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Abstract: We have initiated an entirely new approach to statistical mechanical models of strongly
interacting systems where the configurational parameters and the potential energy function are both
constructed so that the canonical partition function can be evaluated analytically. For a simplified
model of proteins consisting of a single, fairly short polypeptide chain without cross-links, we can
adjust the energy parameters to favor the experimentally determined native state of seven proteins
having diverse types of folds. Then 497 test proteins are predicted to have stable native folds, even
though they are also structurally diverse, and 480 of them have no significant sequence similarity
to any of the training proteins. © 2004 Wiley Periodicals, Inc. Biopolymers 74: 214–220, 2004
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INTRODUCTION

Basic classical statistical mechanics over the canoni-
cal ensemble is an appealing way to relate theories or
models at the molecular level to macroscopic observ-
ables, such as equilibrium thermodynamic properties.
For N interacting point particles having positions and
momenta described in Cartesian coordinates, the com-
plete Hamiltonian H is a function of 6N degrees of
freedom, and the thermodynamics of the system can
be derived from the partition function Z, which is the
integral over all degrees of freedom of exp(�H/kT).
Integrating over the 3N momenta components is easy
because each degree of freedom is used in exactly one
additive term in H, so that part breaks up into a
product of simple integrals. The trouble arises from
trying to integrate over the 3N position components,
because the potential energy part of the Hamiltonian

is not necessarily what we will refer to as a separable
energy function, namely a sum of terms, each of
which depends on a separate, disjoint, small subset of
the position parameters. Of course a great deal of
cleverness has been devoted to getting around this
problem by studying systems of weakly interacting
particles where adequate approximations to the parti-
tion function can be devised.

Unfortunately, useful models of protein folding all
involve a large number of particles all linked together
in the potential function by terms involving nearly all
possible pairs of particles plus yet more complicated
terms. Direct integration of the partition function is
infeasible because one must integrate over all degrees
of configurational freedom simultaneously, whether
those are Cartesian coordinates of (united) atoms or
torsion angles for rotatable bonds. Another approach
is to drastically reduce the number of degrees of
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freedom, at least for a somewhat local examination of
the conformation space, by combining them into a
few collective variables, such as the low-frequency
modes in normal mode analysis.1–5 Alternatively,
many variations on Monte Carlo can sample the con-
figuration space widely and insightfully,6–10 resulting
in a Boltzmann distribution of states in the limit of
infinite computer time. Molecular dynamics relies on
the ergodic hypothesis to reach the same distribution
of states.11–14 In either case, agreement with experi-
ment requires an adequate approximation to the true
energy of the system as a function of the configura-
tion, and for large systems it remains difficult to
determine whether equilibrium has been reached:
“. . .lack of sampling [is] an important concern for
peptide simulations.”15

Here we instead take the radical approach of
choosing a set of variables that allow a global treat-
ment of all conformations of a polypeptide chain,
while simultaneously inventing an empirical potential
function that is separable in these variables so that it
is feasible to evaluate the partition function. One
might call this: Statistical Mechanics Enabled Using
Separable Energies � SMEUSE � “(noun) a hole in
a hedge, wall, etc.”16 If the potential can be adjusted
to give agreement with experimental thermodynamic
results, then SMEUSE lets us slip through the stone
wall of concern over adequacy of sampling.

METHODS

Haar Transform of Coordinates

The first question is how to parameterize protein conforma-
tions. We need invariants under translation and rotation
because the internal energy of proteins in dilute solution is
not affected by these operations. The conformational pa-
rameters should also be simple to relate to amino acid
sequence features. There are many possibilities one can try
beyond the customary atomic Cartesian coordinates or tor-
sion angles about rotatable bonds. For example, a Fourier
transform of atomic Cartesian coordinates as a function of

