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Abstract- A model has been developed which yields the speed and attenuation of acoustic waves as ,a 
function 01 Irequency in two-phase, one-component media. Nonequilibrium interphase heat, mass. and 
momentum transfer have been included and are found to be important. At low frequencies, the wave speed 
approaches the equilibrium value calculated by J(ap/ap),. The wave speed in the high frequency limit is 
characterized by no heat. mass. or momentum transfer between the liquid and vapor phases. The attenua- 
tion is large at high frequencies. A comparison of the theory with experiment shows that the leading edges 

of large amplitude pressure waves travel at the high frequency limit of the sound speed 
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NOMENCLATURE 

bubble or droplet radius [ft] : 
sound speed [ft,/s] : 
adiabatic sound speed [ft,/s] : 
equilibrium sound speed [ftk] : 
high frequency limit of the sound 
speed [ftk.] : 
isothermal sound speed, [ft,/s] : 
specific heat-pure liquid phase [Btui 
lb”F] : 
specific heat, constant pressure- 
pure vapor phase [Btu/lb”F] : 
specific heat, constant volume-pure 
vapor phase [Btu/lb”F] : 
substantial derivative (D,/Dt” E 
q/at + u,J/az), equation (3): 
force on a bubble due to relative 
motion of the liquid, equation (14) : 
inverse time constant for momentum 
transfer, liquid to vapor [l/s] : 
Fgl’ E Fg’ + M/p,, equation (19): 
inverse time constant for momentum 
transfer, vapor to liquid [1,/s] : 
inverse time constant for heat trans- 
fer, liquid to vapor [l/s] : 

G3”, 

G,. 

G#, 

h,,(T), 

k, 

5, 

M, 
N, 

n, 

P, 

P*? 

R, 

4 
T, 

TV 

G”” = @’ + M[E+~~ + E~c,]/~~c~,, 
equation (19) : 
inverse time constant for heat trans- 
fer, vapor to liquid, [l/s] : 
low frequency limit of Gg’: 
heat of vaporization evaluated at 
saturation temperature T [BtuAb] : 
complex wave number [k z (m/c) + 
itj] [ l/ft] : 
thermal diffusivity-pure vapor 
phase, [ft’/s] : 

M - 3aop/a,/2nR T equation (19) ; 
number of bubbles per unit volume 
of mixture [ l/ft3] : 

n = @P*/P)(T/~T,) = hfylpvfg, 
equation (19) : 
pressure [psia] ; 
saturation pressure corresponding 
to temperature T [psia] : 
gas constant, pure vapor phase 
[Btu/‘lb”F] : 
time coordinate [s] : 
temperature, equilibrium mixture 
["Fl : 
temperature, vapor phase [“F] : 
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temperature, liquid phase [“F] : 
relative velocity of vapor with respect 
to liquid [ft!s] : 
change in internal energy upon 
evaporation [Btu/lb] : 
internal energy of the vapor at 
saturation temperature T, [Btu/lb] : 
internal energy of the liquid at 
saturation temperature T, [Btu/lb] : 
change in specific volume upon 
evaporation, [ft3/lb] : 
velocity, vapor [ftis] : 
velocity, liquid [ftis] : 
spatial coordinate [ft] : 
void fraction [dimensionless] : 
complex constant, equation (18a) : 
specific heat ratio, pure vapor phase 
(Y = cP,/c”sl: 
rate of condensation per unit volume 
of mixture [lb/ft3s] : 
rate of evaporation per unit volume 
of mixture [lb/ft3s] : 

El = P,C,JP,C, + P&J equation 
(191: 
E2 z PA4P,C, + P&J equation 
(19): 
wave attenuation coefficient [ l,/ft] : 
viscosity, pure liquid phase [lb/sift ‘1 : 
apparent mass contribution to vapor 
mass in bubbly mixtures (PAP = 
&,?,(l + 2~x11 - tl)) [lb/ft3] : 
density, two-phase mixture (p = 

pg + pII [lb/ft31 : 
pc, = P~c,~ + plc,, equation (201: 
density, vapor phase in mixture 
(p, = cl&) [lb/ft31 : 
density, liquid phase in mixture 
(pr = (1 - @J [lb/ft31 : 
density, pure vapor phase [lb/ft3] : 
density, pure liquid phase [lb/ft3] : 
condensation coefficient [dimen- 
sionless] : 
vaporization coefficient [dimen- 
sionless] : 
mass transfer coefficient [dimen- 
sionless] : 

0, frequency [l/s] : 

00, resonant frequency for a bubble 

[lisl. 

