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Abstract: We make use of the current algebra sum rules developed by Fubini and
Furlan for pion-nucleon scattering to evaluate 7 -nucleus scattering lengths.
Assuming that the pion-nucleus sigma term T can be written as a coherent sum
of pion-nucleon sigma terms S and using experimental data we determine S for
each reaction tested averaging 22 + 1 MeV. With § = 22 + 1 we calculate 7 -nu-
cleus scattering lengths and our results indicate a good agreement with experi-
mental data.

1. INTRODUCTION
Different estimates of the pion nucleon sigma commutator

S =-i [dix exp[ig- x] {N[[A%-3x), AL(32)] N

- (NNYO|[A%(-4x), 45401 100} a(x,) ,

where ¢, is the pion four momentum, A% is the axial vector current (with
an SU(3) label « and ’N) is the nucleon state vector) have been recently
given [1-4] using meson baryon scattering length data and pion nucleon
phase shift data. In this work we report a new method to determine this
parameter using 7 -nucleus scattering data.

The 7~ -nucleus scattering length can be obtained using the extrapolation
program developed by Fubini and Furlan [5]. Recently the current algebra
technique developed by Fubini and Furlan was used by Ericson, Figureau
and Molinari [6] to evaluate the 7-nucleus antisymmetric scattering lengths,
the results of which show an acceptable agreement with experimental data.
In this paper we will use the extrapolation program to obtain 7~ -nucleus
scattering length for light nuclei (A < 24). Fubini and Furlan extrapolated
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the soft meson scattering amplitude [7,8] in the collinear representation to
a physical pion amplitude at threshold along the extrapolation curve

u = Vz/M‘g, (1)
where u = q2 and v = p-q. In the collinear representation we have

p=q=0,

where by is the nucleus four momentum, M, is the mass of the nucleus
and x is a parameter called the mass variable. For I =0 and I = %, I, = -3
nuclei the 7~ -nucleus scattering length in the canonical field algebra * is
given by

3 w
m —_—
an AL M Rea(l=0) = -my 3+ 200 [ IMEUS0) g
M% X o(x -my /M)
47rf2(1+m /M, )Rea([:% =-1)
2 2 mg ° Im F(3, -1)
=edmn om Dl g [ odx e, @)
Mg x X -m/ M)
respectively.

Here m, is the pion mass, fn is the decay constant ** for the process
7t - uty and a is the scattering length in units of m, . The imaginary part
of the amplitude for scattering an off mass-shell p1on on a nucleus, ImF,
is defined by

(277 E(N 1(D+m

aB _
ImF o f " y HI

n}(n}(D+m721)8VA§|N>

x 5(4)(P+Q-Pn) - cross term,  (5)

* Assuming PCAC, the canonical field algebra, reduces to

[12,,4%(9,3,40018(x, - 35) = 0,
Uy 2218 A %, 03, 40001 62, -30) = 8458 x-3) .

** For the pion decay constant fr we will use the value f; = 0.69 my.
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with the property

F ogr) = 4772 T%(threshold) , (6)

lim
x— mg /Mg

where a, 3 are the pion SU(2) labels and T0 is the physical s-wave pion nu-
cleus scattering amplitude. The pion-nucleus sigma term Z in egs. (3) and
(4) is given by

T o= - fd4x exp [iq - x]8(x ) {(NC ][Ag(—éx),Ag(%x)] \NC>

(N[N (O|[Ag(-30, 45610}, (D
where |Nc> represents the nucleus state vector.

The results we obtain in this work are based on the following three as-
sumptions: 1. The pion-nucleus sigma term can be written as a coherent
sum of pion nucleon sigma terms. 2. The imaginary part of the amplitude
for scattering of an off-mass-shell pion on a nucleus can be approximated
by the imaginary part of the physical amplitude near the elastic threshold.