sequence position requires that the ends of the chain are
very close in order to be a periodic signal, which is by no
means the case for real proteins. A discrete cosine transform
avoids the periodicity requirement and gives terms associ-
ated with periodicities in structure that could be associated
with corresponding periodicities in sequence, but the period
of a particular term is relative to the full chain length,
whereas there are always 3.6 residues per turn in an �-helix,
regardless of the total size of the protein. However, a
wavelet transform of atomic Cartesian coordinates as a
function of sequence position gives us a hierarchical de-
scription of the positions of fixed length subsegments of the
chain without requiring any sort of periodicity, and these
terms can be related to the sequence of the corresponding
subsegment. Applications of wavelets to proteins have been
mostly analyses of structural features.17–20 Of the many
different kinds of wavelets,21 the simple Haar transform22

seems best suited to the present application.
Let [xi, yi, zi] be the Cartesian coordinates of the C� atom

of the ith residue in a polypeptide chain, for i � 1, . . ., N.
When N is a power of 2, the standard Haar wavelet is

�w, j�i� � � �2w��1/2 for i � j, . . ., j � w � 1
��2w��1/2 for i � j � w, . . ., j � 2w � 1
0 otherwise

(1)

�N,1�i� � N�1/2 for i � 1, . . ., N

where the half-width w � 1, 2, 4, . . ., N/2 increases by
factors of 2, and the start of the wavelets having that
half-width j � 1, 2w � 1, 4w � 1, . . ., N � 2w � 1 increase
by 2w. There are altogether N wavelets, and they constitute
a complete orthonormal basis for vectors of data x
� [x1, . . ., xN]T. In other words, associated with each
wavelet is a Haar transform coefficient

x̂w, j � �
i�1

N

xi�w, j�i� (2)

and the exact original signal can be recovered from them.
If N is not a power of 2, then Haar wavelets may be

readily generalized23 to arbitrary N by using Eq. (1) when
j � 2w � 1 � N, but otherwise using

�w, j�i� � � �N � 1 � j � w

�N � 1 � j�w �1/2

for i � j, . . ., j � w � 1

� � w

�N � 1 � j��N � 1 � j � w��
1/2

for i � j � w, . . ., N

0 otherwise

(3)

where w � 1, 2, 4, . . ., 2k and k � 0 is the largest
integer such that 2k � N. With this arrangement, there
are always exactly N transform coefficients, and their
values are proportional to the difference between the

mean xi on the positive side and the mean xi on the
negative side.

Using center of mass coordinates guarantees that x̂N, 1

� ŷ
N, 1

� ẑN, 1 � 0, but otherwise the transform coefficients
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are rotated if the original points are rotated about the origin.
Consequently, we will use the transform distance

d̂w, j � �x̂wj
2 � ŷw, j

2 � ẑw, j
2 �1/2 (4)

which is independent of rotation for all the other choices of
w, j. Conceptually, d̂w, j is proportional to the distance be-
tween the centroid of the w residues starting at sequence
position j and the centroid of the following w residues. Since
we are using only N conformational parameters to describe
3N � 6 conformational degrees of freedom, one can always
calculate the d̂w, j for a given conformation, but there may be
multiple conformations corresponding to a given set of d̂w, j

parameters.

Segment Composition Vector

Let sw, j be a vector of 21 elements consisting of the constant
1 concatenated with the scaled residue type composition
vector cw, j of (the nonzero positions of) �w, j, namely,

sw, j � �1, cw, j	 (5)

where cw, j, i is the number of residues of type i (Ala, say) in the
2w positions of �w,j divided by 2w. Thus, �i�1

20 cw, j, i � 1. This
is the simplest imaginable correspondence between struc-
ture expressed in terms of the d̂w, j and the sequence com-
position cw, j of that segment of chain. More sophisticated
approaches would also reflect the specific sequence within
the segment, but that remains for future studies.

Separable Energy and Partition Function

Let the potential energy depend on conformation and se-
quence as

E � �
w, j

�d̂w, j � sw, j � aw�2 (6)

where for each w the first component of the adjustable
parameters in aw is a different variable, while the following
20 components are the same for each w. For short chains,
we need only wavelets having w � 2, 4, 8, 16, 32, and 64,
so there are 6 � 20 � 26 adjustable parameters in all. There
is no special physical justification for Eq. (6), but rather it is
the simplest conceivable form that lends itself to the re-
quired integration. It implies that the spatial extent of a
segment of polypeptide chain depends primarily on how
many residues are involved, and secondarily on the amino
acid composition of that segment, and there is a single ideal
value of the extent given the composition. The scaling of the
cw, j is essential in order to use the same 20 composition
parameters for all wavelet widths.

