied if is bounded from above (v , w., y as before).
w, - wb a b

For Problem 1 nY(w, y) =y- sY(w, y) = wly], |y | > 0, so the desired con-

dition is true.
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Assuming that a contact function s(w, y) is available and that
n(w, y) satisifes the requirement of the preceding paragraph, GIP may
be used to generate & € [0, w*] and a point 2 € K(J) such that 7 = X - ¥,

~

X € X(®), € Y(®), where |z| < ¢ and X - y| <e (arbitrary

min '
VEY(w*)
¢ > 0). For Problems 1and 2 |X - x*| < ¢, where x* is an optimal
state (x* unique for Problem 1). An admissible control 1'?(') which will
generate X can be found by a method similar to that described in Section
5.3 since X can be written as a convex combination of an initial point

xo € R(T) and a certain number of contact points of R(T).

5. 6 Solution of Problems 4, 5, and 6 by GIP

Consider Problem 4 and choose & :(3?3?;(1‘:)1 x°, where R(t) is
defined by (5. 2.18). The function f°(' ,*) in (5. 1. 8) may be chosen so
that the lower boundary of the closed interval @ is 0. For w€ € =[0,3],
let X(w) = R(T) and Y(w) = {(w, w) : w€ W(T)}. Since W(T) is compact
and convex, Y(w) has these properties for eachw € 2. The fact that Y(w)
is continuous on Q is obvious. Hence K(w) = X(w) - Y(w) is compact,
convex, and continuous on 2 and Problem 4 is a variant of GP: find
w* € Q, a point x* € R(T), and admissible control u*(-) such that
04 Klw), 0% ¢ <w¥ 0€Kw*), x* € Y(w), and x* = §u*( T). The mini-

mum cost (fuel) is w*.

R(T, y) given by (5.2.20).

Suppose a contact function SW(y), y € Em, of W(’]_T) is known. Write

+
A contact function sX(w, y)s Y€ E]m l, is s

y = (y° y) where y° € E!, ye€ E™. Then a contact function SY(w, y) of

Y(w) is (w, sy(y) for ly| > 0; s_(w, y) = arbitrary x € Y(w) for |y| =0.

Y

If W(T) is a single point w(T), then s_(w,y) = (w, w(T)) for all y. A con-

Y
tact function of K(w) is s(w,y) = SX(w, y) - sY(w, - y). Since nX(w, y) does
not vary with w and nY(w, y) =y sY(my y), it is clear that the condition

on the difference quotient of n(w, y) in Theorem 4.3.1 is satisfied.
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For Problem 5 define sets

Ux={u: lu'| =\, i=12 ...,1} (5.6.1)
and
T
{ §§ u(c) do : u(-) measurable with range in UX}
0
(5.6.2)
sup i
A control u(*) on [0, T] is said to have effort \ if ostsTlu (V] =\. Sup-
1=isr

pose Q—l (T) w(T) - x(0) € CX(T)‘ Then thereTexists a measurable u(-)

with range in U, such that w(T) = &(T) x(0) + [#(T)a "' (¢) B(c) u(s) do,
0

which implies that u(‘) transfers x from x(0) to w( T) in time T. Observe
C,(T) =ACy(T) ={T: T =hc, c€ C(T}. It follows that if \* is the
smallest N such that Q-I(T)W( T) - x(0) € CX(T) and w* is the largest w
such that w[8 " (T) w(T) - x(0)] € C;(T), then A% = (%) "

max
ceC, (

©€Q = [0,8] let X(w) = C,(T) and let Y(w) be the point @[é T)w(T) - x(0)].

One choice for & is |§_1(T) w(T) - x(O)]_]l |c| For
Since C;(T) is compact and convex (Section 5., 2), K(w) = X(w) - Y(w) has
these properties. Clearly K(w) is continuous on  and has a contact
function s(w, y) = C (T,y) - w[® (T ) w(T) - x(0)], where sCI(T, y) is
given by (5.2.15) and (5.2.13) with U = U, and f(u, t) = B(t)u. Thus
Problem 5 is a variant of GP: find¢* €, w* > 0, and a measurable
control w¥(+) with range in U, such that 0 ¢ K(w), 0 = < ¥, 0 € K(wk),
and X(w*)-lu*( T)_l= w(T). The function (w*)—lu*( ) is a minimum effort
control and (w*) = is the minimum effort. Note that the support func-
tion n(w,y) =y - SCI(T’ y) -wy - [@—I(T) w(T) - x(0)] has a difference

quotient which satisfies the requirement in Theorem 4.3.1.