3. The lowest inelastic threshold is a process in which a neutron is released
with a residual nucleus after scattering. In sect. 2 we elaborate on these as-
sumptions and use them in eq. (3) and (4) to obtain numerical estimates for
S. For the average of the individual determination of S from each reaction
tested we obtain S = 22 + 1 MeV (see table 1 and fig. 1), and our results for
Rea with S =22 + 1 are in good accord with experimental data (see table 1
and fig. 2). In sect. 3 we discuss our results.

Table 1
For each nucleus tested we exhibit the experimental values of the scattering
length and the lowest inelastic threshold (£ +B). The values of Z/A which
best fits the experimental data are shown. Theoretical determinations of
Re ausing Z/A = 22 + 1 MeV are also listed.

Experimental results Theoretical
Mws e D ma e
m T §=22+1
9Be -0.293+£0.011 0.059+£0.005 7.36 -0.007+0.001 0.022+0.002 -0.325+0.010
1OB -0.321+0.01 0.081+0.003 8.41 -0.007+0.001 0.031+0.002 -0.267+0.011
11B -0.380+0.009 0.090+0.009 12.01 -0.001+0.001 0.027 +0.001 -0.371+0.012
12C —07341:&0.006 0.097+0.004 16.74 -0.009+0.002 0.026+0.001 -0.321+0.014
14N -0.400+0.011 0.079+0.005 10.80 -0.001+0.000 0.028+0.001 -0.364+0.015
16O -0.440+0.011 0.114+0.008 12.89 0.001+0.000 0.027+0.001 -0.416+0.017
19F -0.538+0.013 0.086+0.014 7.82 -0.007+0.001 0.023+0.001 -0.578+0.02
23Na -0.663+0.013 0.050=0.009 9.59 -0.002+0.001 0.024+0.002 -0.683+0.021
24Mg  -0.599+0.026 0.045+0.029 12.48 -0.001+0.001 0.024+0.002 -0.624 +0.024
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Fig. 1. Values of /A obtained for 9 & A < 24 plotted versus A.
Their statistical average Z/A is shown.

3
3
Sr
-Re 3
a s 4
& 8
sgd .
<]

Fig. 2. The experimental (&) and the theoretical values (3) of (-Rea) obtained
using /A =22 + 1 MeV.

2, DETERMINATION OF THE SIGMA TERM

In this section we will use pion nucleus experimental data for Rea and
Im a to obtain numerical estimates for the pion-nucleon sigma term. Aver-
aging these determinations for all reactions tested we use the result to cal-
culate Rea.

The pion-nucleus sigma term 2 eq. (7) can be written as a coherent sum
of pion-nucleon sigma terms. This assumption can be easily justified on the
basis that since the matrix element of the sigma commutator [Ag,Ag] be -
tween nucleon states is proportional to mass terms * it differs from being
a coherent sum of nucleon sigma terms by only the binding energy of the
particular nucleus under consideration. For nuclei 9 £ A < 24 the average
binding energy per nucleon is approximately a constant being of the order of

* See ref. [4].
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8 MeV. Thus a plot of ©/A versus A is expected to be a constant independent
of A, Thus, in eqs. (3) and (4) we make the substitution

% = AS. (8)

The expressions (3) and (4) have been derived in the basis that the lowest
possible state contributing to Im F is the pion-nucleus system itself. How-
ever, this is not true, for the scattering of a pion on a nucleus has the com-
plex feature of having a large number of inelastic channels open below
threshold, for example

7+ Ne(Z,A)—n+ NMNZ-1,A-1), (9a)
‘*d+N(':'(Z-2,A—2), (9b)
“n+p+N(':"(Z-2,A-2), (9¢)

and so on, where Z and 4 are the atomic and mass number of the parent
nucleus respectively. The asterisk in eq. {9a) represents an excited nucleus.
Thus we have to deform the extrapolation curve eq. (1) from a point on the

v axis which corresponds to the threshold of the lowest possible open in-
elastic channel on the x scale *. The deformation we perform amounts to
approximating the imaginary part of the amplitude for the unphysical pro-
cesses (9a-c) (since the pion is off its mass shell) by the imaginary part of
the amplitude for the corresponding physical process

