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'SUPERSONIC FLOW PAST A DELTA WING
AT ANGLES OF ATTACK AND YAW

1. Introduction

. A general method for treating the linearized equations for the
flow past a conical body placed in a uniform stream with supersonic speed
is formulated in a previous report]J. It is shown there that a conical
flow past the body can be completely described in terms of an analytic
function of a single complex variable and that this function is determined
by boundary conditions correapohding to those to which the flow must con-
form at points on the surface of the body and at points on the Mach cone
enveloping the body. This method is employed in the present report to
determine the flow past a delta wing at angles of attack and yaw. The
wing is restricted to lie entirely within its Mach cone. Also, as has
been implied in the general theory of the previous report, it is supposed
that the velocity of the flow is continuous at all points of space exterior

to the wing surface. Therefore no provision is made in this report for the

1) 0. Laporte and R. C. F. Bartels, An investigation of the exact solutions
of the linearized equations for the flow past conical bodies. Bumble
Bee Report No. T5, 1948. This report will be referred to simply as

BB. Report No. 75.
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presence of a vortex sheet behind the wing in the case when one of its

edges becomes a trailing edge

in the'previous report, it is shown here that also in the.gase of the wing
at arbitrary angles of attack and yaw fhe boundary conditions determined by
" the body surface and the Mach cone are notlaufficient to determine uniquely
the conical flow paéf the wing. However, it is shown that when these con-
ditions are supplemented by the additional condition requiring the normal
force coefficient of the wing to be finite, the flow.ie then completely
ldetermined for all angles of attack and yaw. The corresponding flow is
such that the velocity along either edge is always infinite, except vhen‘

the angle of yaw is equal td half the flare angle of the wing.

2.

an angle @ with respect to thé uniform flow. The angle of flare of the
wing; i.e., the angle of the sector, will be taken as 2y and the angle of
yav as ¢ (see Figure 1). If the origin of the X, Y, and Z coordinate

- system is placed at the vertex of the wing with the Z-axis in thg direction
of the uniform flow, the equation of the plane containing the wing sector

may be taken as3)

2)

3)

2)

As in the case of the delta wing at zero angles of yaw treated

Formulation of the Problem for the Delta Wing
with Angle of Attack and Yaw

Let the delta wing be formed by a sector of a plane inclined at

The case of flows with surfaces along which the velocity is discontinuous
will be treated further in a subsequent report. Such a surface of dis-
continuity is admitted by Busemann in the treatment of the triangular wing
with trailing edge; see A. Busemann, Infinitesimale kegelige Uberschall-
stromung, Deutschen Akademie fur Luftfahrtforschung, Vol. 7B (1943), pp.
105-122, A vortex sheet is also admitted by Hayes in his treatment of the
same problem. In this work the flow is determined by assuming a condition
at the trailing edge of the wing analogous to the condition of Kutta. See
W.hD. Hayes, Linearized Supersonic Flow, Thesis, Cal. Inst. Tech., June,
1947

It ehould be noted that the orientation of the axes are such that a posi-
tive angle of a will produce a force of lift in the direction of the
negative Y-axis.
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Y= Z tamo, (1)

It will be assumed throughout that the angles @, 2j, and y of attack,' flare,
and yaw, respectively, are so restricted that the wing is always contained
within the Mach cone whose vertex is at the vertex of the wing sector; i.e.,

the cone whose equation is
zz_(a‘(xlf)"')=0, (2)
where
p= cot p (3)

with p equal to the Mach angle of the uniform flow.

The problem is to determine the conical flow field representing
& solution of the linearized equations for a supersonic, irrotational flow
~ for whiéh. (a) the delta wing forms a stream surface, and (b) the transition
from the consta.ﬁt state of the uniform flow ahead of the wing to the dis-
turbed start of the flow that envelops the wing takes place across the Mach
‘cone of equ;tion (2). Let wyyrepresent the véldcity 61’ the uniform flow,
and let u, v, and w repréeent the components of the additional velocity
parallel to the X, Y, and Z axes, respectively, so that the components of
the total velocity at any point are, respectively, u, v, and w + w,. Then

by virtue of equation (1) the condition (a) implies that

e (wrwye) tan & ()

at pointson the wing surface, and the condition ('b) implies that

Uw VU= w =0 (5)

on the Mach cone.
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It is shown in the preﬂ.ous reportl‘) that when the equations of

flow are transformed by making the substitutions

| . -3
x=w§i , Y-R-’la » Z= RS2, (6)
where
2. %(’_gg_vz) . R y[Z"'-ﬁz(Xz-O- Y*) . (6a)

then the real parts of the following three analytic functions of the complex

variable ¢ = f+ivl 2

V(%) = J;:. j(u-;z) F(x) dz,
v) = if [ (1-52) Fee) dt, (7)

W(z) = -/:Fm dr ,

define, respectively, the additional velocity components u, v, and w of an
irrotational, conical flow field past a conicalebstacle s Provided that
F(%) is analytic in the appropriate region of the{ -plane, and that condi-
tions of the type (a) and (b) of the last paragraph are satisfied on the
surfa.cebof the obstacle and the Mach cone. By means of equations .(6) » the
points of the Mach cone (2) correspond to the unit circle |¥| = 1 in the
¥ -plane, and the points of the plane (1) containing the wing sector correspond|

to the circle (see Figure 2b) with the equation

2 col o

g"-o-rl -z—/—s—q +/=a; (8)

4) cf. BB. Report No. 75, Section 1.2.
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Consequently, the region of disturbed flow within the Mach cone and surround-
ing the delta-ving -corres;;onds to the double-connected region of the £ -plane
between the unit circle and an arc of the circle (8). The wing edges
correspond to the end points (‘§: s 7:) and (i;, 'z;) of this arc. Therefore,
the function F(3) which defines the appropriate conical flow past the delta
wing is analytic in the double-connected region of the € -plane and such that
the real parts u, v, and w of the thrqe functions in equations (7) are
single-valued in this region and, in accordance with equﬁ.tione (4) and (5),
satisfy the following boundary conditions:

(a') On the circular are: v-wtana =v,tana .