Now consider Problem 6. Letw =t, Q@ =0, X(w) = R(t), and
Y(e) = W(t). Then K(w) = X(w) - Y(w) is compact, convex, and continuous
on €. A contact function of K(w) is s(w, y) = sR(wg y) - sw(u,, y), y € Em,

where sR(°, ') is given by (5.2.8) and s__(w, *) is a contact function of W{c).

W
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The optimization objective in Problem 6 is: find w* € 2, a point
x* € R(w*), and an admissible control u*(-) such that 0 § K(w),

0 =w<w* 0€Kwk), x*€ Ww*), and x* = xu*(w*). The minimum time

is w*,
The support function of K(w) is n(w, y) = nR(w, y) + nw(w, -y).
Assume that is bounded from above for all w ,
w - Q)b a

w, €Q, @, # w, , bounded y € E™. This is certainly true if the target

b b’
set W(w) is a single point w(w) which satisfies a Lipschitz condition on

Q. From (5.2.6)

w
ma \
ngley) =y 80 x(0) + | Uy [We,y) - fvoe)]de . (5.6.3)
5 -
Thus 8
My (w,y)
R max
BRA Aw) 3(w) x(0) + ey [We, y) - (v, w)]. (5.6.4)
anR(w, y)
Since A(-), ¥(*), (-, y), and f(v, ) are continuous on Q, —é_w_ exists
ngle . ¥) - nglep: y)
and is bounded for all bounded y. It follows that P :
n(wa, y) - n(wb, y) a b
and are bounded from above for all « , «, €S,
Wy " Wy m a b
w, # (,ub, bounded y € E .

Consequently for Problems 4, 5, and 6 GIP can be applied and
convergence is guaranteed. An arbitrary admissible control is chosen
to initiate the procedure. Then GIP is continued until a point Z € K(&),
©EQ, satisfying specified terminal criteria is found. Finally an ad-
missible control U(-) which generates an approximate optimal state is

determined in a manner similar to that described in Section 5.3,
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5.7 Numerical Results for GIP Applied to a Minimum-Fuel Example

Barr and Gilbert [B3] presented an iterative technique for solving
minimum-fuel terminal control problems. The technique is a special
case of GIP and uses BIP for the minimization problems which occur in
Step 1 of each iteration. Numerical results for a minimum-fuel example
using this technique were obtained by Hutcheson [H5]. Computations
have been carried out for this same example using I1P (with Selection
Rule A and p = n) in Step 1 of each iteration. Results from these com-
putations are presented in this section and are compared with Hutche-

son's data.

0 1
The example treated is a particular case of Problem 4: A :[:0 (i)],

f {ﬂu, U={u:ful =1}, a=0, £ = |u|, T =4, W(T) =0. Because
of the simplicity of this example, analytical results can be obtained

[e. g., F5]. In particular, the set of all initial states x(0) which can be
transferred to the origin in time T with admissible controls can be
drawn in the 2-dimensional state space. This set is shown in Figure
5.7.1, which also indicates some isofuel contours and the initial states
used for the numerical computations. Clearly the minimum fuel

w* € [0, 4] and if x(0) # 0, w* > 0. For an initial state x(0) lying in the
shaded region there is no unique optimal control. Since the isofuel con-
tours contain straight-line segments, it follows that the reachable set
R(T) ¢ E’ is not strictly convex. Thus the gradient-type convexity

methods are not applicable to the example.

A detailed description of the iterative procedure for the case
when BIP is used in Step 1 of GIP is presented in [B3]. The procedure
is much the same when IIP is used. For this simple example it is not
necessary to actually solve (5.2.17), (5.2.19), and (5.2.21) on the com-
puter. As described by Hutcheson, a contact function sR( T, y) can be

evaluated in terms of certain switching times which are related alge-

braically to the vector y.
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Fuel = 4
Fuel = 2

Fuel =1

(7’ _3)
(7.5,-3) ¥ x!

