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Abstract: We investigate a class of dual crossing symmetric models which generate an infinite 
series of Regge cuts. The amplitudes contain Regge poles dual to finite width resonances 
and multi-reggeon cuts dual to multi-resonance cuts. We discuss the analyticity and 
asymptotic behaviour associated with these models and indicate how the pomeron might 
be incorporated. 

1. INTRODUCTION 

The concept of  duality [ 1 ], introduced only a few years ago, has helped us to in- 
crease our understanding of strong interaction physics and plays an important  role 
in most of  the theoretical considerations and construction of  new models [2]. The 
Veneziano model, probably the most successful and certainly the best known and 
studied of  these, is a simple, though ingenious and elegant representation of one 
particular choice of  duality: duality between resonances and Regge poles [3]. The 
model has at t racted considerable interest and has led to much research, the construc- 
tion of  a dual field theory [4], new ways of  looking at some bootstrap problems and 
has even altered our phenomenological understanding of  hadron physics [5]. It 
should be added, however, that the phenomenology usually supplements the Vene- 
ziano model with extra assumptions which break some important  properties of  the 
original model. Most of  the phenomenological problems with the Veneziano model  
stem from an incorrect analytic structure in which all the resonances appear as bound 
states (poles on the real axis) and not  as poles on secondary sheets in the complex 
plane. Although the perturbative unitarisation procedure based on the dual field 
theory transforms these bound states to resonance poles, this does not help phenom- 

* Present adress: High Energy Physics, Cavendish Laboratory, Cambridge, England. 
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enology as the expressions obtained are far too complicated for any comparison with 
experiment. Phenomenology needs relatively simple expressions which have as many 
desirable properties as possible and yield to calculations connected with reality. 

Phenomenologically, Regge cuts are important [5]. There is still much discussion 
and controversy as to their form and detailed properties but their necessity seems 
well established now and their existence little disputed. Various types of  Regge cut 
exist in the literature. Of these the most popular are absorptive cuts (strong [6] and 
weak [7]), A.F.S, [8], eikonal [9] or fixed cuts. Some methods introduce a whole 
series of cuts, others introduce effective cuts to simulate the whole series. 

The perturbative unitarisation of the Veneziano model based on the dual field 
theory also leads to Regge cuts [10]. 

Recently interest has arisen in the construction of  models which have more of  
the correct analytic structure associated with scattering amplitudes and which could 
be of  some interest phenomenologically [11, 12]. The interest centers primarily on 
the shifting of  the resonances onto unphysical sheets (without the introduction of  
ancestors) and also making the amplitude possess double spectral functions with the 
correct boundaries. This analytic structure usually follows from unitarity. Although 
it is difficult to impose unitarity it is believed that the introduction of  as much of  
the correct analyticity as possible helps through the appropriate choice of  free 
parameters to obtain amplitudes which minimize the effects associated with the lack 
of  complete unitarity. In practice, introducing the appropriate structure is quite 
difficult and non-unique, primarily because the correct analytic structure is not 
completely understood, particularly in a theory with duality. 

Phenomenologically we know that Regge cuts are necessary for the description 
o f  high energy scattering in terms of t-channel exchanges [5]. On the other hand, 
so far we seem to be able to describe low energy scattering adequately in terms of  
resonances only. It appears that we need not introduce any significant s-channel cuts 
associated with multiresonance production. However, we expect that such cuts exist 
even though we are not sure about the form of their discontinuities. 

What are the Regge cuts dual to? Are they dual to these s-channel cuts or should 
we not dissociate the Regge poles from the Regge cuts in the t-channel when we 
consider duality? We believe that these questions are of  great interest. One way to 
study such questions is by trying to construct models which exhibit the improved 
analytic structure that we have discussed and which also introduce Regge cuts so 
that we can study their structure and the properties that they impose on the scatter- 
ing amplitude. Of course if the model is phenomenologically tractable a certain 
amount of  information can be gained from comparison with experimental data 
although the non-uniqueness of  such models makes the study of  the correlations 
implied by the model perhaps more important at the moment*. 