INTRODUCTION 

THE PROPER treatment of several reactor safety 
problems requires a knowledge of how pressure 
waves propagate in a single-component, two- 
phase mixture. For example, in a sodium cooled 
fast reactor, either a power excursion or a loss 
of coolant flow may initiate boiling in the 
sodium. A proper analysis of the sodium flow 
under these conditions requires a knowledge of 
the sound speed in the two-phase mixture [ 11. 

A problem of interest in the safety studies of 
high pressure water cooled reactors is that of a 
reactor blowdown. It is well known that, in 
single-phase media. such as perfect gases, the 
critical flow rate is related to the sonic velocity 
[2]. It has been suggested that critical flow in a 
two-phase medium corresponds to a stationary 
pressure pulse [3]. Models developed for single- 
component, two-phase media have generally 
included experimentally based correlations, par- 
ticularly todescribenon-equilibriummomentum 
transfer [4, 51. Most of these models require 
prior knowledge of the slip between the phases 
[3]. A model predicting the propagation of 
acoustic waves in two-phase mixtures should 
be of use in determining the proper manner to 
include nonequilibrium interphase effects in a 
critical flow model. 

Experimental investigations into the propaga- 
tion of pressure waves in two-phase, single- 
component media have been limited to the study 
of large amplitude compression and rarefaction 
waves. The two-component studies of acoustic 
wave propagation as performed by Karplus [6] 
and by Mecredy et al. [ 71 have not been extended 
to single-component media. 

Karplus [8] calculated the equilibrium sound 
speed in a steam-water mixture. He emphasized 
that an acoustic wave would travel at this speed 
only for sufficiently low frequencies. Based on 
the droplet or bubble size, Karplus evaluated a 
frequency limit below which the assumption of 
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thermal equilibrium would be valid, Karplus 
also measured the speed of large amplitude 
waves and compared these data to a sound speed 
model which assumed equilibrium heat and 
momentum transfer between the phases, but no 
mass transfer. In general, the measured leading- 
edge wave velocities were considerably larger 
than those predicted by the theory. 

Other experimenters have also measured the 
speeds of iarge amplitude pressure waves in 
two-phase, single-component media. An ex- 
cellent summary of experimental results is given 
by Henry 191. 

Predictions of the propagation speed of 
waves have generally been limited to models 
predicting the leading edge velocity of large 
amplitude waves. Fauske [lo] developed a 
model using fitting parameters to analyse bubbly 
steam-water data. Henry [9] calculated the 
leading edge velocity as a function of void 
fraction using a correlation to account for the 
change in bubble shape with void fraction. 

None of the models mentioned investigate 
the variation of either sound speed or attenuation 
with frequency in two-phase media. Marble has 
developed a model which predicts the attenua- 
tion of acoustic waves as a function of frequency 
in a condensing vapor fog [ 11, 121. The model 
predicts the sound speed only in certain limiting 
cases and assumes that the volume occupied by 
the liquid is negligible. 

In an earlier paper by the authors [13], the 
speed and attenuation of acoustic waves in 
bubbly two-component (e.g. ait--water) media 
were determined, where the only nonequilibrium 
effect accounted for was interphase heat transfer. 
The model has been extended to include non- 
equilibrium heat, mass and momentum transfer 
between the two phases. The sound speed and 
attenuation are determined for two limiting flow 
patterns: vapor bubbles in continuous liquid 
and liquid droplets in continuous vapor. 

