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Abstract— A model has been developed which yields the speed and attenuation of acoustic waves as a
function ol Irequency in two-phase, one-component media. Nonequilibrium interphase heat, mass, and
momentum transfer have been included and are found to be important. At low frequencies, the wave speed
approaches the equilibrium value calculated by /(ép/dp),. The wave speed in the high frequency limit is
characterized by no heat. mass. or momentum transfer between the liquid and vapor phases. The attenua-
tion is large at high frequencies. A comparison of the theory with experiment shows that the leading edges
of large amplitude pressure waves travel at the high frequency limit of the sound speed.

NOMENCLATURE

bubble or droplet radius [ft]:
sound speed [ft/s]:

adiabatic sound speed [ft/s]:
equilibrium sound speed [ft/s]:
high frequency limit of the sound
speed [ft/s]:

isothermal sound speed, [ft/s]:
specific heat-pure liquid phase [Btu/
1b°F] ;

specific heat, constant pressure—
pure vapor phase [Btu/Ib°F]:
specific heat, constant volume—pure
vapor phase [Btu/Ib°F]:

substantial derivative (D/D# =
d/0t + v,0/0z), equation (3):

force on a bubble due to relative
motion of the liquid, equation (14):
inverse time constant for momentum
transfer, liquid to vapor [1/s]:

F3" = F9 + M/p,, equation (19):
inverse time constant for momentum
transfer, vapor to liquid [1/s];
inverse time constant for heat trans-
ter, liquid to vapor [1/s]:

G

Gy

G = G + Mleyc,, + £1¢]/p,c,,
equation (19);

inverse time constant for heat trans-
fer, vapor to liquid, {1/s];

low frequency limit of G?';

heat of vaporization evaluated at
saturation temperature T [Btu/lb]:
complex wave number [k = (w/c) +
in] [1/ft]:

thermal diffusivity—pure
phase, [ft2/s]:

M = 3aop/a,/2nRT, equation (19);
number of bubbles per unit volume
of mixture [1/ft3]:

n = (6p*/pN(T/ST)) = hy,/pvy,.
equation (19);

pressure [psia] ;

saturation pressure corresponding
to temperature 7T, [psia] :

gas constant, pure vapor phase
[Btu/1b°F] ;

time coordinate [s]:

temperature, equilibrium mixture
[°F]:

temperature, vapor phase [°F]:

vapor
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temperature, liquid phase [“F]:
relative velocity of vapor with respect
to liquid [ft/s]:

change in internal energy upon
evaporation [Btu/ib] :

internal energy of the vapor at
saturation temperature 7, [Btu/lb] :
internal energy of the liquid at
saturation temperature 7, [Btu/lb]:
change in specific volume upon
evaporation, [ft?/1b]:

velocity, vapor [ft/s]:

velocity, liquid [ft/s]:

spatial coordinate [ft]:

void fraction [dimensionless]:
complex constant, equation (18a):
specific heat ratio, pure vapor phase
(1 = €pyfCy,):

rate of condensation per unit volume
of mixture [1b/ft3s]:

rate of evaporation per unit volume
of mixture [Ib/At3s]:

&1 = pycp o + pyc,,),  equation
(19):
&2 = pieflpicy + pycy,) equation
(19):

wave attenuation coefficient [1/t];
viscosity, pure liquid phase [1b/s/ft?] :
apparent mass contribution to vapor
mass in bubbly mixtures (p,p =
Lap(1 + 2a/1 — ) [Ib/At?]:
density, two-phase mixture (p =
p, + p)) [Ib/ft*]

PCy = PyCy, + PiCys equation (20):
density, vapor phase in mixture
(p, = ap,) [Ib/ft>]:

density, liquid phase in mixture
(0, = (1 — 0)p) [Ib/f°]:

density, pure vapor phase [lb/ft3]:
density, pure liquid phase [Ib/ft®]:

condensation coefficient [dimen-
sionless] :
vaporization coefficient [dimen-
sionless] :
mass transfer coefficient [dimen-
sionless] :

w, frequency [1/s]:
Do resonant frequency for a bubble
[1/s].
INTRODUCTION

THE PROPER treatment of several reactor safety
problems requires a knowledge of how pressure
waves propagate in a single-component, two-
phase mixture. For example, in a sodium cooled
fast reactor, either a power excursion or a loss
of coolant flow may initiate boiling in the
sodium. A proper analysis of the sodium flow
under these conditions requires a knowledge of
the sound speed in the two-phase mixture [1].