(b*) On the unit cﬁcle I)=1: u=v=w=o0. ®)
As a consequence of the second of the boundary conditions (9) and the last
of equations (7) it can be shown?) that the function F(%) is necessarily
continuous on the unit circle |§|= 1.

Let the problem formulated above in terms of the function F(X) be
modified by the introduction of the function

H(%) = V(£) — W(F) tanw, (10)

80 that

H(Z) = /1. (x) Fcx) dt, (11)

where

Le) = - {pls%i) s2igtanaf - (12)

5) From general theorems on the theory of functions it follows that: 1if
the real part of a function of a complex variable is constant along an
analytic arc of the boundary of a region in which it is analytic, the
function is itself analytic on this arc. Thus the continuity of F(x)
follows from the analyticity of W(¥) on the circle %= 1.
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Then, for the appropriate function F(¢), H(X) is analytic in the double-
connected region of the ¥-plane, its real part is single-valued within
this region and, by (9), constant on the interior and exterior boundaries of
the region.

Let the problem be further modified by mapping the doubly-connected
- region of the { -plane conformally onto the annular region r, H |2) F1 in
the plane of the complex variable z = x + iy (see Figure 2d) by means of
the relation

$ = w(x) (13)

in such a manner that the points of the unit circle |%]= 1 correspond to
the points of the circle | z| = 1 forming the interior boundary of the
‘annulus, and the points of the (two-sided) circular arc with end points
(g:,-vl:) and (g;’. 1'-‘) correspond to the circle |z| = r, forming the in-
terior boundary. Then the functions U(z), V(z), W(z), and h(z) obtained
from U(¢), V(¥), W(5), and H(Z), respectively, by performing the change of

variable in (13) are analytic within the annulus. In particular,
v = £ [[1+0%u0)] Fea)dz,

MO f[ 1-w'eay] fez dr . | (1)

W) = - /w(r)fm dz,

and, if £(z) represents the function obtained from L(£) in (12) by making

the substitution (13),

Ah(z) = jl(u/a; dr , (15)
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where in these expressions f(z) is an analytic function of z in the annulus

and is related to the function F(%) of equations (7) by the equation

F(x)
w(e)

F(f) =

g | (16)

Moreover, the real part of the function h(z) is single-valued in the annulus
- and on its boundaries satisfies the conditions corresponding to (9), na.melys)
(a") On the circle |z| = r, :ﬁ,{h(z)} = Wy, tana .
(bn‘) On the circle jz| =1 :ﬁ,{h(z)} = 0. ke
The result of the foregoing modifications of the problem of the

flow past the delta wing as originally formulated may be summarized as

follows: The problem of the conical flow past the delta wing consists of

determining the function f£(z) which is analytic in the annular region

ro< | z| < 1 and such that the real part of the function h(z) defined by

equation (15) is single-valued in this region and satisfies the conditions

(17) on its boundaries. The functions U(z), V(z), and W(z) representing

the components of the "complex velocity" of the flow are obtained from the
solution of this problem by means of equations (14). It is necessary, of
k:ourse, to select the appropriate constants of integration in the integral
formulae of equations (11}) and (15) in order that the components u, v, and
w of the real velocity vanish on the circle |z| = 1. |
It is important to observe that the function f(z) is necessarily
continuous at points of the circlg 1z] = 1. In view of equation (16), this

property follows from the fact that F(¥) is continuous on the corresponding

6) The symbol Ri} denotes the real part of the complex quantity within the
brace. ,
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circle 1T} =1 in theZ -plane, and the fact that the mapping functionw(z) ‘
and its derivative w'(z) are continuous everywhere on the boundaries of the
annulus, except at the ﬁomts of the interior boundary |z| = r, which corres-
pond to the wing edges. It also is imﬁortant to observe that the boundary
conditions on the function H(;‘) are such as to insure the continuity vof the
function £(z) at all points on the circle |z| = r,, except possibly at the

. points corresponding to the wing edges. Since the real part of H(g) is
constant at points of the circular arc in the t-pla.he which corresponds to
the wing sector, it followa7) that H(§) and its derivatives are continuous
‘at all points of thé arc, with the possible exception of the end points

(E:' , 'li) corresponding to the wing edges. Since the zeros of the quadratic
function L(§) are shown later to be on the circle |5] = 1, the continuity
of the function F(5) at points of the arc follows from the continuity of

the derivative H'(Y) by virtue of the relation (11). Therefore, by (16),
the function f(z) is continuoug on |z| = ro, save possibly at the poiunts

corresponding to the wing edges.