CONSERVATION EQUAWIINS 

The most critical part of the analysis is the 
casting of the conservation equations in a form 
which properly describes the important non- 
equilibrium effects. The theoretical analysis of 
gas-solid systems by Soo [14] proved very 
helpful, especially with respect to the proper 
form of the nonequilibri~ heat and momentum 
transfer terms. The conservation equations are : 

Conservation of mass 

aps a 
at + ;I,(P&) = re - rc 

$ + -$p,v,) = re - re. 

(1) 

(2) 

(b) Droplets in continuous uapor 
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(4b) 

Conservation of energy 

= pgcpgGg’(7; - T,) + ; 1 
PgCpg WI + PgCpg m,Jn - Lh,,(T,) 1 (5) 

= pdg(Tg - 7;) + T,U,(T,) 
-r,u,crJ - PA - 

P&l + P&P, 
chfgvi) - ~c~.,,uJ 1 (6) 

The assumption has been made that the vapor is 
ideal, pg = pgRTg, and the liquid incompressible, 
PI = constant. The equation of state is, therefore : 

Pi = i&u - 4 

= i&(1 - P,lJ,) 

=pI l- ( > PgRTg 
P 

(7) 

In considering the conservation equations, 
one should note the following : 

1. The two-phase mixture has been treated as 
a pseudo single-phase fluid. When considering 
acoustic wave propagation, this assumption is 
valid provided the wavelength of the wave is 
much larger than the characteristic dimensions 
of the two-phase medium (e.g. the bubble dia- 
meter or average distance between bubbles) and 
provided the frequency of the wave is much less 
than any resonant frequency associated with 
the two-phase medium (e.g. for a single bubble, 

0 O = (3rpli+) [ 151 I 
2. Fgf and Fig are the inverse time constants 

for momentum transfer from the liquid to the 
vapor and from the vapor to the liquid, respec- 
tively. Since, on a unit volume basis, the momen- 
tum lost through interphase momentum transfer 

by one phase must be gained by the other, one 
finds that 

pgF4’ = pJ+ (8) 

3. The final term in each momentum equation 
accounts for the apparent mass of the vapor 
phase when accelerated relative to the liquid. 
According to Zuber [ 161, the induced mass of a 
spherical bubble in a mixture of vapor bubbles 
and liquid is : 

(9) 

The final term in this expression accounts for 
the effect of the surrounding bubbles on a given 
bubble. 

4. Gg’ and Gig are the inverse time constants 
for interphase heat transfer. Energy lost by one 
phase through interphase heat transfer must be 
gained by the other, resulting in the relationship 

pgcpgGg’ = P~c~G’~. (10) 

5. Since the liquid is incompressible, all flow 
work performed on the mixture must be per- 
formed on the vapor phase. This includes work 
done when phase change takes place. 

6. The heat of vaporization required for 
evaporation is drawn from each phase in pro- 
portion to its heat capacity per unit volume of 
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mixture. At high frequencies, the heat drawn from 
each phase should be related to the thermal 
diffusivities of the two media, however, in either 
case, most of the heat required for vapo~zation 
comes from the liquid. 

7. Viscous forces and heat conduction within 
each phase are assumed small. In studies with 
two-phase, two component media [ 131, it was 
found that ignoring these effects resulted in an 
error in sound speed or attenuation of less than 
0.5 per cent. Viscous dissipation is neglected in 
the energy equations. These terms, if included, 
vanish when the conservation equations are 
linearized. 

EVALUATION OF NONEQUILXBRIUM TERMS 

The frequency dependence of both the sound 
speed and attenuation depends very strongly on 
the values of re and f,, the source and sink 
terms for mass transfer; Fg’, the inverse time 
constant for interphase momentum transfer ; 
and Gg’, the inverse time constant for interphase 
heat transfer. 