A problem of interest in the safety studies of
high pressure water cooled reactors is that of a
reactor blowdown. It is well known that, in
single-phase media, such as perfect gases, the
critical flow rate is related to the sonic velocity
[2]. It has been suggested that critical flow in a
two-phase medium corresponds to a stationary
pressure pulse [3]. Models developed for single-
component, two-phase media have generally
included experimentally based correlations, par-
ticularly to describe non-equilibrium momentum
transfer {4, 5]. Most of these models require
prior knowledge of the slip between the phases
[3]. A model predicting the propagation of
acoustic waves in two-phase mixtures should
be of use in determining the proper manner to
include nonequilibrium interphase effects in a
critical flow model.

Experimental investigations into the propaga-
tion of pressure waves in two-phase, single-
component media have been limited to the study
of large amplitude compression and rarefaction
waves. The two-component studies of acoustic
wave propagation as performed by Karplus [6]
and by Mecredy et al. [ 7] have not been extended
to single-component media.

Karplus [8] calculated the equilibrium sound
speed in a steam—water mixture. He emphasized
that an acoustic wave would travel at this speed
only for sufficiently low frequencies. Based on
the droplet or bubble size, Karplus evaluated a
frequency limit below which the assumption of
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thermal equilibrium would be valid. Karplus
also measured the speed of large amplitude
waves and compared these data to a sound speed
model which assumed equilibrium heat and
momentum transfer between the phases, but no
mass transfer. In general, the measured leading-
edge wave velocities were considerably larger
than those predicted by the theory.

Other experimenters have also measured the
speeds of large amplitude pressure waves in
two-phase, single-component media. An ex-
cellent summary of experimental results is given
by Henry [9].

Predictions of the propagation speed of
waves have generally been limited to models
predicting the leading edge velocity of large
amplitude waves. Fauske [10] developed a
model using fitting parameters to analyse bubbly
steam~water data. Henry [9] calculated the
leading edge velocity as a function of void
fraction using a correlation to account for the
change in bubble shape with void fraction.

None of the models mentioned investigate
the variation of either sound speed or attenuation
with frequency in two-phase media. Marble has
developed a model which predicts the attenua-
tion of acoustic waves as a function of frequency
in a condensing vapor fog [11, 12]. The model
predicts the sound speed only in certain limiting
cases and assumes that the volume occupied by
the liquid is negligible.

Conservation of momentum
{a) Bubbles in continuous liguid

é

0 a b3j 1_ 1+2\ D
E(ngg)'*g({)gvg): —a—§+ng9‘(v,——v,)+Fez;,—chg+ p“(m)

2 9 op {_ (1422 D
&(plvl) + —a"z'(plvlz) = _‘(1 - a)a_z + pIFlg(Ug - UI) + chg - revl - Epla ('__‘)

{b) Droplets in continuous vapor

op

In an earlier paper by the authors [13], the
speed and attenuation of acoustic waves in
bubbly two-component (e.g. air-water) media
were determined, where the only nonequilibrium
effect accounted for was interphase heat transfer.
The mode! has been extended to include non-
equilibrium heat, mass and momentum transfer
between the two phases. The sound speed and
attenuation are determined for two limiting flow
patterns: vapor bubbles in continuous liquid
and liquid droplets in continuous vapor.

CONSERVATION EQUATIONS

The most critical part of the analysis is the
casting of the conservation equations in a form
which properly describes the important non-
equilibrium effects. The theoretical analysis of
gas-solid systems by Soo [14] proved very
helpful, especially with respect to the proper
form of the nonequilibrium heat and momentum
transfer terms. The conservation equations are:

Conservation of mass

op, 0

i 3 e - — 1
at + 6z(pgvg) ‘re Fc ( )
6p, 5 _

_6t—+5;(plvl) '—Fc re' (2)

d é
&(pgvg) + 'a_z(pgvgz) =—0_—+ nggt(vl - vg) + Fevl

0z

3PT T 4 —D‘t”g(vz—vg) (3a)
1—a )Drf
(vi—v,). (4a)
1_ 3~-2a}D
~Tw, + ipg(l - oc)( - )f)“{‘(”" - 1,) (3b)
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0 0 op
a‘t(pzvl) + 5;(.01”12) =—(1- 0‘)6—2 + pF(v, — v) + T,

1_ D
“Fevl — Epg(l — a)(——a— >W(U, - Ug).