3. Mapping of the Doubly-Connected Region onto the Annulus
It is convenient to regard the conformal mapping of the doubly-
connected region of the §-plane onto the annulus in the z-plane as effected

in a series of three steps (see Figures 2b, 2¢c, 2d). First, let

LR XX
1-¢%g, * (18)

where b is the iptercept of the circular arc in the £-plane with the 't-a.xis

T7) See the general theorem of function theory referred to in footnote }(5 N
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v(aee Figure 2b). This relation maps the region of the £ -plane bounded by
the unit circle |§)= 1 and containing the circular arc corresponding to
the wing sector onto the region bounded by the unit circlé I1T,1= 1 in the
plane of the complex variable ¢=7% + ivl, in euchva manner that the points of
the circular arc are mapped onto a segment of the real axis in the £, -plane.
The end points (;;', 7; ) and (5“ , r&) of the circular arc are thereby
mapped onto the end points ( ;.:,o) and (g;,o) , respectively, of the segment
of the 'E‘4-a.xia.

Next, let

L, +a

' = —0 19)
/f‘atz (

where a is a real constant that will be specified later. This relation
maps the region of the ;:' -plane bounded by the unit circle |£]= 1 onto
the region bounded by the unit circle |{z\= 1 in the plane of the complek
variable ;;-.- rg"""ll in such a'mapner that the real axis in the ¢ -plane cor-
responds to the real axis in the ;;-plane. With an appropriate choice of
the real constant a, the segment of the real axis in the £, -plane between
the points ( ft ,o) ie mapped onto a segment with the symmetrically located
end pointe (-0-; o) (see Figure 24). |

It ha.s been indicated in the previous reports) that when the

constants b and a of equations (18) and (19) are defined as follows:

and
a= tfavh .SZ (21)
z /

8) cf. BB. Report No. 75, Section 1.3.
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the transformations (18) and (19) are equivalent to non-Euclidean rotations
about the X-axis and Y-axis, respectively, in pitch and yaw of magnitudes
specified&%he quantities @ and & that correspond to the Euclidean angles
of attack & and yaw y , respectively. Since b is the intercept of the
circle of equa'tion. (8) with the n-axis, it is evident that a and G are
related as follows:

fonh & = S tam « . (22)

In order to derive an expression for ¢ in terms of the Euclidean angles
describing the shape and position of the delta wing, let it be observed

that under the transformation (6) the jola.r angle ¢ of a point (X,Y) in

the plane Z = constant of the (X,Y,g.)-space is equal to the polar angle <

of the corresponding point (€5 ) in the {-plane. Taking (x:,‘/l) and (X; ,Ye )
as the coordinates of the points on the wing edges in the bplane Z = constant

(see Figure 2a), then

:

Xe 1Y = f}: "li : (23)

But (see Figure 1)

b3
_:_E = /'an(wta) cac X . (211-)
€
Also by equation (18)
: 2
Frig= (-84 50 __ |, ;g 1+ &
‘ 4 /+C2E2 e 2 o Fo ’
where b is defined in (20), therefore
* 'y
*
75 /7 * {E

‘Hence, if ; is defined in terms of the coordinates of the end points (% §‘ ,0)
(]

of the symmetrically-located segment in the l:‘ -plane by the equation

' 3 = Fand

s (26)

bkt
N
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then, by equations (19), (21) and (25),
t .
55 = hamh($25) cach & ,
MNe

and this, together with equations (23) and (24) gives the two equations
- -~ L 2
tonds (P25) coeh & = tar (W2g) caca . (1)

Equation (22) and the two equations (27) serve to determine the three quanti-
ties &,g , and ¢ that correspond, respectively, to the Euclidean angles Q,

' & and ¥ determining the shape and orientation of the delta wing in the flow
space. In this comectiop, it should be remarked that any arbitrary choice
of values for the triplet &',i ’ q; will yield a triplet 7% L consistent

with the requirement that the wing be contained entirely within the Mach

cone.
Finally let
r en(2, k) +dk'an(z,;£) (28)
& &'(z:;‘,
where
2w &K boga (29)
‘T wi I ,

k is the modulus of the Jacobi elliptic functions, k' the complementary
modulus, and K the value of the complete elliptic integral of the first
kind having.the modulus k. This relation maps the circular region |$:|§ i
in the {‘ -pla.ne with the symmetrically-placed slit on the real axis onto the
annular region ro g | zJ]¢1 in the plane of the complex variable z = x + iy

(see Figure 2e) in such a manner that the points of the unit circle |£,| =1
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correspond to the points of the unit circle lz] = 1, and the points of the

segment -£, 5 ¥ f of the real axis in the T, -plane, where
« <

" (Z: (0)

correspond to the points of the circle |z| = ro in the z-plane whose radius

is given by

v =e R (31)

where K' is the value of the complete elliptic integral of the first kind
. .o
having the modulus k'. This is made evident first by setting z = e . In

this case (28) becomes?)

{ = m%@-‘-ik’m%“' - d"%""" = / ,
* odn %‘0 enile ~ik'anifo E&

where ?; represents the conjugate of the complex number {,_ . Therefore,

for points z = e"‘ on the unit circle about the origin in the z-plane,

whence the corresponding points in the 4‘ -plane also lie on the unit circle

about the origin. Next, setting z = roe‘o' , themequation (28) becomesg)

2K ’
;‘ = &,—;-i - ﬁcmi" ,
komiXe £+ den iKg

vhence ¢, is real for all values of & (real) and is confined to the interval

9) cf. E. T. Whittaker and G. H. Watson,. Modern Analysis, 4th Ed., London,
1935, pp. 493, et seq. Here and throughout the remainder of the report
the modulus of the Jacobi elliptic functions is understood to be k.
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of values -;{sg sz SE . defined by (30). Hence the points of the circle

1zl = ro forming the interior boundary of the annulus in the z-plane corres-
pond to the points of the segment of the real axis in the'c;-plane. In
particular, the end points (= gz ;'o) of the segment which correspond to the
wing edges are mapped into the points z = ir,, respectively.