Mass transfer 
The evaporation and condensation processes 

must be considered separately because the 
liquid is evaporating at velocity o1 and tempera- 
ture TI while the condensation occurs at ug and 
7’@. This results in additional interphase heat 
and momentum transfer. From kinetic theory 
[ 17] one may write, for the mass transfer per 
unit volume : 

(a) Bubbles in continuous liquid 

and 

fb) Droplets in continues vapor 

(114 

(124 

r 3o&l - a) p* 
e= 

a,hR JT, (lib) 

and 
r = 341 - a) P 

c -. 
aJ2xR ,/T, (12b) 

In the analysis, the evaporation coefficient b, 
and the condensation coefficient a, are assumed 
equal, 

fl,=cc==(T. (13) 

The use of one of the more detailed mass 
transfer models, such as that proposed by 
Patton and Springer [18], is not warranted 
since there is no agreement in the literature as to 
the values to be used for (T= and cr,. For example, 
there is some indication that the condensation 
coefficient decreases with increasing system 
pressure [ 191. It is also felt that system contami- 
nation will reduce the mass transfer coefficients 
from the values obtained in a “clean” system 

1201. 
Mo?ne~tu~n transfer 

The force exerted on a bubble by the surround- 
ing liquid due to relative motion may be readily 
calculated for sufficiently small bubbles and for 
Stokes flow. For bubble radii less than about 
03 inches, the bubbles may be treated as solid 
spheres in the calculation of Fff’ [21]. Under 
these assumptions, the force on the bubble 
caused by the surrounding liquid moving at 
velocity U relative to the bubble is [22] : 

F, = 6pxaU. (14) 

In a mixture with void fraction a, the force per 
unit volume of the mixture is found to be 

NxF,= (6pnaU) = ia$U (15) 

where N is the number of bubbles per unit vof- 
ume. This force may also be expressed as 

apg 2 = apgFgz(q - ue), (16) 

Comparing equations (15) and (16), one obtains 
an expression for FBz 

F@’ = 2 ’ 
2p,a2. (174 

C 
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For the case of droplets in continuous vapor, occurs in the vapor boundary layer. In the limit 
again with the assumption of Stokes flow, the of low Reynolds number, Soo [14] has shown 
expression for Fg’ is that Ggf is given by 

(1%) 

Heat transfer 
If, in the case of bubbly flow, it is assumed that 

the major resistance to interphase heat transfer 
is conduction within the vapor phase, the inverse 
time constant for heat transfer from the liquid 
to the vapor is found to be frequency dependent 
and is given by [ 131 

where 

fl’ = iwa2/Kg 

15K 
G$ = Gg’(()) = y 

Gg’(o) is shown as a function of 
Fig. 1. 

frequency in 

G*‘vs Frequency 

W/GfJ FIG. 2. Sound speed as a function of frequency in a bubbly 

FIG. 1. Inverse time constant for heat transfer from the 
liquid phase to the vapor phase as a function of frequency 

in a bubbly steam-water mixture. 

steam-water mixture. 

seven homogeneous equations in seven un- 
knowns is obtained ; for a unique solution to 
exist, the determinant of the coefficient matrix 
must vanish. For example, in the case of bubbles 
in continuous liquid, this implies that : 

For the case of droplets in continuous vapor, 
the major resistance to interphase heat transfer 

(18b) 

DETERMINATION OF SOUND SPEED AND 
ATTENUATION 

The set of conservation and state equations 
[equations (l), (2), (3a), (4a), (5), (6) and (7) for 
bubbles in continuous liquid or equations (l), 
(2X (3b), (4b), (5), (6) and (7) for droplets in 
continuous vapor] are linearized to obtain the 
acoustic equations for the medium. 

A Laplace transform in the time variable, with 
s = io, and a Fourier transform in the space 
variable are then performed. This is equivalent 
to assuming that each dependent variable can 
be represented as AeitkZfWf), where A is some 
complex constant and k = (o/c) + iv. A set of 

I Sound speed vs. Freqlency 
steam -water 

1 

P = 14.7 psi0 
140- T= 212’F 

(z = 0.01 
Bubble radius = 0.01 in. 