Conservation of energy

ot oz

+F£’[Ug(7;) + pv.fy(Tl):I — I, [UQ(Ty) + pv.fg(Ta)jl -

ot

3 - 2o (4b)

0 1 l§j 1 3
—[ngg(Tg) + Epgvj] + ~[ngg(Tg)vg + Epgv;:| = p 0 G*(T; — T,)) + E[apvy +(1 - oc)pv,:]

pgcpg

216t PgCpy |:F"h-’9(T’) - thfg(Tq)} (5)

¢ 1 ¢ 1
_[plUI(’I;) + 2P1”12:| + 2 p Uy, + 5,01013 = PlctGlg(Tq —T) + I' U(T)

PiG

-rUu(n) — ———— [FJl_fg(T:) - Fchfg(ﬂ,)]- (6)

The assumption has been made that the vapor is
ideal, p, = p,RT,, and the liquid incompressible,
p, = constant. The equation of state is, therefore :

pr=p (1 —a)
= ﬁl(l - pg/ﬁg)
_5 (, _P_gR&> )
p

In considering the conservation equations,
one should note the following:

1. The two-phase mixture has been treated as
a pseudo single-phase fluid. When considering
acoustic wave propagation, this assumption is
valid provided the wavelength of the wave is
much larger than the characteristic dimensions
of the two-phase medium (e.g. the bubble dia-
meter or average distance between bubbles) and
provided the frequency of the wave is much less
than any resonant frequency associated with
the two-phase medium (e.g. for a single bubble,

wo = (3yp/pa’) [15]).

2. F% and F% are the inverse time constants
for momentum transfer from the liquid to the
vapor and from the vapor to the liquid, respec-
tively. Since, on a unit volume basis, the momen-
tum lost through interphase momentum transfer

PiC1 t P4y,

by one phase must be gained by the other, one
finds that
p,F? = p F¥. (8)

3. The final term in each momentum equation
accounts for the apparent mass of the vapor
phase when accelerated relative to the liquid.
According to Zuber [16], the induced mass of a
spherical bubble in a mixture of vapor bubbles
and liquid is:

1 4 1+2
5P (g na3> ( = a°‘> )

The final term in this expression accounts for
the effect of the surrounding bubbles on a given
bubble.

4. G* and G% are the inverse time constants
for interphase heat transfer. Energy lost by one
phase through interphase heat transfer must be
gained by the other, resulting in the relationship

(10)

c,,G% = p,c,G".
pg pg p

5. Since the liquid is incompressible, all flow
work performed on the mixture must be per-
formed on the vapor phase. This includes work
done when phase change takes place.

6. The heat of vaporization required for
evaporation is drawn from each phase in pro-
portion to its heat capacity per unit volume of
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mixture. At high frequencies, the heat drawn from
each phase should be related to the thermal
diffusivities of the two media, however, in either
case, most of the heat required for vaporization
comes from the liquid.

7. Viscous forces and heat conduction within
each phase are assumed small. In studies with
two-phase, two component media [13], it was
found that ignoring these effects resulted in an
error in sound speed or attenuation of less than
(-5 per cent. Viscous dissipation is neglected in
the energy equations. These terms, if included,
vanish when the conservation equations are
linearized.

EVALUATION OF NONEQUILIBRIUM TERMS

The frequency dependence of both the sound
speed and attenuation depends very strongly on
the values of I', and I, the source and sink
terms for mass transfer; F?, the inverse time
constant for interphase momentum transfer;
and G%, the inverse time constant for interphase
heat transfer.