In this paper we introduce a class of dual, crossing symmetric models containing 

* One of us (W.J.Z.) would like to thank Dr. H. Harari for an interesting discussion and for 
stressing this point. 
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an infinite series of  Regge cuts (multi-reggeon exchange) which simulate the effects 
of absorption by the inclusion of  intermediate states of  many particles. All models 
exhibit a direct duality structure, i.e., resonances are dual to Regge poles, two par- 
ticle s-channel cuts build up two-reggeon exchange contributions etc. It is also shown 
how the introduction of  the non-linear parts of  the Regge trajectories enables us to 
construct amplitudes with the expected double spectral function boundaries. In 
sects.2 and 3 we discuss the models in detail, analyzing their asymptotic behaviour 
and singularity structure. We show that at high energy each multi-reggeon contri- 
bution to the amplitude yields the expected asymptotic behaviour associated with 
the exchange of  n reggeons in the cross channel. In the energy-plane we find cuts 
which occur at energies above that of  the elastic threshold for the scattering process 
under consideration. For rising trajectories with finite widths these cuts lie on un- 
physical sheets and may be associated with inelastic thresholds corresponding to 
multi-resonance production. In section four an attempt is made to construct a model 
which contains Regge-many pomeron cuts. A general discussion of  these models is 
made in the last section. 

2. MANY REGGEON AMPLITUDE AND ITS PROPERTIES 

We consider the invariant amplitude describing the scattering of  spinless particles 
that do not couple to the pomeron in any channel. Whenever a Regge trajectory 
can be exchanged, a Regge-pomeron cut can in general also be exchanged. Such cuts 
will be introduced in section four. Here we shall introduce only the cuts which 
arise from the combining of  many reggeons together. 

We propose the following integral representation for the amplitude valid in the 
region s < 0, t < 0 in terms of  two dimensional anti-Euclidean vectors qs and qt 
where qs 2= - s ,  q2t = - t :  

1 

M(s, t) = ; dx [x(1-x) ]  -3 G(x, l -x ,  s, t) d2bs d2bt eibs'qs+ibt'qtH(6), (2.1) 

0 

where 

5(x, bs, bt)= ?-?--lr)4f d2x s d2xt e-ixs'bs- ixt'bt F(x2( I_x ) , x~x , x ,  ( I _x ) )  

X X --~R(-x~)+2 (1 --X) -c~R(-x/)+2. (2.2) 

The functions F, G, H are chosen as follows: 

H(6) = e 6 - 1, 
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F(xff(1 - x ) ,  xtZx, x, 1 - x )  = f(Xs2(1 - x ) ,  x ) f ( x~x ,  1 - x )  

X x  - a I ( - x ] ( 1 - x ) ) ( 1 - x )  - c ~ I ( x ~ x ) ,  

G(x, 1 - x ,  s, t) = 1. (2.3) 

In this way finite width resonances have been incorporated by the method of  
Cohen-Tannoudji et al. [ 11]. By writing the leading Regge trajectory (which is ex- 
pected to satisfy a dispersion relation) in the form 

~(s) = C~R(S ) + ~i(s), (2.4) 

and applying the t -  x duality concept to the non-linear* part ai(s) of a(s). The 
form of cq(s) is determined by detailed dynamics. A simple form would be 
7(4/~ 2 s) b where v = O~R(4/~ 2) 1 . - + ~- in terms of the first elastic threshold. Before 
proceeding we must show that eq.(2.1) is convergent for s, t < 0. For simplicity we 
shall take f =  1 and ~l = 0 here. Then we can perform an angular integrations and 
obtain: 

I C= M(s, t) = (2~r) 2 f dx [x(1 x)] -a bsdbs 3 btdbtJo(bsqs)Jo(btqt) 
0 0 0 

Ie { (2~)z0~xP  xsdxs(xtj°° dxtJo(xsbs)Jo(xtbt)x %( Xs) _ 2 + × 

0 

×(1--X)--~2(--X])+2}--l? (2.5) 

in terms of the zeroth order Bessel function. With a/(s) = a i + ris we can perform 
the x s and x t integrations: 