The mapping defined by equation (28) is determined by the single
parameter k. According to equationf '30 this parameter depends on the
width of the slit on the real axis of the ;;-plane. But, by equation (26),
the width of the slit is in turn determined by the quantity i which corres-
ponds to the semi-vertex angle 4 of the delta wing. Therefore, by equations
(26) and (29), it follows that the mapping function (28) is completely

defined in terms of the geometry of the delta wing by means of the relation
= tah 5 . (32)

The function w(z) in equation (13) which accomplishes the desired
mapping of the doubly-connected region of the £-plane onto the annulus in

the z-plane is therefore obtained by combining equations (18), (19), and (28).

4. Formulation of the Properties of the Function £(z)

Precisely as in the earlier report on the conical flow over a delta

wing at zero yawlo)

» 1t can be shown that the function £(z), representing
the solution of the problem formulated in Section 2 for the general case of

the wing at an angle of yaw different from zero, is expressible in terms of

10) cf. BB. Report No. T5, Section 2.3. Here the function f(z) corresponds
to the function G(z) in the earlier report.
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elliptic functions. Here again, it is shown that the boundary conditions (%)
and (5) are not sufficient to specify completely the fﬁnctionjf(z), but-

must be supplemented by an additional condition such as the finiteness of

the total normal force coefficient of the wing. The arguments are essentially
the same as in the earlier report, so that a brief outline of the steps will
suffice here.

Let the function h, (z) be defined by the equation

h(z)= zh'zy, (33)

or by the equation

FJ
f,m=f YOI (34)
1 :
where the lower limit of integration conforms with the second of the boundary
conditions (17). Since h(z) is analytic within the annular region ro<lzl< 1
aﬁd is continuously differentiable on the circular boundaries of the region
(except possibly at the points corresponding to the wing edges; namely,
zZ =% ro), it follows that the function h,(z) is analytic within the annulus
and continuous along its boundaries (except possibly at the edge points,
zZ = + ry). Moreover, as a consequence of the conditions (17), which réquirev
the real part of h(z) to be constant along the circular boundaries of the
annulus, it immediately follows that the imaginary part of the function
h,(z) vanishes at all points of these circles, and therefore that the vélues
of h,(z) on the circular boundaries of the annulus are real.
Let fhe definition of the function h'(z) be continued analytically
across the circular boundaries of the annulus so as to cover the entire

z-plane. As a consequence of the properties of h,(z) on the annulus, it
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follows from the principle of reflectionll) that its analytic extension is

analytic in the whole of the z-plane (except possibly at the points z = + r

(o]

and at congruent points obtained from these by successive reflections with

respect to the circles bounding the annulus) and is such thatla)

hee) = A, (25°")

n=0, 21, t2, 290,

and

2Zmni

hi(z)= 4, (ze ).

ms=0,2),t2, ~*° _,

13)

Moreover,

Afg)=Ah(£) = Fa - ey L L 3@@

As in equation (29), set
2
= 2 bogz, | |
and define the function f»(z, ). of the complex variable 2z, =x, + 1y, as

follows:

f(zl) = —7—1: ‘,(2) . (38)
2K
This function is analytic throughout the entire z,-plane, except possibly at

the points in the z, -plane corresponding to the edge points z = + ro and .the

11) See, for example, E. J. Townsend, Functions of a Complex Variable,
Holt, New York, 1915, p. 255.
cf. BB. Repbrt No. 75, equations (2.28) and (2.29), respectively:

12)

13) cf. BB. Report No. 75, equations (2.27).

w43

D

7,
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points congruent to these with respect to successive reflections in the
circles bounding the annulus. Moreover, it follows from equations (35), (36),

(37), and (38) that

f (zl.,z,,“;(') = i (z,) , h=0,%2s, £2,°°° , (39)
y XA 4mK)= p(z) , m=0,24,22, ", » (40)

and
PCE) = fp(z), (41)

or, wvhat is the same thing, z,) is real for real values of z,. Therefore,
) 1

according to the first two of these

)

_ _ - I

relations, dﬁ(z,) is a doubly-peri 3iK! i |
: e — K ———mm— —f——-

odic function of z, with the periods T
4K and 2iK', whence its values at 2iK' e L__

; I

~ all points of the z, -plane are peri- . et |

1K

odic repetitions of its values iﬁ

the period rectangle:

03 x, s K ,

(42)

_Klg ,l § KI

Fig- 3 z,—PLANE

(See Figure 3.) However, as a consequence, of the property expressed by
equation (41), the values of'cp(z,) in the lower half of this rectangle
are completely defined in terms of those in the upper half. In this con-

nection, it should be observed that the upper half of the rectangle is
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mapped onto the anmnulus r,s [z)£1 in the z-plane by the relation (29) in
such a manner that the Mach circle |z]| = 1 corresponds to the real axis
y, = 0, and the circle Jz| = ro corresponds to the side ¥, = K'. (The
shéded region in Figure 3 corresponds to the shaded regions of Figure 2);

in particular, the wing-edge points z = +T and z = -r, are mapped into the

points z, = iK' and z, = 2K + iK', respectively. Hence, the function db(z,)
is completely defined at all points of the z,-plane in terms of its values
in the half of the period parallelogram which is mapped into the annulus

in the z-plane.