Figure £.7.1 Initial conditions and iscfuel ccntours for
the minimum-fuel example.
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Let e be the unit vector (1,0, 0). Then according to Section 5.6
K(w), w € Q = [0, 4], is equal to R(T) - we. For x € R(T) define the

scalar functions

p(x) = |x - (x- e)e], (5.7.1)

o(x) =x-e. (5.7.2)

If X = (X°, x), B()i) is the Euclidean distance of the state x from the
origin and ¢(x) = x° is the fuel associated with the state x. Suppose an
w € [0, w*] and a z € K(w) are generated by GIP. Since z + we € R(T) and
Mz +we) - wk< Pz +we) -w, it follows that &z + we) - w is an upper
bound on the difference between the fuel corresponding to z = (x°, X) -we
and the minimum fuel w*; furthermore, p(z + we) measures the error
in satisfying the terminal constraint x = 0. Hence a reasonable com-
putational objective is to find z € K(w) such that ¢§(z + we) - w <¢; and

plz + we) = €, (e, ¢, specified arbitrary positive constants).

Consider GIP. Let £(i) denote the number of points generated by
BIP or IIP (including the initial point) which occur on iteration i of GIP.
The kth point generated by BIP or IIP on iteration i of GIP will be de-

noted z(j) where

i=1
j=k+2,2(q, i#0, k=0,1,...,0(i) -1 (5. 7. 3)
q=o
= k, i=0, k=0,1,...,2(0) - 1.

This notation avoids the use of a double index. In the notation of

i
Chapter 4 then, 2, = z(qE_ol(q) -1). Note that j +1 represents the number

of points generated up to and including z(j). Also j is the number of

times the contact function has been evaluated. Define

Fj = plz() +w.e), (5. 7. 4)

¢j = ¥ z(}) +wie), (5.7.5)
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and
: = ¢(z(J) +wie) —(,oi. (5.7.6)

The sequences {Bj}, {$j}, and {gj} are used to display the numerical

results.

A fixed ei = 6 was used for each computation and various initial
states x(0) (shown in Figure 5.7.1) were investigated. For iteration 0
of GIP a point z(0) in K(0) = E( T) with which to initiate BIP or I1 P was
found by solving (5. 2.17) analytically using the admissible control
u(t) =z, t€ [0,4]. For iteration i> 0 of GIP the point 7, (o -w, e
was used to initiate BIP or IIP (see Figure 5.7.2).

In Table 5.7.1 the first j for which Ej < ¢ and Ej < ¢ is shown for
the case x(0) = (2, -1) and a variety of © values. The same quantities
are shown in Tables 5.7.2, 5.7.3, and 5.7. 4 for the cases x(0) = (2, 0),
x(0) = (7, -3), and x(0) = (7.5, -3). A comparison of the data in A and B
of Tables 5.7.1 and 5. 7. 2 makes clear the significant improvement
achieved when IIP is used rather than BIP. Observe that there is little
dependence on 6; however, an intermediate value, say 6 = .4, seems

to be most desirable.

Figures 5. 7.3 through 5. 7. 6 show the details of the sequences{ﬁ N
and {p} for 6 = .4, BIP and II1P, and initial states (2, 0) and (2, -1).

Slmﬂar behavior was observed for other © values.

Note the especially significant improvement which was achieved
for the initial state (2, -1), which lies in the shaded region of Figure
5.7.1. That convergence is indeed rapid for initial states in this re-
gion is verified by the data for x(0) = (7, -3) and x(0) = (7. 5, -3) in
Tables 5.7.3 and 5. 7. 4.

Tables 5.7. 5 through 5.7.10 show the functions @, and £(i) for the
various @, initial states, and BIP and I1P. Furthermore, the sequence

{53} is illustrated in Figures 5. 7.7 and 5.7.8. This again shows the
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Starting point for I1P or BIP (iteration i - 1):
i-2

z, (o, e Je= z(q);o (q))

- D

Terminal point for IIP or
BIP (iteration i - 1):
i-1
z, =z(% Lq) -1
- q=o

Starting point for 11 P
or BIP (iteration i):

Figure 5.7.2 Geometry for minimum-fuel example.
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improvement possible when I1P is used rather than BIP on each itera-

tion of GIP.

It can be seen that a sizeable decrease in 6j occurs on transitions
where i is increased by one (i. e., transitions from k # 0 to k = 0). On

these transitions both Ej and $j are constant.
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Table 5.7.1 The first j for which Ej < e and Ejfe; x(0) = (2, -1).
A B
\ 1 .5 .1 }oslor|io| 1 {.5{.1].05 [.01 [107®
1 3 a4 [ fafl el 8| 199 >499
.3 3 4 |11l a| 8l 153 >499
.4 3 04 |||l a| 8| s5f>1499
.5 3 |4 [l fr|a]fe | sl s1]>499
.7 315 1 9] 9l 9f 9ff4 | 8|>199
.9 3 le | 711 f11ila |28]>199

A: IIP Selection Rule A with p = 3 used on each iteration of GIP.