1 d o  c ~  

f b, db.f btdbtJo(bsqs)Jo(btqt) 
0 0 0 

e 
[ --~t X 2 - a ~ ( 1 - x )  2-a2 

X xp / (2//') 2 4rar21nxln(1-x)  

× exP~4r l - i~  + 4r21n(1 - x )  
(2.6) 

* This method of separating a(s) into linear and non linear parts has also been suggested by 
several authors (ref. [ 14]). 
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The b s and b t integrations are convergent since for large b s and b t 
1 1 

IJ°(bsqs)J°(btqt)L <~ \qsqt] \bsbt] 

and the factor 

exp Aexp 4 r ~ + 4 r 2 1 n ( l _ x ) j j  1 

guarantees convergence with 0 ~< x ~< 1. It is evident that M(s, t) is crossing sym- 
metric and, upon expansion of the exponential in eq.(2.3), expressible as an infinite 
series of terms, the first of which is the generalized Veneziano amplitude for two 
body scattering containing Regge poles in each channel. 

We write 
o o  

M(s, t) = ~ Mn(s, t), (2.7) 
n=l 

1 
Ml(s, t) = - x  f dx /(s(1 - x ) ) f ( t x ) x  -aR~(s)-aI'(s(1 - x ) ) -  1 ( l _ x ~ a R 2 ( t ) - c q  ( t x ) -  1 

0 

Furthermore, with non-linear trajectories, this first term when appropriately con- 
tinued to s, t > 0 has a double discontinuity in a domain which may be chosen to 
coincide with the support of the lowest lying Mandelstam double spectral function. 
We shall show later how the other terms generate double discontinuities with higher 
lying boundaries. 

The second term in the expansion of the exponential may be written 

X2 1 
f ~ ~d~xs fd2x/(4(1-x))f(x[x) M2(s, t) = ~ (2n) 4"  

X X -aRl( - x ~ ) -  aRl(- (qs -Xs )~)+ 1- cql(-x~( l - x ) ) -  all(- (qs-Xs)2(l-x))  

X (l--x)  -c-R( x])-C~R2((qt-xt)2)+l-aI2(-x~x) cq2(-(qt-xt)2x) 

(2.8) 

In order to simplify the analysis of the properties of this and higher terms we shall 
make the approximation of using linear trajectories a(s) = al(s) = a2(s) = a + rs and 
also set f =  1. We can then perform the two dimensional integrations in M2 and 
obtain 

X2 el x l - 2 a - ~  rs (1 - - x ) l - 2 a - }  rt 
M2(s, t) - ) dx lnx i n ( I - x )  (2.9) 

128n2r 0 
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In order to elucidate the behaviour of this integral for large - t  we change vari- 
able to u = - t x  and find 

+1 oo 

(_ t )2a  -~rs-1 f u-2a-~sr e-~Ur--Gtt. 
M2(s, t) t~-oo l n ( - t )  1287r2r 0 

1 1 Writing a2(s) = 2a + ~rs - 1 = 2a(~s) - 1 we see that for t -+ _oo we have 

M2(s, t) ~ - -  V( %(s)) 
t ~ - ° °  128n2r l n ( - t )  

If  we analyse the nth term in the expansion in a similar way we see that its 
asymptot ic  behaviour is given by 

(-~)n ['(-an(S)) ( ~ )  an(s) 
Mn(s, t) t-+ oo n! in n- l (_~t)  - - -  ' 

where 

(2.10) 

(2.11) 

an(S) = n  - n + l  . 

To obtain Regge behaviour for Itl -+ ~ we have to perform an analytic continuation.  
In the case of  linear trajectories the analytic continuation of  an expression such as 
eq.(2.9) can be readily done by "the rotat ion of  the integration contour method"  
[ 15]. Indeed, if we change the variable with ( 1 - x )  = CY and then rotate the y 
contour this method shows that the asymptot ic  behaviour in eqs.(2.10) and (2.11) 
holds for ltl ~ ~ everywhere except on the positive real axis. The existence of the 
nonlinear part to the trajectory helps to remove this restriction. 