As in the previous reportlh), it follows that the doubly-periodic
function dD(z,) is an elliptic function of the variables z; with zeros and
poles in each period paralleloéram. The locations of the poles of this
elliptic function are essentially determined by the conditions of the problem
requiring that the velocity be continuous at each point within the flow and
at each regular pointls) of the surface of the wing. For it is seen in
Section 2, page 9, that these conditione require that h(z) and its deriva-
tive h'(z) are continuous within and on the foundariee of the annulus, with
the possible exception of the points corresponding to the wing edges. Hence,
by equations (33) and (38), the poles of the functionds(z,), if they exist,
are restricted to lie at the points of the half-period rectangle correspond-
ing to these edge points; that is, at the points z, = iK' and z, = 2K + iK'.
Moreover} it will be seen later that the boundary conditions essentially

"

determine the locations of two points, say z, =c ' and z, = c ", on the

14) cf. BB. Report No. 75, page 39.

15) By a regular point of a surface is meant a point at which the surface
has a continuous normal vector. See footnote 5), page 6, of BB. Report

No. 75.
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real axis of the z -plane at which Ja(z,) must vanish; by equations (15),

(23), and (38), or the equation.

Pz = 2’7'( 2 fz)l(z) , (43)
it follows that the zeros of ﬁ(z ,) correspond to the zeros of the function
L(g) in equation (12). However, neither the orders of these zeros, nor the
orders of the poles of @(zl ) are prescribed by the boundary conditions.

Nor, for that matter, are the disposition and orders of other possible zeros
of P(z,) prescribed by these conditions. By an argument similar to that
employed in the previous report16) » it can be shown that, as a consequence

of the boundary conditions, the residues of f(z ,) at each of its poles are
necessarily equal to zero, but, other than this, no further limitations are
pléced on the orders of the poles by these conditions. Conversely, let

the elliptic function a‘a(z,) have the following properties: (a) periods

4K and 2iK', (b) poles with zero residues at z, = iK' and z, = 2K + iK';

(c) zeros in at least the two points z, =c ' and z, =c ", and finally

(&) real for real values of z,. Then there is determined av function h(z)
vhich satisfies the boundary conditions (17) and which in turn determines

a conical flow past the wing. Siﬁce the complete specification of an elliptic
function requifes not only the loqa.tions of the zeros and the poles, bﬁt

also their respeétive ordersl7) s it f;olloﬁs that there are infinitely many

functions d»(z,) possessing the foregoing properties. Consequently, the

16) cf. BB. Report No. 75, page L4l.

17) The orders of the zeros and poles in a period parallelogram and their
locations are not :ntirely independent. See for examples the Theorems
of Liouville and /.31, Whittaker and Watson, loc. cit., page 432 et seq.




ENGINEERING RESEARCH INSTITUTE Page o1

UNIVERSITY OF MICHIGAN

conical flow past the delta wing is not completely determined by the boundary
conditions formulated in equations (4) and (S). On the other hand, as in

the previous report, it is shown in Section 7 that the normal force exerted
on a finite portion of the wing is finite only if the order of the poies of
db(z,) is at most two. Since the residue of the function at each‘pole is
zero, the order of the poles of Jb(z,) for the case of a flow yielding a
finite normai force coefficient is exactly two. As a consequence, it

will be seen that the elliptic function db(z,), as well as the function f(z)
representing the solution of the flow problem, are uniquely determined by
the addition of this supplementary condition. Hence, among all the conical
»flowg past the delta wing satisfying the boundary conditions in equations (%)
and (5), there is a unique one for which the normal force coefficient of the
wing is finite. The partiéular functions 06(2,)v and f(z) which determine the

flow with finite 1lift coefficient are given in the following section.

5. Determination of the Function k(z, !

In the preceding section it is shown that the function f(z) is ex-
pressible in terms' of an elliptic function/o(z,) of the variable zlz%‘(,jz
having the following properties: '

(a) Periods 4K and 2iK'.

(b) Poles with zero residue at z, = iK' and z, = 2K + iK'.

(c) Real for real values of Zy.

(d) Zeros at points z, =c ' and z, = ¢ " on the real axis of the

z, -plane (see Figure 3).
Functions possessing these properties are readily constructed with the aid of
the Jacobi elliptic functions. In this section the function f(z) correspond-
ing to the particular elliptic function f(z.) having poles of at most the

second order is derived. For, as will be shown, the 1lift coefficient of the
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wing is not finite for a conical flow corresponding to a function with poles
of order greater than two at the points corresponding to the wing edges.
Consider the elliptic functions:

f,(z,) = kan'e, - omedne |
~ (bk)

_" (l,) = fMlZ, +*~ m‘ob'zl hd

These functions have the primitive periods 4K and 2iK', they are real for

real values of z,, and are such that:

(1) /a,(z,) has a single pole of the second order at z, = iK' in
the period parallelogram (42);
(i1) dbz(z,) has a single pole of the second order at z, = 2K + iK'

in the period parallelogram (42).
Since these functions have one pole in each period parallelogram, their
residues at the poles must be equal to zerola) . By the general theorems on
elliptic fu.nctionslg) s it follows that any elliptic function having periods
4K and 2iK', and a single pole of the second order at z, = iK' in the period
parallelogram (42) can differ from a real multiple of the function Ja,(z,)
by at most an additive real constant. On the other hand, if it has a single
pole of second order at z, = 2K + iK' in the period parallelogram (42), it
can differ from a real multiple of the function fl_(z,) by at most an addi-
tive real constant. Finally, if it has second order poles at both z, = iK'

and z, = 2K + iK', and if its residue 1s zero at each of these poles, then

18) The sum of the residues of an elliptic function at the poles in any
period parallelogram is zero. cf. Whittaker and Watson, loc. cit.,

page 431.