B: BIP used on each iteration of GIP.

Table 5.7.2 The first j for which 'a'j

<

-

¢ and p. < ¢; x(0) =(2,0).

J

A B

0 : 1 |.5].1|os).opoY 1 |.5].1].05).01 [10°
1 4 5116 |19 |29 |39 || 4 7194 96 |379 [>499
.3 2 5 {12 |15 |21 |27 || 4 976 | 91 |244 [>499
.4 2 5 {14 [14 |14 |24 |3 | 13|25 40 | 129 | 436
.5 2 5 |14 [14 |14 (24 || 3 | 13|25 | 40 [349 [>499
7 2 5 (13 |21 (31 [45|[3 | 12|70 |139 |295 |>499
.9 2 7 |18 |24 |34 |41 ||3 | 17|85 ] 99 [>99

A: 1IP Selection Rule A with p = 3 used on each iteration of GIP.

B: BIP used on each iteration of GIP.




Tabie 5.7.3 The first j for which Ej <¢ and @j <
x(0) = (7, -3); IIP Seleciion Rule A

with p = 3 used on each iteration of GIP.
€ -3
0 1 5 1 05 01 }10

1 2 4 11 i1 11 i1
3 2 4 11 11 11 11
.4 2 4 11 il 11 11
5 2 4 i1 11 11 11
7 2 5 7 7 27 27
9 4 6 14 15 15 15

Table 5.7.4 The first j for which 8}, < ¢ and ;:'j <€

x(0) = (7.5, -3); IIP Selection Ruie A
with p = 3 vsed on ea:k iteration of GIP.

i 2 5 9 9 11 16
3 2 3 8 8 8 8
4 2 3 8 8 8 8
5 2 3 8 8 8 8
7 2 3 8 8 8 8
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Table 5. 7.5 The functions ©, and £(i) for x(0) = (2, -1);

IIP Selection Rule A with p = 3 used on
each iteration of GIP.

i
e 0 1 2
.1 0 . 527 1. 000
.3 0 . 527 1. 000
.4 0 . 527 1. 000
@4
.5 0 . 527 1. 000
7 0 . 659 1. 000
.9 0 . 852 1. 000
1 4 2 5
3 4 2 5
4 4 2 5
2{1)
5 4 2 5
7 5 2 2
9 6 3 2




BIP used on each iteration of GIP.

Table 5.7. 6 The functions w; and £(i) for x(0) = (2, -1);

0 1 2 3 4 5 6 7 8
0 . 599 [.725 {.793 [. 857 |.908 |.935].954|.968
0 . 599 |. 806 |. 928
0 . 599 |. 823 |. 945

w. y

i

0 776 . 946
0 .776
0 . 845
3 9 4 4] 2 48 129 260 | >40
3 14 2 | >480
4 16 62 |>1417

£(1)
7 68 [>424
7 >193
27 >172
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Table 5.7.7 The functions ®, and £(i) for x(0) = (2, 0);

ITP Selection Rule A with p = 3 used on

each iteration of GIP.

i
1 3 4 5
\ 2
1 . 545 032 1.13711.161 |1.171
. 3 1.000 101 1.1681 1,171
ﬁi
.4 1. 000 L1691 1.171
o, 1
. 5 1. 000 L1691 1.171
it
.7 1. 000 .15211.171
.9 1.071 .16911.171
.1 5 5 10 4 13
. 3 7 2 13 1
. 4 9 10 1
£(1)
. 5 9 10 1
7 10 18 13
.9 21 14 1
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Table 5. 7.8 The functions W, and ¢(i) for x(0) = (2, 0);

BIP used on each iteration of GIP.

i
5 0 1 2 3 4 5
.1 0 | .545(1.113 |1.150 | i.166]1.171
.3 0 | .560 [1.138 [1.171
.4 0 | .897 |1.126 [1.167 | 1.171
W,
1
.5 0 | .897 |1.126 |1.171
.7 0 | .907 |1.117 |i. 167
.9 0 | .961 [1.166
1 1 4 74 26 | 45 [>349
3 3 2 96 | >398
4 7 15 22 | 127 | 265
£(i)
5 7 15 80 | >397
7 9 57 99 | >334
9 15 67 | >17
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Table 5.7.9 The functions wi and £(i) for x(0) = (7, -3);

II P Selection Rule A with p = 3 used on
each iteration of GIP.

i
0 1 2 3
.1 . 750 2. 647 3.000
.3 . 750 2. 647 3.000
. 4 . 750 2. 647 3.000
w,
1
.5 . 750 2. 647 3.000
T .002 3.000
.9 . 543 3.000
.1 2 7 1
.3 2 7 1
.4 2 7 1
2(1)
. 5 2 7 1
T 4 21
.9 7 5
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Table 5.7. 10 The functions W, and £(i) for x(0) = (7. 5,

IIP Selection Rule A with p = 3 used on
each iteration of GIP.