Im F~ 472 Im T, (10)

where T is the physical s-wave scattering amplitude. The approximation
(10) is exact at threshold and is expected to be good near the elastic thresh-
old and has already been employed in our study of KN, 7= and rA scattering
amplitudes [4]. We found that such a deformation of the extrapolation path
and the approximation (10) do not ruin a possible agreement with experiment
we might otherwise obtain. The extrapolation technique restricts the inter-
mediate states contributing to Im F' to have the same baryon number and
total -angular momentum as the target, but of opposite parity. The lowest
possible intermediate state on the x scale satisfying these restrictions
comes from the process in which one neutron is knocked out of the nucleus.
Some authors [9] make the statement that this process is improbable even
though there is no concrete and conclusive experimental evidence to support
this statement.

Koltun [10] pointed out that the experimental results on branchirg ratio
of the processes (9a-c) are inconclusive. For example, consider the 7~ -ab-
sorption by 4He. Here we have the following possibilities

* See refs. [1,4].
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n-+4He—>p+ 3n, (11a)
-d+2n, (11b)
~ t+n. (11c)

Ammiraju and Lederman [11] found that the process (11a) is the dominant
one while Schiff [12] found that the process (11c) amounts to 30%. Bizzari[13]
and Block [14] found the triton ratio to be 18.4% and 19.4%, respectively.

The threshold for processes (11a) corresponds to

M(Ny) + M - M(N,) + E
xg = M(Ng) ,

_B+E
—M(Nc)’

(12)

where B is the binding energy of the least bound neutron, E is the least pos-
sible excitation energy needed to make the neutron and the residual nucleus-
system has the same spin and of opposite parity to the target nucleus N.
Here M(N,), M(Né) and M are the masses of the target, residual nucleus
and the nucleon, respectively. The values of (B +E) for the nuclei tested are
listed in table 1. For example, consider the process

7+ 9F - g 4 180, (13)

Since we are in a system in which both the pion and 19F nucleus are at rest,
then the spin of the target nucleus is its intrinsic spin 3, its intrinsic parity
is +. But 180 has a spin-0 and positive parity. Thus, if we examine the ex-
citation levels of 180 [15] we find that the lowest possible state satisfying
our spin and parity selection rules is the ground state if the neutron and

O system have a relative orbital angular momentum I = 1.

To evaluate the dispersion integrals we have to approximate Im T,. We
make two observations, the first is due to Ericson and Locher [16] in which
they pointed out that since Ima <« Rea one can approximate Im T by its
threshold value and extrapolate that value smoothly below threshold to the
lowest inelastic threshold. Secondly, consider the processes eqgs. {11la-c)
Koltun [10] pointed out that in a two-body breakup as in eq. (11lc) triton has
a unique energy while the energies of P and d in egs. (11a-d) are distributed
smoothly. Thus the contribution of process (11c) would appear as a sharp
peak on a background of protons and deuterons. Since the threshold of the
process (11e) is too far from the elastic threshold we expect it not to influ-
ence Rea. Thus we make the approximation

Im T, ~ Ima. (14)

However if we examine our dispersion integrals we see that the integrand
for positive values of x has two poles at x = x5 and x = 0. The first pole
does not give any trouble since its contribution below and above x, cancels.



442 S.dJ.Hakim, Pion nucleus scatteving

The second pole at ¥ = 0 is due to our dispersion integrals being subtracted
once at zero. But since the lower integration limit xpg (typically of the order
of 0.025/A, where A is the mass number, as compared with the elastic
threshold x, ~ 0.15/4), is too close to the pole, then this would tend to
overestimate the contribution of the dispersion integral to the real part of
the scattering length. Since the process is the lowest energetically possible
process we should have

Im TO( xg) = 0. (15)
Thus we make the ansatz
1
X =X~ 2
Im T (%) ~ ( o ) Ima. (16)
*B~ %