19) cf. Whittaker and Watson, loc. cit., page 429 et seq.; also K. Knapp,
Theory of Functions, Part II, Dover, 1947, page 73 et seq.
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it can differ from a linear combination of the functions /:,(z,) and fz_(z,)
with real coefficients by at most an additive real constant. Hence, the
function f(z ,) having poles of second order, and possessing the properties

(a), (b), and (c) is of the form
oe(z,) = 8’ {A,f,(z,)+i\¢f,r;) -1} , (45)

where B', \, , and A, are real constants. Moreover, the coefficients \, and
A, are uniquely determined by the position of the zeros z, =c ' and z, =c¢

specified in the property (d), provided that

POD A | (46)
P (<) fz(c.”) :
In other words, the elliptic function 06(2,) is determined completely, with .
the exception of the rleal multiplier B', by the properties (a) to (d), pro-
vided that the zeros specified for f (z,) are such that the inequality (46)
holds. |
The real constant B' is determined by the first of the boundary

conditions (17). By equations (29), (34), and (38),

z,
hez) = ¢ (w) oy, , (%7)
] &
and therefore
hez)= =i al{ *'_235[5(!,)-!.] (M- )anz, + 2, f ’ (48)

where E(z,) is the fundamental elliptic function of the second i:indeo). For

z = roew and, therefore, z, = x, + iK', ( X,=5;r'-‘-#), it follows that

20) cf. Whitteker and Watson, loc. cit., page 517T.
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4(rne?) = i@’ { At Az ['E(x,),,. W‘:“‘”X']+ A=Az _ ArAa-k }
& Ser X, konx, % !

+ B' ) a1 -(;\,*Ag)E’)

and for all real values of €

¢ - ’ '—(: )'
ﬂ{ﬂ(f;e )} = 8 XK ﬁ"*"* £,

By comparison with the first of the conditions (17) it follows that the con-

stant B' has the value given by the relation:

8’ = £ Wz, tam o . (49)
K- (A, +2)E’
According to equation (43) the zeros of the function Jb(z,) are
the points of the z,-plane corresponding to the zeros of the quadratic func-

tion L(Z) in equation (12). The two zeros of this function are

[ + ], tarix _ : tema | (50)
re V]

These points are evidently distinct and lie on the unit circle I£{] = 1, pro-
vided that

tMN(ﬁ:&ﬂ(;I-,,),
or "

“<Fop . | (51)

21)

Moreover, for positive angles of attack a ~’, these zeros lie on the portion

21) The argument is readily modified for negative angles of attack.
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of the circle below the real asxis in the ¥ -plane. Hence, by virtue of the
properties of the transformations (18), (19), and (28), the corresponding
points z, = ¢, ' and z, = ¢," in the z, -plane at which the. function [O(Z,)

vanishes lie on the real axis and are such that

. o«
2K < ¢ ,¢ < %K (52)

(see Figure 3). This is true independent of the non-Euclidean angles &,
7, and v of attack, semi-flare, and yaw, respectively.

The precise location of the zeros of the function f(z,) can, of
course, be obtained by solving the equations (18), (19), and (28) for z, in
terms of the values of [ given in (50). However, it is sufficient for the
purpose of determining the constants N, and kz in (h‘j) to obtain expresvsvion.
in the variable z, corresponding to the function L(Z) in equation (12). To
this end, consider the function L(5)/z . Making use of equations (18) and

(19), this function, when expressed in terms of the variable g, becomes

LEE) | 2 cac 2 (,+£z;)§"+z£n 5 -(-¢7, ) , (53)
T (1#i0)8} v2ic 5, = (1-i07)
where
7, = Taink$ |, T,= Teokhiy , r=£*—:7“, (54)
0= Canky 02:0'“;4& , o*;-Zf.#-: coth x , (55)
_ x

and where m is the Mach angle defined by equation (3). Next, introducing

the varisble z, by making the substitution defined in (28), equation (53)

!
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can be written in the form:

L_(_.(_.) = 2 ecwcld Kanz, + T, onz, -f-z—gd‘;'a, . (56)
"Aﬂi.’,f-afﬁnf,*aidﬂi,

Hence, the zeros of the function f(z,) denoted by z, = ¢,' and z, = c," are

the roots of the equation

Kamz, $T, cn2, + L dber, = 0, (57)

From equation (57) | it follows that for either one of the zeros of

f(z, ), which for convenience is denoted simply by z, = c,,

(I:'z+f‘z‘:+z‘,‘-)4nzc,= T2+ G+ 27,7, omc dwe, . (58)

Therefore, by substituting for sn‘lc:l in equations (Lu4), the values of db,(z,)

and fz(z,) at either of the zeros of f(z,) are obtained in the form

oz = _k(hnt) | #teann)®
P L ] 2 y AN C, )
K (724 7)

2 2 L2
yACH —“HI; « 2 ) {/4— £ e (R730%.) rmc,dnc,f .
P A (T2 +T2)