: 
a - 
In I50 

40- 

m 
m 

20 - 

1 1 , / 

_1 

V’..‘.  ̂ _ _ _ 

Frequency, cps 



NON-EQUILIBRIUM HEAT, MASS AND MOMENTUM TRANSFER 67 

s 
z 

0 
II 



68 R. C. MECREDY and L. J. HAMILTON 

A similar determinant is obtained for the case 
of droplets in continuous vapor. 

Expanding the determinant yields a quadratic 
equation in k which is solved numerically by 
means of a Laguerre iteration technique. The 
two roots are equal but opposite in sign, one 
corresponding to a wave moving in a positive 
z direction and the other in the negative direc- 
tion. The real part of k is then used to obtain 
the sound speed 
imaginary part of 
coefficient. 

[k(k) = w/c)], while the 
k equals 11, the attenuation 

RESULTS AND DISCUSSION 

The sound speed is shown as a function of 
frequency for bubbles in continuous liquid in 
Figs. 2 and 3, and for droplets in continuous 

Sound speed “s Frequency 

steam -Water 
P= 14.7 sia 
r-2120 1 
Void fraction = 0.20 

Frequency, cps 

FIG. 3. Sound speed as a function of frequency in a bubbly 
steam-water mixture. 

vapor in Figs. 4 and 5. There are several import- 
ant factors to be noted : 

1. In all cases, the low frequency limit of the 
sound speed is that calculated assuming mechan- 
ical and thermal equilibrium in the mixture : 

Sound speed I” o steam- water droplet mixture 

Frequency, cps 

FIG. 4. Sound speed as a function of frequency in a steam- 
water droplet mixture. 

Sound speed in (1 steam-water droplet mixture 

P = 14.7 psia 
a = 0.80 

1600- 

1400 - 

- 

i 1000 600-- 

a 
v) 

6OOm 

Frequency, cps 

FIG. 5. Sound speed as a function of frequency in a steam- 
water droplet mixture. 
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2. On the other hand, the high frequency 
limit of the sound speed is that obtained 
assuming no heat, mass, or momentum transfer 
between the phases ; 

(a) Bubbles in continuous liquid 

Jia c2 g E 

:, 
M: + (3 - ;a) (1 - a) . (*lb) 

2u i 

3. As seen in Figs. 3 and 5, the frequency at 
which non-~uilibri~ effects become important 
is a strong function of the bubbie or droplet 
radius and the mass transfer coeffkient. Since 
the evaporation and condensation rates are 
proportional to o/a [see equations (11) and (12)], 
while the inverse time constants for interphase 
heat and momentum transfer are proportional 
to l/a2 [see equations (17) and (18)], equilibrium 

can be maintained in the mixture at higher 
frequencies as either r~ increases or a decreases. 

The sound speed has been plotted as a function 
of frequency in Fig. 6 for conditions of interest 
for nuclear reactor applications. Calculations 
have been performed at a void fraction of 20 per 
cent for steam-water mixtures at pressures of 
14~7,900 and 2000 psia and for sodium-sodium 
vapor at 100 psia. As can be seen in Fig. 6, an 
increase in pressure causes an increase in sound 
speed with the high frequency limit behaving 
as pf [see equation (*la)]. The speed of an 
acoustic wave in a sodium-sodium vapor mix- 
ture at 100 psia and 20 per cent void fraction is 
seen to increase by a factor of ten from the low to 
the high frequency limits. Thus, in sodium 
systems, as well as water systems, frequency 
dependence must be included when considering 
wave propagation. 

Wave attenuation as a function of frequency 
is shown for bubbly steam-water mixtures in 
Fig. 7 and for water droplets in continuous 

Sound speed vs. frequency as a functim af pressure 

Bu#teradtus = O.Olin. 

FIG. 6. Sound speed as a function of frequency in bubbly 
two-phase, single-component media. 

i60- 

I60 - 

140 - 

‘i 

5 izo- 

s' 
'yj tOo- 

iii 

f 60- 

60 - 

40- 

20- 

A thnuation vs. Frequency 
Steam-W&w I 

P - 14.7 psia 
T=212*F 
u - 0.01 
Bubbte radius =OOl in. 