-3);

1 2 3
. 125 . 545 3.000
. 125 . 000
0 . 125 . 000
w,
i
0 . 125 .000
0 . 125 . 000
0 . 000
2 3 10
3 4
3 4
£(1)
3 4
3 4
3 23
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(V0 VAV Sy

Note: k =0 for j =0, 4, 20, 82; the arrows

01 denote transitions from k#0 to k=0.
10_3 | | | 1)2 | | | |
0 10 20 30 50 150 250 350 ]

,-1), 8 =.4; BIP used on
each iteration of GIP.

Figure 5.7.3 gj and EJ. for x(0) = (2
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——a
—

L
o

(gj negative for

Il j=67)

0] Note: k =0 for j =0, 4, 6; the arrows
denote transitions from k #0
tok =0,

lo-? IR N N (N MR NN S N

0 20 30 40 50 60 70 80 90 100

Figure 5.7.4 gj and ﬁj for x(0) =(2,-1), 6 = .4; IIP Selection
Rule A with p = 3 used on each iteration of GIP.
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§. (5, negative for
J

j = 22,23, 24, 44)

Note: k =0 for j =0,7, 22, 44, 171;
the arrows denote transitions
fromk # 0tok = 0.

01—
-01—
.-3 \ '
10 | | |%} | | 1 |
0 10 20 30 50 150 250 350 j

Figure 5.7.5 Ej and Bj for x(0) =(2,0), ® = .4; BIP used on each
iteration of GIP.
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1— lv

<
|
—d

(5j negative for

j=4,13)

— =7

Note: k =0 for j = 0,4, 13, 23; the arrows
denote transitions from k # 0 tok = 0.

.01

S —— S

10

I I I I I I I ]

30 40 50 60 70 80 90 100

0 10

Figure 5.7.6 Ej and aj for x(0) =(2,0), 6 = .4; IIP Selection

Rule A with p = 3 used on each iteration of GIP.
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o4 mmm——— A (A =B forj=2)
B

. 8—

-6 — Note: With A, k = 0 for j = 0, 4, 6; upward

arrows denote transitions from k # 0

tok =0, With B, k =0 for j = 0, 4, 20, 82;
downward arrows denote transitions from
k#0tok =0,

.2 —
| |
| .
L1t ’/Vv\-\ =
. \/\/!/ N w* = 1,000
L
[
by
L
N
.8 H’
L~
L I A P | I |
0 10 20 30 °° 50 150 250 350 j

Figure 5.7.7 $j for x(0) =(2,-1), 6 = .4: A) IIP Selection Rule

A with p = 3 used on each iteration of GIP; B) BIP
used on each iteration of GIP.
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. 0— ——— = ~"" A(A =Bforj<2)
B
. 8 —
Note: With A, k =0 for j =0, 4, 13, 23; upward arrows
6 — denote transitions fromk # 0 tok = 0.
' With B, k = 0 for j = 0,7, 22, 44, 171; downward
arrows denote transitions from k # 0 to k = 0.
4=
I,-I l l
|
r— A
l l -~ N —
| L4 L/ N . _
] f wk = 1,171
|
AN
oAt
I
fh
|
|
|
8= h
|
bl 1, | 1
0 10 20 30 50 150 250 350

Figure 5.7.8 $j for x(0) =(2,0), 6 =.4: A) IIP Selection Rule

A with p = 3 used on each iteration of GIP; B) BIP
used on each iteration of GIP.



List of Symbols

A(t) continuous m X m matrix function.

B(t) continuous m X r matrix function.

C(t) {oft@"(a) f(u(c), o) do : u(-) admissible}.

D m X m symmetric non-negative definite matrix.
D (m+1) X (2m +2) matrix defined by (3.8.1).

E" n-dimensional Euclidean space.

G m X m symmetric non-negative definite matrix.
H convex hull of m points; convex polyhedron.

Hk convex hull of y,(k), ..., yp(k), s(-zk), Zk'

I identity matrix.

Ik the setof i, 1 =i=sp + 2, forwhichxi=0.

