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BACKGROUND. Prostate carcinoma (PC) frequently metastasizes to bone, where it

causes significant morbidity and mortality. Stromal elements in the primary and

metastatic target organs are important mediators of tumor cell intravasation,

chemoattraction, adhesion to target organ microvascular endothelium, extravasa-

tion, and growth at the metastatic site.

METHODS. The role of stromal factors in bone metastasis was determined with a

cyclic DNA microarray comparison of a bone-derived cell PC cell line with a soft

tissue-derived cell PC cell line and by evaluating the effects of selected stromal

components on PC cell chemotaxis, cell adhesion to human bone marrow endo-

thelium (HBME), and PC cell growth.

RESULTS. The authors demonstrate that PC cells express protease-activated recep-

tor 1 (PAR1; thrombin receptor), and its expression is up-regulated in PC compared

with normal prostate tissue. In addition, this overexpression was very pronounced

in bone-derived PC cell lines (VCaP and PC-3) compared with soft tissue PC cell

lines (DUCaP, DU145, and LNCaP). The authors report that bone stromal factors,

including stromal cell-derived factor 1 (SDF-1) and collagen Type I peptides, are

chemoattractants for PC cells, and they demonstrate that some of these factors

(e.g., extracellular matrix components, transforming growth factor �, bone mor-

phogenic proteins [BMPs], and SDF-1) significantly alter PC-HBME interaction in

vitro. Finally, stromal factors, such as BMPs, can regulate the proliferation of PC

cells in vitro.

CONCLUSIONS. Soluble and insoluble elements of the stroma are involved in mul-

tiple steps of PC metastasis to bone. The authors hypothesize that PAR1 may play

a central role in prostate tumorigenesis. Cancer 2003;97(3 Suppl):739 – 47.
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Skeletal metastases occur in approximately 90% of patients with
advanced prostate carcinoma (PC).1,2 Typical clinical presenta-

tions include pain, spinal cord compression, and pathologic frac-
tures.3 Pain is usually the first symptom and results from mechanical
or chemical stimulation of pain receptors in the periosteum/en-
dosteum by the growing tumor mass. Spinal cord compression results
from expanding extradural tumor growth, spinal angulation second-
ary to vertebral collapse, or dislocation of the vertebra after patho-
logic fracture. Back pain, motor weakness, sensory loss, and auto-
nomic dysfunction all are common symptoms of spinal cord
compression. Pathologic fractures occur as a result of the tumor mass
weakening the bone and are associated with both osteolytic and
osteoblastic bone lesions.3,4
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The clinical consequences of bone metastases
are well documented; however, the molecular and
cellular mechanisms involved in PC preferential me-
tastasis to bone are not well defined. The ability of
PC cells to home to the bone is the result of multiple
factors, including attainment of the requisite meta-
static abilities by the tumor cell; cell chemotactic
response to bone factors; preferential adhesion to
bone marrow endothelium; and the interaction of
PC cells with the bone microenvironment, leading
to growth of PC in the bone marrow (Fig. 1). Metas-
tasis is the result of tumor cell interactions with
three distinct microenvironments: those of the pri-
mary organ, the circulation, and the target organs
where metastases develop. Soluble and insoluble
stromal elements, as part of these microenviron-
ments, are involved in each step of the metastatic
cascade.

The Tumor Cell and Breakdown of the Primary Organ
Microenvironment
In addition to the intrinsic genetic mutations that
tumor cells acquire, it is well recognized that the
growth of the tumor mass in the primary organ re-
quires a complex interaction with the tumor microen-
vironment.5,6 The stroma provides growth factors that
stimulate the tumor cells to grow.7 In addition, as the
tumor cells grow and divide, they secrete matrix met-
alloproteinases (MMPs) that break down the stroma
and basement membrane. At the same time, there is
down-regulation of tissue inhibitors of MMP that am-
plify the process.8 We hypothesize that protease-acti-
vated receptor 1 (PAR1; thrombin receptor) plays a
critical role in PC cell metastasis through the activa-
tion of cell motility as well as the activation of the
MMPs, leading to breakdown of the stromal environ-
ment and active intravasation of the tumor cells into

FIGURE 1. Proposed steps involved in prostate carcinoma metastasis to bone. During transformation of the prostate epithelium, protease-activated receptor 1

(PAR1) expression is increased (1). Tissue factor (TF) facilitates the generation of thrombin (Thr), which activates PAR1 on prostate carcinoma cells to induce their

secretion of matrix metalloproteinases and to increase cell motility; ultimately promoting tumor cell intravasation (2). Prostate carcinoma cells must survive the

trauma of the circulation (3) and respond to chemotactic factors (4) from target organs (i.e., prostate carcinoma cells that metastasize to bone [PB] respond to a

bone chemoattractant, whereas prostate carcinoma cells that metastasize to the dura [PD] respond to a dura chemoattractant). The PB cells dock on a bone

endothelium specific lectin, and PD cells may be able to do this as well (5). However, PB cells may lock preferentially to a bone endothelium specific integrin (6)

and then extravasate into the bone microenvironment through PAR1-induced endothelial retraction (7). The tumor cells replicate in response to the growth factors

present in the bone marrow and communicate with osteoblasts (OB) and osteoclasts (OC) (8). Consequently, PAR1 expression is increased further. PL, prostate cancer

cell that homes to lymph nodes; C, non-prostatic cancer cell.
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the circulation. We have demonstrated that PAR1 is
overexpressed in PC tissue compared with normal
tissue.9 It has been demonstrated that PAR1 is present
in multiple types of tumor cells.10,11 In breast carci-
noma and melanoma cells, it has been demonstrated
that PAR1 activation can lead to increased MMP ex-
pression and subsequent invasion.10,11 We believe that
this activation is a result of the presence of tissue
factor (TF) in the microenvironment as well as throm-
bin, which comes into contact with tumor cell PAR1 as
a result of the leaky microvasculature of tumors.12