Mass transfer

The evaporation and condensation processes
must be considered separately because the
liquid is evaporating at velocity v, and tempera-
ture T; while the condensation occurs at v, and
T,. This results in additional interphase heat
andt momentum transfer. From kinetic theory
[17] one may write, for the mass transfer per
unit volume:

(a) Bubbles in continuous liquid

oo p*
*" a/27R /T, (11a)
and
e p
I=-—W —— —.
« = ay2nR JT, (12a)
(b) Droplets in continuous vapor
1 — %
r 2od-a9 p (11b)

¢ a\/211:R 7’]";

and
_3ol-a) p

7 a/2rR T,
In the analysis, the evaporation coefficient o,

and the condensation coefficient o, are assumed
equal,

r (12b)

6,=0,=0.

(13)

The use of one of the more detailed mass
transfer models, such as that proposed by
Patton and Springer [18], is not warranted
since there is no agreement in the literature as to
the values to be used for o, and o,. For example,
there is some indication that the condensation
coefficient decreases with increasing system
pressure [19]. It is also felt that system contami-
nation will reduce the mass transfer coefficients
from the values obtained in a *“‘clean” system
[20].

Momentum transfer

The force exerted on a bubble by the surround-
ing liquid due to relative motion may be readily
calculated for sufficiently small bubbles and for
Stokes flow. For bubble radii less than about
03 inches, the bubbles may be treated as solid
spheres in the calculation of F# [21]. Under
these assumptions, the force on the bubble
caused by the surrounding liquid moving at
velocity U relative to the bubble is [22] :

Fp = 6unaU. (14)

In a mixture with void fraction o, the force per
unit volume of the mixture is found to be

® 9 u
N x Fg = (‘%'Ea‘_y,) (6unal) = '2““;2'U (15)

where N is the number of bubbles per unit vol-
ume. This force may also be expressed as

_ 0y -
apg»bf = ap F (v, — v,). (16)

Comparing equations (15) and (16), one obtains

an expression for F¥

i
P>

Fo = % (17a)
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For the case of droplets in continuous vapor,
again with the assumption of Stokes flow, the
expression for F¢ is

9/1 —o\ u
Fo =2 L 17b
2( o )ﬁgaz (17b)

Heat transfer

If, in the case of bubbly flow, it is assumed that
the major resistance to interphase heat transfer
is conduction within the vapor phase, the inverse
time constant for heat transfer from the liquid
to the vapor is found to be frequency dependent
and is given by [13]

thp — 1
G¥(w) = G¥Re ?05 (182)
5 — 7 (Bcothp — 1)
where
p* = iwa*/K,
15K
G4 = GH0) =—~
a
G*(w) is shown as a function of frequency in
Fig. 1.
22
20L  G%vs Frequency
18k
ip/_
Goﬂ/ 16
|.4ﬁ
|.2;
I-Oo'I ; o

w/G?

o

Fi1G. 1. Inverse time constant for heat transfer from the
liquid phase to the vapor phase as a function of frequency
in a bubbly steam-water mixture.

For the case of droplets in continuous vapor,
the major resistance to interphase heat transfer

MECREDY and L. J.

HAMILTON

occurs in the vapor boundary layer. In the limit
of low Reynolds number, Soo [14] has shown
that G¥ is given by

W:C“ﬁ%&
o a

DETERMINATION OF SOUND SPEED AND

ATTENUATION

The set of conservation and state equations
[equations (1), (2), (3a), (4a), (5), (6) and (7) for
bubbles in continuous liquid or equations (1),
(2), (3b), (4b), (5), (6) and (7) for droplets in
continuous vapor] are linearized to obtain the
acoustic equations for the medium.

A Laplace transform in the time variable, with
s = iw, and a Fourier transform in the space
variable are then performed. This is equivalent
to assuming that each dependent variable can
be represented as Ae™*=*) where A is some
complex constant and k = (w/c) + in. A set of

(18b)

Sound speed vs. Frequency
Steam - Water
P =147 psia 1
101" 7= 212°F
g =00l
Bubbte radius = O-Ol in.

Case | 1rdHidn

fps

80

Sound speed,

60

40

20

| ; I 1
1072 107! | 10 102 103 10% [loid 10°

Frequency, cps
F1G. 2. Sound speed as a function of frequency in a bubbly
steam-water mixture.
seven homogeneous equations in seven un-
knowns is obtained; for a unique solution to
exist, the determinant of the coefficient matrix
must vanish. For example, in the case of bubbles
in continuous liquid, this implies that:
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we () 16 5
W =\a0) =Wy, ) p

A similar determinant is obtained for the case
of droplets in continuous vapor.