We next analyse the singularities that arise from Mn(s, t) (n > 1) in the finite 
positive s or t plane. In the s-channel, for example,  they arise from the end point 
x = 0 of  the integral 

gs  1 -ha - - - +  2 n -  3 na _rt+ 2 n - 3  
Mn °C ~ f dx X n ( I - x )  n 

• 0 [ l n x  l n ( l  x)] n - 1  

1 x-an(S)+n-2 ( l_x) -an( t )+n-2  _ ( _ ~ ) n  

n! f dx 
0 [ lnx  l n ( 1 - x ) ]  n-  1 

(2.12) 

We exhibit  the singularities by observing that they are contained in the integral 

e -C~n(S)-l+k 
dxX 1 

f ( - l n x )  n -  
O 

, n @ l , k = 0 , 1 , 2 , . . .  (2.13) 
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where we have expanded the integrand about the lower limit of integration. To 
examine this integral we change variables to u = - l n x  and express it in terms of the 
incomplete gamma function [ 16] 

f d u e  u(an(s) - k)  u _ n _  1 = (k  - an(s ) )n -2  I ' (2-/7,  lne (an(S) - k)) .  (2.14) 

- I n  e 

The incomplete gamma function is now written in the form 

n - 1  

r ( - n ,  x) =L-hi : "  ' " .  [1`(0, x)  - e -x  m=0~ (_1)  m ~._]m! , (2.15) 

where 1`(0, x)  ~ In x at x ~ 0. 

We see that eq.(2.14) behaves as 

(k  - -  a n ( s ) ) n  - 2 ln(k - a,,(s)) (2.16) 

in the neighborhood of an(S ) = k, k = O, 1, 2 ... Thus the amplitude has logarithmic 
cuts which are soft with the exception of  n = 2. (i,e., the discontinuity vanishes at 
the branch point.) The branch points are all at higher energies than the energy of the 
first resonance and can be associated with inelastic thresholds corresponding to 
multiresonance production. 

It is perhaps worth mentioning that the structure of  these cuts can be altered if 
one is prepared to alter the asymptotic behaviour of eqs.(2,10) and (2.1 1). We can 
insert a factor 

,1 

[1 - l n ( x ( 1  - x ) ) ] T  ( 2 . 1 7 )  
1 

into H and also modify 6 by the insertion of [1 - ln (x (1  - x))]-~-. This leads to no 
modification of Ml(s, t) but does change the structure of  all the other cuts. The 
changes are as follows. 

(a) The s plane cuts in M2(s, t) take the form of  elastic-type cuts. This follows 
from the x = 0 behaviour. The integral now contains an extra factor ( - lnx)-~ which 
when combined with the expression (2.14) gives 

1 

M2(s, t ) ~  [k - a 2 ( s ) ] 2  

near a2(s) = k. Other cuts are also modified, e.g., 

Ms(s,  t)  ~ [k - a3(s)] 2 ln(k - a3(s)) etc. (2.16b) 

(b) The Regge behaviour is also modified. Eq.(2.11) is replaced by 

r(-an(s)) (__~) ~(s) 
Mn(s, t ) "  s 

ln~(n- l ) (_ t )  
(2.1 lb)  
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Since it is not clear whether such factors (2.17) should be introduced we present 
them here as suggestions. In what follows we shall not insert them, the discussions 
can be easily modified if it turns out that their presence is necessary. 

To discuss the analytic continuation in the presence of non-linear trajectories 
and to establish the boundaries of  the double spectral functions generated by 
Mn(s, t) it is useful to use the Bessel representation (2.5). 

(2rr)z 1 ? oo 
Mn(s, t) = ~n~ " f dx[x (1 -x ) ]  -3 bsdb s f btdbtJo(btqt)Jo(bsqs) 6n(x, b s, bt), 

o o o (2.~8) 

where 

o o  o o  

6 (x, bs, bt) = x s dx s X t dxtJo(bsxs)Jo(btxt) 
0 

X x -aR(-x~)+2-cq(-x~(1 -x))(1--X) -c~R(-x~)+2-c~I(-x~x). 