The partition function of the corresponding polypeptide
chain can be written as

Z ��
d̂w, j

. . .� exp� � �E�

� �
w, j

�
0




exp(���d̂w, j � sw, j � aw�2) dd̂w, j (7)

where � � (kBT)�1 for some arbitrary temperature T. The
range of integration for each d̂w, j is taken to be zero to
infinity for simplicity and with negligible error, although
there are tighter bounds for real polypeptides. The separa-
bility of E permits us to convert the multivariate integral
into a product of single variable integrals that are easy to
evaluate once the adjustable parameters are determined.

Optimization of Parameters

Since our model considers only a single polypeptide chain,
we needed to adjust the parameters to favor the native
conformation of proteins stabilized strictly by intrachain
interactions The Protein Data Bank (PDB)24 contains the
experimentally determined three-dimensional structures of
well over 24,000 proteins, but many of these database
entries illustrate slight conformational changes between
proteins having very similar sequences, or even the same
protein interacting with different small ligands. PDB Se-
lect25 is a subset of these where the proteins have sequences
that differ by at least a small amount, according to a formula
that permits a smaller fraction of identical residues for
longer chains. Out of the 5416 entries in the PDB Select
90% list of April 2002, we found 96 x-ray crystal structures
apparently involving only one, short polypeptide chain
without substantial ligands, such as heme groups. Further
scrutiny resulted in only 32 entries consisting of only a
single polypeptide chain of length no greater than 128
residues that seem to fold as monomers under reasonably
standard conditions to a compact structure having a radius
of gyration no more than 30% greater than the minimum for
the given chain length.26 Furthermore, no pair of these 32
chains has greater than 90% sequence identity after optimal
sequence alignment, and the root mean square deviation
(RMSD) between matching aligned residues after the usual
optimal rigid body superposition27 is greater than 3 Å.
When adjusting the parameters of our energy function, we
discovered that only 7 of the 32 contribute to the training.
The final training set of seven proteins shown in Table I
involves considerable diversity of fold types.28

If we can calculate the canonical partition function Z by
integrating over all microscopic states corresponding to
some macroscopic state, then the Helmholtz free energy of
that macroscopic state at the temperature corresponding to �
� 1/(kBT) is easily calculated by A � ���1 lnZ. Experi-
mental data for protein folding is in terms of Gibbs free
energy, but for such aqueous solutions, the difference is
small. Let the partition function corresponding to the native
state be
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Z0 � �
w, j

�
d̂w, j

0 /2

2dw, j
0

exp(���d̂w, j � sw, j � sw�2)dd̂w, j (8)

where the d̂w,j
0 are the transform distances [Eq. (4)] of the

native conformation. The integration is over the native
region, which is generously taken to run from d̂w,j

0 /2 to 2d̂w,j
0 .

This certainly includes the given crystal structure plus some
degree of flexibility, as seen experimentally in solution,29,30

but is much smaller than the total range of conformations in
the denatured state. Future work may refine the native range
of integration to better agree with experiment. The free
energy of folding is simply �A � ���1 ln(Z0/Zdenatured),
and if the given temperature corresponds to the midpoint of
the thermal folding transition, �A � 0 and the two partition
functions are equal. Here we simply calculate the total
partition function Z integrated over all states [Eq. (7)], and
since Z � Z0 � Zdenatured, at the midpoint Z0/Z � 0.5. A
polypeptide chain is considered to be stable at its native
conformation at the given temperature if Z0/Z � 0.5. Then
we can optimize the parameters aw by minimizing the
objective function