Expanding the determinant yields a quadratic
equation in k which is solved numerically by
means of a Laguerre iteration technique. The
two roots are equal but opposite in sign, one
corresponding to a wave moving in a positive
z direction and the other in the negative direc-
tion. The real part of k is then used to obtain
the sound speed [Re(k) = w/c)], while the
imaginary part of k equals #, the attenuation
coefficient.

RESULTS AND DISCUSSION
The sound speed is shown as a function of
frequency for bubbles in continuous liquid in
Figs. 2 and 3, and for droplets in continuous

Sound speed vs. Frequency
Steam -~ Water
P =14-7 psia
T=212°
Void fraction = 0-20

Bubble
Case | 9 | Tadius

120

G-001|10-Otin.

@ 100

f

==l= =0

80

60

Sound speed,

40

20

Frequency, cps

F1G. 3. Sound speed as a function of frequency in a bubbly
steam-water mixture.

vapor in Figs. 4 and 5. There are several import-
ant factors to be noted :

1. In all cases, the low frequency limit of the
sound speed is that calculated assuming mechan-
ical and thermal equilibrium in the mixture;

HAMILTON

PARE
pc, T (v
+ 2 (L : (20)
a \hg,
Sound speed in o steam - water droplet mixture
P=147 psia

o=00l
16001 Droplet radius = O-Ol in.

a=095

1400

fps

1200

1000

800

Sound speed,

600

400

200

Frequency, c¢ps

F1G. 4. Sound speed as a function of frequency in a steam—
water droplet mixture.

Sound speed in o steam-water droplet mixture

P=14-7 psia
a= 080
1600~
o |Droplet
radius
1400 [T10-01010In. |
-Ol
G10
» 1200F
o
&
. 000
©
3 800+
B
3
=3
9 oot
4001
200
o Il | 1
0% o o* 10> i0®

Frequency, cps

F1G. 5. Sound speed as a function of frequency in a steam—
water droplet mixture.
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2. On the other hand, the high frequency
limit of the sound speed is that obtained
assuming no heat, mass, or momentum transfer
between the phases;

(a) Bubbles in continuous liquid

sz _YP 2a(1 — “)2}
Jim ¢ = P {1 + T+ | (21a)
(b) Droplets in continuous vapor
I /4 a
~ L .21
M= =g AP
o+ e

3. As seen in Figs. 3 and 5, the frequency at
which non-equilibrium effects become important
is a strong function of the bubble or droplet
radius and the mass transfer coefficient. Since
the evaporation and condensation rates are
proportional to o/a [see equations (11) and (12)],
while the inverse time constants for interphase
heat and momentum transfer are proportional
to 1/a* [see equations (17) and (18)], equilibrium

Sound speed vs, frequency as a function of pressure

o Gy *131730
1000+ Bubble radius * 0-Olin. Ciy =B39:55
r Ciy =308-25
L Coq = 26037 2
a2 o
L Coa =1 o}
2913505 Cry 210547
oo}
g
g "
v |
S [ Cu=230
[57]
0 Pre .
Component s’&a
I | Water 47
I | Sodium 000
1T | Water 900-C
i (I Water 20000
+0 { L 1 i 1 L
04 I 10 i0? 103 Hed 03 io®
Frequency, ¢ps

F16. 6. Sound speed as a function of frequency in bubbly
two-phase, single-component media.
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can be maintained in the mixture at higher
frequencies as either o increases or a decreases.

The sound speed has been plotted as a function
of frequency in Fig. 6 for conditions of interest
for nuclear reactor applications. Calculations
have been performed at a void fraction of 20 per
cent for steam-water mixtures at pressures of
147,900 and 2000 psia and for sodium-sodium
vapor at 100 psia. As can be seen in Fig. 6, an
increase in pressure causes an increase in sound
speed with the high frequency limit behaving
as p* [see equation (21a)]. The speed of an
acoustic wave in a sodium-sodium vapor mix-
ture at 100 psia and 20 per cent void fraction is
seen to increase by a factor of ten from the low to
the high frequency limits. Thus, in sodium
systems, as well as water systems, frequency
dependence must be included when considering
wave propagation.