For simplicity we have again set f = 1. 
With the aid of  the relation [17] 

o o  

f Jo(bx/~) Jo(bV~-h)Jo(bx/Z-[-h)b db 
2 o(-x) 
rr x/-X(t, tl, t O '  

0 

where 

(2.19) 

X(t, q, h) = t 2 + t( + t~ - 2th - 2tt2 - 2tat2, 

we have the following representation for M2(s, t): 

0 
X 2 1 L dtldt2dhds20(-Xl)O(-X2) 

M2(s, t ) -  (27r) is 7r - __ ~ ( L ,  tl, h)X/ZX2(s, Sl, s2) 

1 
X ; dx x -~R(sl)-aR(s2)+l-°q(sl(1-x))-c~I(s2(1-x)) 

0 

X (1-X)-~R(q)-~R(t2)+l-aI(t~x)-al(t2x! (2.20) 

The higher terms can be expressed in terms of  invariants in a similar way if we use 
the relation 

l O f  J°(rxfZ-tl)O-~(----~)v ,,t tl, '2) (2.21) J o ( r x / ~ ) J o ( ~ )  : dh " /-~+t3, 
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in order to reduce the chain products of  Bessel functions that occur. For example 
the next term yields 

_X3 0 e dslds2ds3ds23 O(--Xl) O(--X2) 
M3(s, t) = - -  

3[(2n) 24 _ x/'ZXi(s2, sa, s23) ~ , ~ h 3 )  

fO dtldt2dt3dt23 O(_X3)O(_X4) x-  aR(S,)- ~R(S,) X dx 
d x/--X3(t2, t3, t23) -x/Z~-X4(t~I, t23, t) a0 _ _ O o  

X X- aR(Ss)+3--aI(Sl( l-x))-aI(S2( 1- x))- aI(S3(l-x)) 

X ( l - -x )  -c~R(tl)-aR(t~)-c~R(t~)+3-al(t~x)-al(t2x)-al(t3x) . (2.22) 

We can regard eq.(2.22) as a coupling scheme (with a particular choice of  coupling 
functions) in which dual reggeons two and three are first coupled to form an 
effective particle which is then coupled to the third reggeon. 

The basic technique for continuing eq.(2.20) has been given by Polkinghorne 
and Olive [18] in their analysis of Mandelstam cuts. For negative s and t the (sl, s2) 
and (tl, t2) integration domains are the third quadrant interiors of the parabolas 
Xl = 0, X2 = 0 in their respective planes. As s and t increase to positive values each 
domain of  integration degenerates into a coincident line pair and reappears as a 
domain in the relevant complex plane. Using the Cauchy theorem in its generalized 
form we can rotate these integration domains into the real (sl, s2), (tl, t2) planes 
again. This procedure is permissible until such values of s and t are encountered that 
yield unavoidable singularities in the integrand. (For details see ref. [ 18].) 

Observe that there are two sources of  singularities in our expression (2.20). The 
first is associated with the divergence of the x-integration leading to the previously 
discussed singularities. The discontinuities of the singularities are linear in the other 
variable and so do not contribute to the double spectral functions. The second stems 
from the explicit threshold singularities contained in a I. Analyzing eq. (2.20) for 
simplicity we see that M2 will have a singularity in s at a value s = (x/s ° + x/s°) 2 
where s o and s~ are the positions of  the singularities in Sl and s2. The singularities in 
sl and s2 coming from a I are at 

(th)sl (th)s2 
o - _ (2.23) s ° -  1 - x '  s , / -  1 - x '  

and so taking the discontinuity over a will introduce 

O ( s - ( ~ - - ~ +  : t l h ) ~ h  x ) 2 ) ~  O ( s ( 1 - x ) -  ( ~ +  ~ 2 ) 2 ) .  

Taking the discontinuity over t introduces 
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O(tx - ( V ~ ) t l  + ~/(th)t2)2), 

which tells us that the support of the double spectral function* is 

ts - t((w/O~sl+ w/(th)s:) z - s( ( t ~ q  + ( ~ t 2 )  2 >~ 0. (2.24) 

We end this section with some comments on the form of  H(6) which we have 
chosen to be expression (2.3) 

H(~) = e ~ - 1. 