I(z) [min{6p(z), 1}, min{(2 - 8)p(z), 1}].

T (w oft [alo) * x (0) +£°(u(o), o) ]do + h(x (1)),

K compact, convex set in En

K(w) compact, convex sets in E continuous on .
L(x;y) {z: z =X +wly-x), —oo<w<oo}, X # y; line.
Mi closed intervals in E!.

N(x;w) {z : lz—xl < w}, w > 0; open sphere.

N(x;w) {z : |z-x]| < w}; closed sphere.
O origin.
P(y) the support hyperplane {x P Xy = n(y)}, y # 0, of K with

outward normal y.
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W(t)
X(w)

Y(w)

a(t)
b(t)

cu( t)

f(u, t)

fo(u, t)

129
the support hyperplane {x Xy = Mo, y)}, y # 0, of K(w)
with outward normal y.
the support hyperplane of H with outward normal y # 0.

{z:2z-y=x-y} y#0; the hyperplane through x with
normal y.

{z 1z2ry< x> y}, y # 0; the open half-space bounded by
Q(x;y) with outward normal y.

{z:2z-y2x-y}, y#0; the closed half-space bounded by
Q(x;y) with inward normal y.

{x i X = xu(t), u(+) admissible}; reachable set.
s ey k), - .

RACHRACREEER)
P(y)nK; the contact set of K for outward normal y.
P(w, y)NK; the contact set of K(w) for outward normal y.
fixed terminal time.

. r
compact set in E™ .,
compact, convex, and continuous sets in E™.
compact, convex, and continuous sets in En.
compact, convex, and continuous sets in En.
{y:1(%, .. Sy}
continuous function from [0, T] to E™.

. . m
continuous function from © to E .
-1
= - x(0).

cu(t) 3 (1) xu(t) x(0)
the 3-vector (1, 0, 0).
m

continuous function from U X ©to E

continuous function from U X ©to E!.
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m-vector in the range of G.
. m 1
convex function from E = to E°.

iteration number for GIP.
i-1
k+ X 4(q), i#0;k 1i=0,
q=o
iteration number for BIP or II1P.

number of points generated by BIP or IIP (including the
initial point) which occur on iteration i of GIP.

number of points in Y, ; parameter of ITP.

k

function from En to K such that y - s(y) = rrzleeg( y-z, yt0;
contact function of K.

function from En to K(w) such that y - s(w, y) = ngl}?(};) vy oz

y # 0; contact function of K(w).

contact function of X(w).

time.

r-dimensional control vector function defined on ©.
target set consisting of a single point.
m-dimensional state vector.

solution of Subproblem 2.

an absolutely continuous solution of (5.1.1) for the admissible

control u(-).

solution of Subproblem 1.

point in K(w) satisfying IZ(w)I = Zg;{l(ﬁ)) IZI

terminal point generated by BIP or II P on iteration i of GIP.

the kth point generated by BIP or 11 P on iteration i of GIP.

solution of BP.
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oy an element of I( zk).
-2
B(z) fz—s(—z)' z-(z-s(-2)), z-s(-2z) #0; 0, z-s(-2) = 0.
-2
v(z) |z| z-s(-2z), |z| >0andz: s(-z) >0;0, z=0 or lz| > 0,

z-s(-z) =0,

-2
v(w, z) |z| z-s(w -2), |z| >0andz- s(w, -2z) >0;0,z=00r |z|>0,
z - s(w, -z) £ 0,

) fixed number in (0, 1] used for I(z); parameter for BIP.
_ = )

6j d(z(j) wie) W,

n(y) r;:g z - y; support function of K.

Nw, y) Zé%?zi) z - y; support function of K(w).

G parameter for GIP.

)\i principal radii of curvature at z* for Example 3 of Section 2.5.
w{ z) Izl_lz-s(-z), z#0:0, z=0.

p(2) |Z(w)].

p(x) |x - (x- e)e].

Bj p(2(j) +w,e).

®(x) X" e.

Zﬁj o(z(j) + wie).

cpi(u, t) continuous functions from U X © to E!

P(t) m-dimensional adjoint vector.

P(t, y) solution of (5. 2.5) with boundary condition () =y.
w scalar € Q.

W solution of GP.
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[2 - 'z*]z, z € K.

|z
denotes '"'the boundary of"
denotes ''the convex hull of"
I'(z) -T(z + a(s(-2z) - 2)).
compact interval in E!,

solution of & = A(t)®, &(0) =

compact interval in E!.

I.
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