Wave attenuation as a function of frequency
is shown for bubbly steam—water mixtures in
Fig. 7 and for water droplets in continuous

Attenuation vs. Frequency
180k Steam - Water I
£ =147 psic
T=212°F
60 =00t
Bubble radius »O-Otin.
1wo[- |Case fragtifgn“
" I | 040
o I | 030
* eor | I 020
. X | 0i0
;§ 00H
g
2
& sof
60
404
20
o H
62 w7 o LT S - T
Frequency, c¢ps

Fic. 7 Attenuation coefficient as a function of frequency
in a bubbly steam—water mixture.
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vapor in Fig. 8. In all cases the attenuation
coefficient goes to zero in the low frequency
limit where equilibrium is maintained in the
two-phase mixture. In the high frequency limit,
the attenuation coefficient approachesa constant

Aftenudtion in a steagm - water droplet mixture

F P =147psia a=070
F -001"
- Droplet radius
=00l in.
I a=0-90
W o a=0-95
§ |
<
o1t
00l L L
10" [ 10 10? 10° 10* 10° 10°

Frequency, c¢ps

FiG. 8. Attenuation coefficient as a function of frequency
in a steam-water droplet mixture.

value. This limiting value tends to increase with
increasing void fraction. As seen in Fig. 7, at
moderate void fractions and high frequencies the
attenuation can be very strong. For example, at
a frequency of 10 kHz and void fraction of
40 per cent, the attenuation coefficient equals
170 ft . This means that the wave will attenuate
by a factor of “e” in (1/170) ft which is less than
one tenth of an inch.

As was mentioned in the introduction, meas-
urements of either sound speed or attenuation
in single-component mixtures have not been
performed. The very large wave attenuations
expected certainly make the design of such an
experiment more difficult. A comparison of the
theory, at least in part, can be made to the
experimentally measured wave velocities of
large amplitude pressure waves (for a summary
of these experimental results, see [9]). In all

250
1o
200} o
(e}
g o]
-
[+]
g o]
§ 1501~
o (o]
> o]
(=] [e]
s 8 8
100+
Equation(2Ia)
o]
50
oKarplus data
i oy 1 1
o] 10 20 30 40 50

Void fraction, Yo

FIG. 9. Comparison of Karplus’ leading edge data [8] with
theory.

cases the large amplitude waves were found to
broaden as they propagated; this means that
each point on the wave travelled with respect to
the fluid at the local sound speed. In addition,
since sound speed increases with frequency, it
is expected that the leading edge of the wave
travelled at the high frequency limit of the sound
speed. This conclusion is reached since a finite
amplitude wave can be thought of as the super-
position of a large number of waves of various
frequencies. The high frequency components
travel with the highest speeds (see Figs. 2-6) and
thus form the leading edge of the wave. In
Fig. 9, the theoretical expression for the high
frequency limit of the sound speed [equation
(21a)] is compared to the bubbly steam-water
data of Karplus [8], while in Fig. 10 the high
void fraction steam—water data of Collingham
and Trapp [23] and England et al. [24] are
compared to equation (21b). In order to write
equation (21b) in terms of quality rather than
void fraction, the slip ratio in the unperturbed
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Sound speed vs. quolity

o England, Firey
and Trapp
2 Coltingham and
Firey

» 20901 o2 45050

Experimental data:

fp

1800 1

T Theory . High frequeney limit
I i/ v=l equation (2ib)
T w/v, =4
800 z §d i3 i . 2 P
o0l 040 -0

Qudiity

1200 |-

Sourd spead,

F16. 10. Comparison of data from vapor-continuous two-
phase media [23, 24] with theory.

mixture must be known. Theoretical curves of
sound speed vs. quality are shown in Fig. 10
for slip ratios of 10 and 40. In both Fig. 9 and
Fig. 10 the agreement between theory and
experiment is good.