This choice was motivated by the formal similarity of  our model to the Regge- 
eikonal model. However, the conventional eikonalisation procedure is performed 
in either the s-channel or the t-channel. In our case the above choice for H may not  
be the most appropriate.  In fact in the next section we briefly discuss a model in 
which the freedom of choice in the direction of qs and qt allows us to construct  an 
eikonalisation in both the s and t-channel with a single two dimensional integration 
over the impact variable b. This model is compared with eq.(2.1) and it suggests 
that H(6) in eq.(2.1) should be 6e ~. 

3. MODEL WITH ONE IMPACT VARIABLE 

In this section we choose qs and qt such that 

(is "qt = 0 

and introduce the following integral representation 

1 

M(s, t) = f dx I x ( l - x ) ]  -3 lnx i n ( 1 - x ) f  d2b eib'qH(5), 
0 

where 

H ( 5 ) =  e ~ - 1 , 

1 1 
q = qs ( - l n x ) ~  + qt ( - l n (  1 - x ) )  ~, 

~(x, b ) =  
--3, ~ct2 k _ib.kX2-a~(1--x)2-a2e -rk2 

(27r) J -  - - l n x  ln(1--x)  

--3` x2-a~(_l--x)2-a2 e_b:/4r. 
2r l n x  ln(1--x)  

(3.1) 

(3.2) 

* To obtain the correct double spectral function boundaries we can make the necessary modifi- 
cations suggested in ref. [ 111. 
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This slightly artificial looking model reproduces the Veneziano model as the 
first term in the expansion of e6 - 1. The trajectories in the s and t-channels have 
intercepts al and az and slope r. Since the eikonalization is performed in both s and 
t-channels simultaneously we have chosen//(6) = e 6 - 1. We observe that M2, for 
example, can be written as 

1 2-a~-- -2-a2 ? y . x t l - x )  
M2(s, t) ~ 3 ax ~ bdbJo(bx/slnx + t ln(1-x))  

0 0 

1 oo 

x f e f k dkjo(b  ) 
0 0 

i x l - 2 a ' ( 1 - x ) l - 2 a ~ f  dk'e--r(k~" + k:) O(-X) 1 

× ~ dx l n x l n ( l - x )  0 0 
(3.4) 

This, perhaps surprising X function, reduces to the expected X function in the 
asymptotic limit. To see this take t ~ - ~  and introduce the variable u = -x t .  Then 

(_t)2a~- 1 oo oo oQ e-r(k~ +k~) O(--~t) 

X/~--X(--sin(--t)+u, 2 2 -  -kx, -k~) 0 0 0 

With the further change of variables 

k~ = - z l l n ( - t )  + u , 

k~ = -z21n(- t )  + u ,  

this becomes 

oo 0 0 

M2(s, t)-* ( - t )  2a1-1 ln( - t )  f du u-2al f dz, f dz20(-X)e-2ur  
_ _ o o  _ _ ~  

1 

× (_t)rz~ +rz, ( -X(-s ln( - t )+u,  z l ln( - t ) -u ,  z21n(-t)-u)) -7 

0 0 0j x.._t_2a ' (  )~ ) f duu-2"'e-2Urf azi f dz2 - l+rz ,+ rz~ , ( 3 . 5 )  

0 . . . .  x/-X(s, zl, z2) 

confirming the expected two-reggeon structure. 
Next we study the relation of this model to the model of sect.2. In the expression 

1 

M.(s, t )=l  f dx [x(l-x)l-a lnx ln(l-x) f d2b eiq "b 8 n (3.6) 
0 
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we shall write d2b = dbxdby and introduce new variables B x 
1 

by(-ln(1 - x ) ) i .  
If  we utilize the relation 

= b x ( - l n x ) :  and 8y = 

f e b=/lnx db = X/~(-lnx) 
__oo 

we can rewrite eq.(3.6) as 

1 
1 n z " 

n~ " f dx(x(1-x))-aT~Trrrf d b,f d=bt e'q''b'+ iq,.b, 
0 

r , ~ x 2 - a , ( l _ x ) 2 - a ~ n e x P I 4 7 r f b  ~ bff } ] ,  (3.7) 
X L-a , ,  1 - n x i ~  _] [ l n x ' t  I n ( l - x )  

where we have used the orthogonality of  qs and qt to introduce b s and b t. Thus we 
see that 