Fobj � �
p

� �ZP
0 /Zp � 0.5�2 if Zp

0/Zp � 0.5
0 otherwise (9)

summing over all 7 polypeptide chains p in the training set.
The wavelets of the seven selected chains may have

seven possible different widths. However, d̂1,j corresponds
to the transform distances between two sequentially adja-
cent residues, which are relatively constant along the chains.
So we only consider six widths, w � 2, 4, 8, 16, 32, 64.
Furthermore, we use the same 20 parameters corresponding
to the scaled residue composition inside the wavelet inde-
pendent of w, resulting in 6 � 20 � 26 adjustable param-
eters aw. Noting that Z0 will be a relatively large fraction of
Z if sw, j � aw is located inside the native region, we first
minimized

F�obj � �
w, j, p

�sw, j � aw

d̂w, j
0 �2

� � d̂w, j
0

sw, j � aw
�2

(10)

so that d̂w,j
0  sw, j � aw for most wavelets of most proteins.

Then the aw were further refined by minimizing Fobj in Eq.
(9), eventually reaching Fobj � 0, when all the seven train-
ing proteins were stable. All these calculations were carried
out in MOE using the SVL computer language.31

RESULTS AND DISCUSSION

Optimized Parameters

Success at fitting and prediction depends on many
features of the model, such as the functional form of
the energy, although we have not experimented yet
with alternative forms. The range of conformations
assumed for the somewhat flexible native state in Eq.
(8) has an effect on results, but shows no obvious
trends (data not shown). Since our conformational
parameters, the d̂w, j, do not fully specify the confor-
mation, refining the ranges of integration is not yet
warranted.

Obviously choosing different arbitrary sets of pro-
teins for training will produce different results. How-
ever, of the 32 small and distinct proteins found in

Table II Energy Parameters

w or Residue
Type ai

2 �6.11
4 0.068
8 11.57
16 15.78
32 20.32
64 41.39
A 9.94
C 14.62
D 11.65
E 10.49
F 12.78
G 13.39
H 11.47
I 11.50
K 10.42
L 11.48
M 10.58
N 10.62
P 12.98
Q 9.48
R 10.62
S 11.71
T 13.39
V 12.63
W 9.16
Y 11.71

Table I Training Set Proteins

PDB Entry
No.

Residues Typea

1COA.I 64 � � �
1ENH 54 �
1JWO.A 97 � � �
1OPS 64 �
1PGB 56 � � �
1PTF 87 � � �
1TMY 118 �/�

a SCOP classification.28
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PDB Select that apparently fold as a single chain
without large ligands or cross-links, only the seven in
Table I have an effect on the training. Removing the
other 32 � 7 � 25 from the training set produces the
same parameters. Even these seven are not overfitted,
since their final Z0/Z values range from 0.74 to 0.98.

The final values of the aw in Table II include a
parameter associated with each of the 20 amino acid
types. We found that the mean and standard deviation
for clearly hydrophobic types (V, L, I, M, F, and W)
are greater than those for clearly hydrophilic types (K,
R, E, N, D, and Q). This is interesting because a larger
positive parameter favors a larger value of d̂w, j, which
corresponds to more extended local conformation. By
surveying the wavelets with w � 2 of all 497 pre-
dicted proteins, we plotted the histogram of d̂w, j for
hydrophobic dominant (�75% clearly hydrophobic
residues) and hydrophilic dominant (�75% clearly
hydrophilic residues) segments. The histogram of hy-
drophobic dominant segments (Figure 1) shows a
bimodal distribution, either very small (typically part
of an �-helix) or very large (typically part of a
�-sheet), whereas for hydrophilic dominant segments
(Figure 2), the histogram has a high peak at small
values and relatively smooth distribution at larger

values. As a result, the mean and standard deviation of
clearly hydrophilic parameters are smaller than those
of clearly hydrophobic parameters. The bimodal dis-
tribution of d̂w, j for hydrophobic dominant segments
suggests that the hydrophobic residues tend to either
form a locally compact conformation, such as �-helix,
or a locally extended �-strand that is globally compact
due to associating with other strands in a �-sheet.