SUMMARY

In summary, calculations have shown that
both the sound speed and the sound attenuvation
are strong functions of frequency in two-phase,
single-component (liquid-vapor) mixtures. At
high frequencies and low void fractions the
attenuation can be extremely large. A compari-
son with experimental data shows that the
leading edges of large amplitude pressure waves
travel at the high frequency limit of the sound
speed.
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LES EFFETS D'UN TRANSFERT HORS D’EQUILIBRE DE MASSE. DE CHALEUR ET DF
QUANTITE DE MOUVEMENT SUR LA CELERITE DU SON DANS UN MILIEU
BIPHASIQUE

Résumé—11 a été développé un modeéle qui donne la célérité et I’atténuation des ondes acoustiques comme
étant fonction de la fréquence dans un milieu biphasique a un seul composant. I’absence d’équilibre
entre phase pour le transfert de masse, de chaleur et de quantité de mouvement a été pris en compte et a
été trouvé important. Aux basses fréquences la vitesse de ’onde approche la valeur d’équilibre calculée
par /(0p/dp), A la limite, dans les hautes {réquences la célérité de I'onde est caractérisée par I'absence de
transfert de masse, de chaleur et de quantité de mouvement entre les phases liquide et vapeur. L’atténuation
est grande aux hautes fréquences. Une comparaison entre théorie et expérience montre que les frontiéres
antérieures des ondes de pression de grande amplitude se déplacent a la célérité du son correspondant 2
1a limite des hautes fréquences.

DER EINFLUSS VON WARME-, STOFF- UND IMPULSUBERTRAGUNG IM
NICHT-GLEICHGEWICHT AUF DIE ZWEI-PHASEN-SCHALLGESCHWINDIGKEIT

Zusammenfassung—Ein Modell wurde entwickelt, das Geschwindigkeit und Dampfung akustischer
Wellen liefert als Funktion der Frequenz in zweiphasigen Ein-Komponenten-Medien. Wirme-, Stoff-
und Impulsiibergang an der Nicht-Gleichgewichtsphasengrenze wurde beriicksichtigt und als wichtig
befunden. Bei niedrigen Frequenzen erreicht die Wellengeschwindigkeit den Gleichgewichtswert
V[(6P/dp),]. Die Schallgeschwindigkeit bei hohen Frequenzen ist durch das Fehlen von Wirme-, Stoff-
oder Impulsiibergang zwischen der fliissigen und dampffsrmigen Phase gekennzeichnet. Die Dampfung
ist bei hohen Frequenzen gross. Ein Vergleich der Theorie mit dem Experiment zeigt, dass sich die
Vorderfrent von Druckwellen grosser Amplituden mit dem Hochfrequenzspitzenwert der Schallge-
schwindigkeit fortgewegt.

BJIMAHWE HEPABHOBECHOI'O HEPEHOCA TEIIJIA, MACCEI U
HOJNYECTBA JIBIMHEHUMA HA JIBYX®A3HVIO CKOPOCTB 3BVHKA

Ammoranms—PaspaboTana MOJenp, NOBBOJAONIAH IOJYYATH CKOPOCTH K BaTyXaHMe
AKYCTHYECKMX BOJH KaK QYHKIMIO YacTOTH B IBYX(AsHHX OJHOKOMIOHEHTHHX Cpelax.
Ifokasago, uTO HepaBHOBeCHHH Mem(a30BHII TEPEHOC Temaa, MacChl M KOJIMYECTBA
ABMKEHNA BHAYUTENHLHO BIMAET HA CKOPOCTh AKYCTHYECKMX BOXH. IIpM HH3KMX dYacroTax
CKOPOCTh BOJIHEL [IOCTHIaeT PABHOBECHOTO B8HAYeHHA, paccumranHoro no +/[(2P/dp),].
B npepfesbHOM Ciiyvae BHICOKOM YACTOTH CHOPOCTH BOJHE XAPAKTEDH3YETCA OTCYTCTBHEM
IepeHOCA TEINa, MacCH HJIM KOJMYecTBA NBIVKEHWS MEMKAY JRUAKOM M NapoBo#t (pasamm.
3aryxanue Gonpuroe IpH BHCOKMX 4acTOTaX. CPABHEHME TEODHH € BKCIEDMMEHTOM MOKA-
SHBAET, YTO Hepennii QpOHT BonH ¢ GONBIION aMIUIMTYZOM [ABIEHAA MPOXOMMT MPU
BEICOKOM Ipefiesie YaCTOTH CKOPOCTH 3BYHA.