M(s, t)= E Mn(s, 0 = f dx[x(1-x)]-a f d2'bs' f d2bt e i(Wbs + Wb') aeA 0.8) 
4rrr ' 

n=l 0 

where 

 x2-a,(l_x 2-a2 f # I 
8(x, bs, bt)= - 4 r l n x l n ( 1 - x )  exp t ~ r T ~ + 4 r l n ( l _ x ) ) .  

We recognize the formulae (2.1), (2.2) and (2.3) with the particular choice 

F = I ,  

a = 1 ,  

H(8) = ae 5, (3.9) 

and linear trajectories. 
It is interesting to investigate the s behaviour at high t of our model {2.1). This 

behaviour depends crucially on the form of  H(8) and so guided by the comparison 
with the model (3.2) we choose H(6) in eq.(2.1) as 8e 8. Of course the details of  the 
behaviour will also depend on the form o f F a n d  G. We know from experiment that 
Regge trajectories are approximately linear so we might hope that setting F = G = 1 
will not affect our analysis too much. Since eq.(2.1) may be made equivalent to 
eq.(3.2) we shall choose the latter to study this behaviour. We write 

1 ~' 
M(s, t) = f dx Ix(l-x)] -a lnx ln(1 -x) f b d b J o ( b ~  + tln(1-x) {exp(Ae-b2/C)-l} 

0 0 (3.10) 
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where 

--)t X 2-al (1 --X) 2-a~ 
A -  

4rlnx l n ( 1 - x )  ' 

c = 4 r ,  

and notice that as a function of  b the expression in curly brackets above has a 
vanishing derivative at b = 0 at b = oo. The first derivative has an ext remum at 

1 +Ae -b2/c= c (3.11) 
2b 2' 

and since the bracket is non zero at b = 0 the major contr ibut ion to the b integral 
in eq.(3.10) comes from the region b ~< bo where bo is the solution to eq.(3.11). 
Since A is small we have 

b~ ~ ½c = 2r .  

Approximating the integral 

bo bo J 
~ bdb Jo(bz) {exp(Ae-b2/c)-l} ~ f b dbJo(bz ) = ~-  ~(boz), 
0 0 

where 

we see that 

z = ~ + t i n ( I - x ) ,  

1 

M(s, t) ~ f dx [ x ( 1 - x ) ]  -3 ln(x) ln(1-x)J l (x /~z) /z .  (3.12) 

0 

For large t this gives the following s behaviour for the whole expression 

M(s, t) ~ ~(t) J l ( x / ~ ~ )  . (3.13) 

In this limit all the s dependence of  the model  is given in terms of  the first order 
Bessel function dirived by x/L~-s. The arguments above are crude and imprecise but 
the result is suggestive of  the popular optical models of  high energy xffscat ter ing.  
It is not  known experimentally what s behaviour the many-reggeon part of  the 
amplitude should reproduce but in the approximation of  treating the bare pomeron* 
as a Regge trajactory we obtain the above Bessel function as an approximation to 
the diffractive peaks which seem to be experimentally verified [21 ]. 

* In this language the conventional pomeron should presumably be associated with our bare 
pomeron plus all the multi-pomeron cuts. 
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4. A MODEL WITH REGGEON-MANY POMERON CUTS 

In the last two sections we studied models of amplitudes with many reggeon 
cuts. Phenomenologically however, reggeon-many pomeron cuts appear more im- 
portant as they are expected to be stronger and always accompany Regge pole ex- 
changes [ 13]. 