Prediction of Short Polypeptide Chains

The parameters were adjusted so that Z0/Z � 0.5 for all
seven training proteins at the arbitrary temperature cor-
responding to � � 1. Thus, these proteins prefer their
respective native states over the denatured state at this or
any lower temperature. A test protein is considered to
favor its native state if there is any temperature for which
Z0/Z � 0.5, not just at � � 1. After all, our very simple
model is only trying to show some degree of stability for
correctly folded proteins, rather than trying to match
experimentally determined temperatures for the mid-
point of the thermal denaturation curve. From PDB, we
selected 1822 chains whose lengths vary from 30 to 128
residues. Out of these we found there are 497 proteins

FIGURE 1 Histogram of d̂w, j values for hydrophobic dominant wavelets of width � 2.
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predicted to be stably folded, grouped according to their
general fold type in Table III. Only 17 of these have
noticeable sequence identity (�30%) to some of the
training proteins, but the other 480 are sequentially un-
related to the training set. More �-helical proteins were
predicted to be stable, but all types are represented, and

there are no obvious trends in chain length or predicted
Z0/Z values. The values of Z0/Z listed in the table were
all calculated at the same temperature used in training,
and most are above 0.5. For some the ratio is lower, but
for these there is a lower temperature where the native is
favored over the denatured state.

FIGURE 2 Histogram of d̂w, j values for hydrophilic dominant wavelets of width � 2.

Table III Predicted Proteins

Typea
No.

Proteins
Range of

Chain length
Range of

Zo/Z
Range of %

Sequence Identityb

� 166 31–122 0.381c–0.986 12.5–48.3
� 73 36–128 0.2c–0.986 10.3–27
�/� 30 61–128 0.457c–0.981 15.8–93.8
� � � 123 37–128 0.337c–0.98 13.5–89.3
� and � 1 32 0.988 14.3
Small protein 90 40–112 0.329c–0.989 11.9–23.4
Coiled coil 1 39 0.74 18.5
Low resolution 1 79 0.792 16.9
Peptide 9 40–86 0.65–0.987 13–19.6
Designed protein 3 67–126 0.605–0.935 20.4–22.2

a SCOP classification.28

b The training set protein in Table I having the greatest percent sequence identity after optimal sequence alignment.
cZo/Z � 0.5 at a lower temperature than that used in this table.
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There are many polypeptide chains in PDB for
which our energy function predicts that the given
conformation is not stable at any temperature. Note
that our calculation takes into account only the single
polypeptide chain whereas most proteins in PDB are
involved in substantial associations with other
polypeptide or polynucleotide chains, as well as with
other substantial ligands or prosthetic groups. Cova-
lent disulfide bridges are treated as separate Cys res-
idues in our calculation, thus underestimating the de-
stabilization of the denatured state.

CONCLUSIONS

The results with SMEUSE at this point amount to a
proof of principle. Our initial focus has been on the most
basic stability of protein folds with respect to thermal
denaturation, leaving for future studies the more difficult
questions of quantitative agreement with experiment on
protein folding thermodynamic state functions, kinetics,
and structural fluctuations. At this point it is possible to
construct a separable energy function, Eq. (6), that de-
pends on the conformation and amino acid sequence of
a single polypeptide chain represented at the very low
resolution of one point per residue. The parameters can
be adjusted so that 7 small proteins have thermally stable
native states, and we can easily find another 497 proteins
that are correctly predicted to be stable in their native
conformations. Both the training and test sets span the
full range of general fold types for relatively short
chains. This is not a matter of somehow exploiting
sequence homology, because 480 of the predicted pro-
teins have only negligible levels of sequence identity to
any of the training proteins. On the other hand, many of
the structures of small proteins in PDB are correctly
predicted to have unstable native conformations in the
sense that these proteins are significantly stabilized by
factors outside the scope of the current model, such as
disulfide bridges and associations between multiple
polypeptide chains. Whatever the shortcomings may be
of the current energy function and conformational pa-
rameterization, there is no concern about the adequacy
of conformational sampling. These results come from
the analytical integration of the partition function over
all conformations encompassed by the model.

This work was supported in part by a grant from the Uni-
versity of Michigan Bioinformatics Program, and the
Howard Hughes Medical Institute.
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