Eq. (16) has the advantage over eq. (14) in that it ensures the property (15)
and it compensates for the effect of the pole x = 0. Thus, we are in a posi-
tion to evaluate the dispersion integrals. Using eqgs. (3), (4}, (8) and (16) we
obtain

2 My 1 1 1
anfy (1 + F) Rea(I=0) = -ASmﬂ + ;(ﬁ)% -2(x0+xB)
c X -x
o "B
X -X z 1 X -X ] 1 1
X arc tg(m§> + 49(123 arc tg< Ox B) ]+ 495}23 —(xB+xO)2 Ima, (17)
o} o
2 My L1y _ 1.2 1 1 z
4‘[Tfﬂ (1 + M()Rea(a,-z) = -zm_n -ASmﬂ + ﬂm —2(XO+XB)
o "B
N 1 Xo = ¥By\2 3 3
X arc tg W) + 4x§ arc tg<7—) ;'+ 4x]23 - (xB+xO)2 Ima. (18)
o o

We are however interested in evaluating the pion-nucleon sigma term, and
for that purpose we will use experimental data for Rea and Ima in eq. (17)
and (18). Seki [17] evaluated s-wave 7 -nucleus scattering lengths for light
nuclei (A £ 24) using 2p-1s transition energy data. He found different values
for the scattering lengths depending on the particular transition data used *.
We made a statistical average of the different values of the scattering lengths
reported. In table 1 we show the values of M.xp, the contribution of the dis-
persion integral and the value of the pion-nucleon sigma term obtained which
best fits each reaction we tried (fig. 1). We found that the average S of all
the pion-nucleon sigma terms obtained is

S =2211 MeV, (19)

* See ref. [17] and references cited therein.
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and its contribution to the pion-nucleon scattering length in units of m; is

1 S_m?r
- =0.023 + 0.001. (20)

: nf727 (1 +—y;l—47l)

Using § =22 + 1 MeV and the experimental values for Ima we calculated
Rea. Our results given in table 1 and fig. 2 are in good accord with experi-
mental data.

3. CONCLUSION

We feel at this stage ready to discuss briefly the different determinations
of S presented by other authors. VonHippel and Kim and this author ob-
tained S = 26 MeV and 30 MeV respectively in the canonical model. In the
SU(3) ® SU(3) chiral symmetry breaking model of Gell-Mann, Oakes and
Renner [18] this author obtained S = 26 MeV.

Recently Cheng and Dashen [2] obtained a value of S much larger than
reported by the first two papers (S = 110 MeV) while Hohler, Jacob and
Straub {3] reported S = 39 + 8 MeV.

There appear to be certain ambiguities in using meson baryon data and
pion nucleon phase-shift data to determine S because of the smallness of
the scattering length and the controversy between different experimental
determinations. For the meson baryon case the pion-nucleon scattering
length reported by Hohler is aL = 0.175, a3 = -0.103 while Lovelace reported
[20] a1 = 0.196, ai = -0.069 in units of #;." This situation deteriorates when
considering KN and nZ data. In the case of the pion-nucleon phase-shift data,
Hohler pointed out that any results obtained using the phase-shift data de-
pends on the particular data and energy range considered.

The nuclear data offers a better, more concrete ground since the scatter-
ing lengths are larger in value and the experimental determinations of Rea
and Im @ are much less controversial than the meson baryon scattering
lengths or the phase-shift determinations. The approximations we made in
evaluating the dispersion integrals might be questioned. However our ex-
perience with meson baryon scattering [4]| and the qualitatively good agree-
ment with experiment obtained indicate that such approximations do not in-
fluence our results, especially considering the smallness of Ima and the
contribution of the dispersion integral.

It is interesting at this stage to study the significance of S = 22 to the
breaking of the chiral symmetry and scale invariance, which is at the pre-
sent a subject of study we will report on soon.

It is a pleasure to thank Prof. Yukio Tomozawa for suggesting the prob-
lem and useful discussions and R. Carroll for reading the manuscript. I
benefitted also from discussions with Prof. L. Wolfenstein.
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