FIG. 7 Attenuation coeffkient as a function of frequency 
in a bubbly steam-water mixture. 
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vapor in Fig. 8. In all cases the attenuation 
coefficient goes to zero in the low frequency 
limit where equilibrium is maintained in the 
two-phase mixture. In the high frequency limit, 
the attenuation coefficient approaches a constant 

Attenuation in (1 steam-water droplet mixture 

I I I 

10-1 I IO IO’ Id 104 105 

Frequency, CPS 

FIG. 8. Attenuation coefficient as a function of frequency 
in a steam-water droplet mixture. 

value. This limiting value tends to increase with 
increasing void fraction. As seen in Fig. 7, at 
moderate void fractions and high frequencies the 
attenuation can be very strong. For example, at 
a frequency of 10 kHz and void fraction of 
40 per cent, the attenuation coefficient equals 
170 ft- ‘. This means that the wave will attenuate 
by a factor of “e” in (l/170) ft which is less than 
one tenth of an inch. 

As was mentioned in the introduction, meas- 
urements of either sound speed or attenuation 
in single-component mixtures have not been 
performed. The very large wave attenuations 
expected certainly make the design of such an 
experiment more difficult. A comparison of the 
theory, at least in part, can be made to the 
experimentally measured wave velocities of 
large amplitude pressure waves (for a summary 
of these experimental results, see [9]). In all 

OKQrphS data 

01 

Void fraction, % 

50 

FIG. 9. Comparison of Karplus’ leading edge data [8] with 
theory. 

cases the large amplitude waves were found to 
broaden as they propagated ; this means that 
each point on the wave travelled with respect to 
the fluid at the local sound speed. In addition, 
since sound speed increases with frequency, it 
is expected that the leading edge of the wave 
travelled at the high frequency limit of the sound 
speed. This conclusion is reached since a finite 
amplitude wave can be thought of as the super- 
position of a large number of waves of various 
frequencies. The high frequency components 
travel with the highest speeds (see Figs. 2-6) and 
thus form the leading edge of the wave. In 
Fig. 9, the theoretical expression for the high 
frequency limit of the sound speed [equation 
(21a)] is compared to the bubbly steam-water 
data of Karplus [8], while in Fig. 10 the high 
void fraction steam-water data of Collingham 
and Trapp [23] and England et al. [24] are 
compared to equation (21b). In order to write 
equation (21b) in terms of quality rather than 
void fraction, the slip ratio in the unperturbed 
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Sound spwd vs. quality 
I 1 

0 Engbttd o Firey 

Expenmrmttd data : 

010 

Quaiity 

Fta. 10. Comparison af data from vapor-continuous two- 
phase media [23,24] with theory. 

mixture must be known. Theoretical curves of 
sound speed vs. quality are shown in Fig. 10 
for slip ratios of 1.0 and 4-O. fn both Fig. 9 and 
Fig. 10 the agreement between theory and 
experiment is good. 

SUMMARY 

in sibyl calculatious have shown that 
both the sound speed and the sound attenuation 
are strong functians of frequency in two-phase, 
single-component (liquid-vapor) mixtures. At 
high frequencies and low void fractions the 
attenuation can be extremely large. A compari- 
son with experimental data shows that the 
leading edges of large amphtude pressure waves 
travel at the high frequency limit of the sound 
speed. 
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LES EFFETS DUN TRANSFERT HORS D’EQUILIBRE DE MASSE. DE CHALEUR FT DF 
QUANTITE DE MOUVEMENT SUR LA CELERITE DU SON DANS UN MILIEU 