The four values f(c,'), Ai(c, ")s f.(c,'), end ﬁ(c,") are obtained from
these expressions by replacing c, by c¢,' and c,", respectively. Substituting

these values in the determinant on the left of (46), gives
f’l(c,') ﬁg (c’)

2
£(zrrzd) emc” dne’ — en€’ dmc’
‘:l*&&[zz* z;& ' ‘

¢
- %0z} +z:,)
" "tl [ JZ I] , J (59)

Foe”) Fa(cF)
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”

cl
where the symbol [ ] denotes the difference between the values of the
c : :

function within the bracket for z, = ¢," and z, = ¢,'. Since the derivative

L1,

of the function sn X, is monotone in the interval 2K = x, < LUK on the real
axis, it follows that the determinant is different from zero for the real
values z, = ¢, ' and z, = ¢, " which satisfy (52). Hence, the inequality (46)
holds, and as a consequence, it follows that the constants A, and A, in (45)
are uniquely determined. In fact, with the aid of (58) and (59), it follows
that @ (z,) vanishes for z, = c,' and ¢, " if and only if

2 o F(rTaen)? = Ee(AT-T)F
¢ = J —
2R (Z‘," *2—22) z‘(z-,l,._z"z)

A8 a result of these values and the value of B' in equation (49), db(z,)

becomes

£z = Ks {(i'ut,ff,Wi,ft‘a‘n!,)(&'mt,-l; mz, ~7,elnz,) f ’ (60)

where

B = Weo Fase X . (61)
KRBT TE)R — (5 17520 T2)

It should be noted that for the case of zero yaw, v = 0, it follows

from (54) and (55) that
T, =- 0, = O , Lo=T, 0,= 0 .
Consequently, in this case, db(z,) becomes simplyee)

22) The expression given here for (z,) is much simpler than that given for
the corresponding function h,(z,) in the earlier report; see equations
(2.33), (2.34), (2.36), and (2.39) of BB. Report No. 75. The simplifi-
cation is the result of selecting a more appropriate modulus for the
Jacobi elliptic functions employed in the expression which establishes
the conformal mapping of the circular region with the symmetric slit
onto the annulus. The change in the modulus is effected by means of
Gauss' transformation of the Jacobi elliptic functions. See footnotes
~on pages 43 and 52 of BB. Report No. 75.
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P2) = 8o (An'2 - A.),

where

8 K2 (h2rk*T)
* =
K2 T K~ (#5470 v T2 ) e’

Wy tanek

Ao = e
I o o

6. Determination of the Function W(z) and the Values of
the Velocity Component w Along the Wing Surface

According to the last of equations (14), the component W of

the complex velocity 1s given by the integral formula

z
W = -/ w(v) f(v)dv ,
A

where the choice of the lower limit conforme with the condition that real

part of the function W(z) vanish along the circle Jz| = 1. Making use

of equations (29), (38), and (43) this equation can be written as

z

Wa ¢ ) ) L)y, (62)
‘,/ £ £,(v)

where z, = (2K/x1) log z, and w,(z,) and I,(z,) denote the values of the

¥4 (z' )

functions w(z) and £(z) when expressed in terms of z,. The ratio —
() (z) xp ' oz
is given by the right hand member of equation ( 56). Therefore, by equations

(56) and (60)’

f(!q)Tl“J'—:!;Lj- = j‘zBMZ“{("Ml,* o;c"ll*a;,é"zlx‘:‘"‘p "l;wel"tgd"z')} °
'’ "
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Hence

W= £ B aim2a { ({"*&‘qt‘ ;.o:t,)e‘(l.) + k' (6;-7) dn 2,

L
z

(62a)

+ 8RO -G )ome, + K ro T ) A2,
-k %(rr01,)z, -i’[(afvrl) + k‘("i-z‘c.)] }

The expression for the component w of the additional velocity at
points on the wing surface is particularly simple. Thus, setting z, = x, + iK|
and taking the real part of the function W, one obtains

w = 2‘6&5*2“{ &’ k(6-T2 )olnx, +(6.-T.) cm x, —A} , (63)
An X, )

where

(6k)

As A0, + BT )K - (K sk g5+t )E .

The relation between the coordinate x, of a point on the line

¥, =K' in the z,-plane and the coordinate F, of a point on the slit along

the real axis in the Z,-plane (see Figure 2) is readily obtained from

it follows from (28) that

equation (28). In fact,
A

dnx, = f Lt5:

/- ER

(65)

onx, = z_‘JE‘E_

k(€7
amx, =+ YEOEIS- y€f

k(1-EF)
where the sign of the function sn x, is determined as follows:
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+ for points on the upper side of the segment (-z,s g% 535) .
€ (66)
- for points on the lower side of the segment (-gz <E Sg‘).
z 2 =

It is convenient at this point to introduce the real variable

= ——z—FL . (67)
2
k( 1+§ )
Then, as fz ranges over the segment
-f£ <t s§ , the variable p ranges
€ 2 %
over thé interval -1<p=<1l. The
relation between the X-coordinate

of a point on the surface of the

wing along the line of intersection

with the plane Z = constant = 8 X

| (see Figure 4) and the variable p
is readily obtained from the Fig. 4
equations of transformation. From

equations (6), (18), (20), (21), and (67) it readily follows that

K= stima cachd fp tlamke (68)
r+ % /otzmlc v
It should be noted that in the special case of zero yaw (J" = 0), the
quantity p represents the fractional part of the semi-span of the wing
measured along the line Z = constant.
The relation between the variable p and the coordinate x, of
a point on the line y, = K' in the z,-plane can be obtained from equations