The model we propose in this case is again eq.(2.1) with an appropriate choice 
of H. We have to introduce two kinds of 6 now: ~R corresponding to Regge poles 
and 6p to be associated with the bare pomeron. Guided by the ideas of the last 
section we take 

H(/5 p, ~R) = fiR( 1 + 6Pe6P) • (4.1) 

This would correspond in the one impact variable model of sect.3 to 6 R e 8P. For 
~R we take expression (2.2) of sect.2. As the nature (and definition) of the pomeron 
singularity is not known we shall assume that it is phenomenologically reasonable 
to approximate the input pomeron by an effective Regge pole and so take 

5p = ( 2--~ f d2xs f d2xt e- ixs'bs-ixt'bt Fp(x2s(1-x), x~x, x, (1-x)) 

X X -aP(-xff)+2 (l--x) -aP(-xt)+2. ~ (4.2) 

Presumably ap should have a small slope and the approximation Fp = 1 is expected 
to be less reliable now. 

The analysis proceeds as in the previous two sections. We discover 
(a) Regge-pomeron cuts in the high energy behaviour. 
(b) Regge-pomeron resonance-like cuts in the finite energy plane. Their interpre- 

tation is unclear although they are expected to be shielded by the threshold cuts 
from the Regge trajectories a R. 

A real difference arises when one studies the s dependence of the amplitude for 
large t. Again it is convenient to go to the representation introduced in section 
three. With F = 1 and linear Regge and pomeron trajectories with different slopes 

1 oo 

M(s, t) cc f dx [x(1-x)l-alnxln(1-x) J b dbJo(bx,/slnx + tln(1--x))6R e6P, (4.3) 
0 0 

where 

X 2-al ( l - -x)  2-a2 e_b2/2r, 
t~R(X, b) = 4 r lnx ln (1 -x )  

~p(X, b) = x2-aP(1-x)2-ap  -b2/2rp 
4rp hlx ln (1-x)  e 
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ap(S) = ap + rps. 

Introducing 

C = 5p e b2/2rP, 

A = 4 r ,  

D = 4 rp ,  (4.4) 

we see that the b dependence of  6 R e ~P is contained in the function 

) 
The first derivative with respect to b vanishes again at b = 0 and b = ~ and also at 
bo = [-D ln(-D/AC)~I. Taking the major contr ibut ion to the b integral in eq.(4.3) 
from the maximum at b -- b0 

1 

M(s, t) o: f dx I x ( l - x ) ]  -a boJo(box/slnx + tln(1-x))x 2-al ( l - x )  2-a2. (4.5) 

0 
To obtain the behaviour for large - t  we change variable to u = - x t  and obtain 

M(s, t) ~ (_t)a~ ? du ul-a, l_4r, ln (-u rpln(-t)) t 1 
0 [ atr ) 

x {) 
( - t )  a' {ln(-t)}¼Jo(2x/Zs-rpln(-t)). (4.6) 

This crude analysis is given only to show the kind of  behaviour we expect  from 
a more realistic analysis in which Fp  is not  approximated by unity. 

5. DISCUSSION 

So far we have not  discussed the choice of  G in eq.(2.1) having set it equal to 
unity in previous sections. As we were discussing the case of four spinless particles. 
we expect  to use the freedom in the choice of  G for the construction of  more rea- 
listic models. For example the choice 

G = x ( 1 - x )  (1-o~(s) - a( t)) ,  

F = l~ 
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gives for M1 the Lovelace formula for the scattering of pions [19]. 
We have not discussed the problem of introducing signature into our models. 

This problem is, of course, related to the problem of signature in the Veneziano 
model. The simple procedure of adding M(s, u) and M(t, u) to M(s, t) does not in 
general lead to an acceptable signature structure for the Regge cuts [20]. This 
problem appears complicated and has not been solved yet. 

One can also study the fixed angle behaviour of our amplitudes although this 
also turns out to be difficult in general and will not be attempted here. 

In this paper we have discussed a class of models which generate an infinite 
series of Regge cuts and which, at the same time, are not too complicated to be of 
some phenomenological use. Although we have discussed the scattering of scalar 
particles coupled to unsignatured trajectories we believe that the complications 
inherent in physical scattering processes can be incorporated without altering the 
previous results in any significant way. The models have considerable freedom in 
terms of unspecified parameters and functions but are endowed with a number of 
properties that we consider to be important for an adequate description of hadron 
physics. 
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