BIPHASIQUE 

R&u&--I1 a et& dtveloppe un modble qui donne la cblerite et I’atttnuation des ondes acoustiques comme 
&ant fonction de la frequence dam un milieu biphasique a un seul composant. L’absence d’equilibre 
entre phase pour le transfert de masse, de chaleur et de quantite de mouvement a ete pris en compte et a 
ete trouvt important. Aux basses frtquences la vitesse de I’onde approche la valeur d’tquilibre calculte 
par ,/(ap/r3p),. A la limite, dans les hautes frequences la ctltritt de l’onde est caracttrisee par I’absence de 
transfert de masse, de chaleur et de quantite de mouvement entre les phases liquide et vapeur. L’attenuation 
est grande aux hautes frequences. Une comparaison entre theorie et exp&ience montre que les front&es 
anterieures des ondes de pression de grande amplitude se dtplacent a la ctleritt du son correspondant a 

la limite des hautes frbquences. 

DER EINFLUSS VON WARME-, STOFF- UND IMPULSUBERTRAGUNG IM 
NICHT-GLEICHGEWICHT AUF DIE ZWEI-PHASEN-SCHALLGESCHWINDIGKEIT 

Zusammenfassuug-Ein Model1 wurde entwickelt, das Geschwindigkeit und Dlmpfung akustischer 
Wellen liefert als Funktion der Frequenz in zweiphasigen Ein-Komponenten-Medien. W&me-, Stoff- 
und Impulsiibergang an der Nicht-Gleichgewichtsphasengrenze wurde berticksichtigt und als wichtig 
befunden. Bei niedrigen Frequenzen erreicht die Wellengeschwindigkeit den Gleichgewichtswert 
,,/[(aP/ap),]. Die Schallgeschwindigkeit bei hohen Frequenzen ist durch das Fehlen von W&me-, Stoff- 
oder Impulsiibergang zwischen der fliissigen und dampffiirmigen Phase gekennzeichnet. Die Dampfung 
ist bei hohen Frequenzen gross. Ein Vergleich der Theorie mit dem Experiment zeigt. dass sich die 
Vorderfront von Druckwellen grosser Amplituden mit dem Hochfrequenzspitzenwert der Schallge- 

schwindigkeit fortgewegt. 

BJILIFIHHE HEPABHOBECHOI’O IIEPEHOCA TEI-IJIA, MACCbI I4 
KOJIIMYECTBA ABHxEHEIfI HA ABYX@A3HYIO CICOPOCTB 3BYICA 

&kroTwa-Paapa60TaHa MOAeJlb, IIO3BOJIFIlOIQaR ItOJIyWTb CKOpOCTb Pi 3aTyXaHkie 

aKyCTlNeCKHX BOJIH KaK (PYHKUHIO 4aCTOTbl B ABJ'X@a3HbIX OAHOKOMllOHeHTHblX CpeAaX. 

LIoKaaaHo, 'iTO HepaBHoBecHbrfi MeHc@aaoBbIi nepeKoc Tenna, MaCCbI II KOJIliYeCTBa 

ABlilKeHEIH 3Ha'iSiTeJlbHO BJIHqeT Ha CKOpOCTb aKJ'CTWieCKHX BOJIH. npr? HH3KEIX qaCTOTaX 

CKOpOCTb BOJlHbI AOCTlWaeT paBIiOBeCHOr0 3HaqeHHJI, paCCWiTaHHOF0 II0 d[(aP/+),]. 

B IIpeAeJlbHOM CJly'Iae BbaCOKOfi 'ZaCTOTbl CKOpOCTb BOJIHbI XapaKTepHayeTCFl OTCYTCTBHeM 

nepeHoca Tema,Maccn LiJIH KOJIEI'IeCTBa ABlI~eHHH MelKAy xmAKOB n IIapoBoi *aaam. 

3aTJ'XaHiie 6onbmoe IIpH BblCOKIlX YaCTOTaX. CpaBHeHEie TeOpHH C 3KCllepMMeHTOM nOHa- 

3bIBaeT, YTO nepenmti @p0~T BOJIH C 6onbmOB aMIIJIHTyAOt AaBneHHR II~~XOAI~T npH 

BLJCOKOM IIpeAene gaCTOTbI CKOpOCTH 3ByKa. 