(65) and (67). Thus, one obtains
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pny _ o+ K ,
" X, 1_/03
i&nx. - t_‘_'L__ ”, (69)

}
2
N

H
>

- where the signs of the first two are determined as in (66).
As a consequence of (63) and (69) the expression for the component
w of the additional velocity at points along the wing surface, when written
in terms of the variable p, takes the form
[w] = iBamza| £i(g-5)teptanke _ 4 |,
M ' St
(70)

.F_ﬁ
§

—
"

LB pin 2 [-&'2(‘2-6) £+ pbonk & 'ﬁ] ,
_ /-p0%

where the constants B and A are defined in equations (61) and (64), respective-
ly. The first of these expressions represents the values of w along the
positive (or "upper") face of the wingaB), and the ﬁecond, the values of w
on the negative (or "lower") face.

Since the wing edges correspond to p = 31, it follows from equations
(70) that the velocity component w is always infinite at both edges whatever

the angle of yaw may be, except at an edge for which
k2t landy =0.

23) See footnote 3). The Qrienxation of the axis in this report are such
that the "upper" surface of the wing is the high pressure side.

T E——————]
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Since k = tanhy , the exceptional cases correspond to
v==z.

Hence, it follows from equation (27) that the exceptions correspond to the

cases in which an edge lies in the YZ-plane.

T. Calculation of the Normal Force Coefficient

The total normal force applied to the triangular tip of the delta
wing ahead of the plene Z = 8 (see Figures 1 and 4) is given, within the
limits of accuracy attained by the linear theory, by the integral

Sarc lam (w+y)
7 [P Woo S Aaed Aw dX ,

Satca tan (wry)

where p,, 1is the density of the gas in the undisturbed region of the flow

ahead of the wing and

AW = [w’_L - [w-_'L (71)

is the difference between the values of the velocity component w at adjacent
points on the positive and negative faces of the wing. The non-dimensional
normal force coefficient Cp obtained by dividing the value of this integral

by the stagnation pressure 1/2 p_ w2, and the area,

~ ~ 2~

Lszm"'«[w(w.}’)-m(w_z)]: stasc 2rch & lamk § prchy
‘ L ~ 2~
/3[/-M 7 tand“y

of the portion of the wing under comnsideration can be written in the form
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saca tan (vt3)

g L1 ek tamk’]
Swy, aech & Mimc&"ﬁ

Ch =

Aw dx .

sarceo ban (w-¥)

This can be expressed in terms of the variable p by making the substitution

(68), whence
ol
Cr = - LoTankf lonh®y / Aw ap . (72)
Woo Le [+ hptah]*

On the other hand, making use of relations (69) and the definition of Aw.
in (71), the normal force coefficient can be written as an integral along
the side y, = K' of the period rectangle (42) in the z,-plane (see Figure 3)

as follows:
4K

6‘” = _&IZ /"wzg“ M"; / w- n X, dx’ (73)
Woo b (@nx, +£ tamhy emx, )*

It was stated in Section 4 that normal force coefficient Cp is
finite only if the order of the poles of the elliptic function ds(z,) at
the points z, = iK' and z, = 2K + iK' is at most two. This is easily seen
with the aid of the integral formula (73). Since the residue of y X z,) at
each of its poles is zero, it follows from (62) that the complex function W
also has poles at the same points. The orders of these poles are, however,
less by one than the corresponding poles of &(z, ). Therefore, the real
part, w, of W which appears in the integrand of the integral in (73) becomes
infinite at the points on the path of integration where x, = 0 and x, = 2K.

However, the Jacobi elliptic function sn x, has simple zeros at the same




ENGINEERING RESEARCH INSTITUTE Page
34 - UNIVERSITY OF MICHIGAN

points. Consequeritly the integral in (73) is finite if and only if the
poles of W are of at most the first order. In other words, the normal force
coefficient C, for the delta wﬁng at an arbitrary angle of attack and yaw is
finite if and only if the poles of the elliptic function f(z,), which occur
at the points corresponding to the wing edges, are at most of the second
order. The only function which satisfies this condition is shown in Section 5
to be given by equation (60), and the corresponding component W of the com-
Plex velocity having simple poles is given by equation (62a).

The value of the normal force coefficient corresponding to the
function W defined by equation (62&) is readily obtained by means of the
integral formula (72). From equations (70) it follows that the increment

Aw in the velocity across the wing surface is given by the equation

Aw = #° 8 (0-7) ';T*_‘Eﬂ‘wz? lamh j cnhi , (74)
/-f‘ ‘

where

~ tands & .
Je'wy:————w-a (75)

Therefore the integral (72) can be written

Cn = K% e(r‘t)mzu éwn&,m/nw(l tank W‘VZ/ (—"ﬁl;)fML'
_ RVt

Since

*

(1+6p) "(f I 5% 4% = 7 nsch’y ,
(r+%%8p)* /—,_/,:. (1- 62 #* )% (1 - Gmk ™ tamk*s) %

-4
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the normal force coefficient can be written in the form

€, = 7C im 2o, (76)

where

b k,l (-7 ) tan o tam-k'} . arch &
("ll-k‘f:-f-l;‘)f'- "‘(t,‘f- l':)K' / /- &m&zi W‘;
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