Intravasation
The intravasation of tumor cells requires cell detach-
ment from the expanding tumor mass, degradation of
the stromal tissue and basement membrane, and in-
creased cell motility. Examples of stromal factors that
contribute to this process include factors that result in
the activation of PAR1. TF, which is present in the
stroma, plays a direct role in the generation of the
protease thrombin from prothrombin, and it has been
reported that TF contributes to the molecular events
necessary for tumor cell invasion.13,14 We hypothesize
that prothrombin and thrombin are present in the
tumor microenvironment as a direct result of the leaky
blood vessels found in tumors.12 Thrombin activates
several protease-activated G protein-coupled recep-
tors (PARs) that are expressed on the surface of tumor
cells and endothelial cells.13,15 PAR activation on a cell
can result in increased cell adhesion to matrix pro-
teins, secretion of MMPs, and increased cell motil-
ity.13,14,16 To determine the role of thrombin in the
progression of PC, several PC cell lines with differing
metastatic phenotypes were evaluated for PAR1 ex-
pression by using microarray analysis, reverse tran-
scriptase-polymerase chain reaction analysis, and
Northern analysis.9 The data demonstrated that the
LNCaP, PC-3, VCaP, and DUCaP PC cell lines overex-
pressed PAR1 compared with normal prostate tissue,
suggesting that PAR1 may be involved in PC tumori-
genesis and metastasis. It is interesting to note that
PAR1 expression was increased further in the cell lines
that were derived from bone metastases (the PC-3 and
VcaP cell lines) compared with cell lines that were
derived from soft tissue metastases (the LNCaP, Du-
CaP, and Du145 cell lines).9,17,18 The precise role of
PAR1 expression and thrombin in PC metastasis has
yet to be determined; however, these data suggest that
PAR1 activation may be important in the early stages
of PC metastasis.

Survival in the Circulation
The microenvironment of tumor cells in the circula-
tion remains under appreciated and understudied.

The tumor cells must evade the immune system and
the mechanical stresses of blood flow.19 The microen-
vironment of the circulating tumor cells includes trav-
eling through the blood as part of a fibrin clot sur-
rounded by other tumor cells and platelets.13 In this
setting, activation of PAR1 on tumor cells by thrombin
allows for increased motility of the tumor cells as well
as potentially up-regulating integrins, which allow the
tumor cells to bind to other tumor cells and platelets
to protect themselves from the shear stresses of the
circulation.20

Going to a New Home: Chemotactic Factors
PC metastasis to bone may be mediated in part by
chemotactic factors. The bone is constantly being re-
modeled and, subsequently, releases potential che-
moattractants for tumor cells.21,22 Several investiga-
tions have reported that collagen Type I peptides,
undescribed components of bone marrow fibroblast
conditioned media, transforming growth factor �

(TGF-�), insulin-like growth factor I (IGF-I), IGF-II,
and osteonectin all act as bone-derived chemoattrac-
tants for PC cells in vitro (for review, see Cooper and
Pienta23). In addition, it has been shown that unde-
scribed components of bone marrow fibroblast con-
ditioned media mediate PC-3 cell chemotaxis through
the Rho/Rho-kinase pathway.24 A more recent study
demonstrated that stromal cell-derived factor 1
(SDF-1) facilitated the migration of PC cells across
human bone marrow endothelial (HBME) cell mono-
layers and their invasion into matrigel or collagen
Type I, a major component of the bone matrix.25 The
chemotactic response of PC cells to SDF was mediated
by their expression of CXCR4 because pretreatment
with a CXCR4 antibody blocked SDF-1 activity. These
observations suggest that PC cells, like hematopoietic
cells, may use the SDF-1/CXCR4 pathway to facilitate
their movement to and around the bone microenvi-
ronment.

PC-Endothelium Interaction: Docking
Adherence of tumor cells to organ microvascular en-
dothelial cells is a critical step in the bone metastatic
cascade because it determines the site of metastasis
and is necessary for tumor cell extravasation.26 –28 A
recent study demonstrated that the adhesion of tumor
cells to their preferred endothelium initiated tumor
cell proliferation within the vessel prior to extravasa-
tion.29 Studies from our laboratory demonstrated that
the PC cells preferentially adhered to immortalized
HBME cells compared with immortalized human um-
bilical vein endothelial cells (HUVECs), immortalized
human aortic endothelial cells, and immortalized hu-
man dermal microvascular endothelial cells.30,31
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These observations were confirmed in another inves-
tigation that demonstrated the preferential adhesion
of PC-3 cells, a PC cell line derived from a bone me-
tastasis, to a primary culture of HBME cells compared
with primary cultures of HUVECs and lung microvas-
cular endothelial cells (Hs888Lu).32 Although these
studies suggest that preferential adhesion of circulat-
ing PC cells to bone marrow endothelium partly con-
tributes to the metastatic pattern observed in ad-
vanced PC, it is important to consider that these
adhesion studies were done in the absence of natu-
rally occurring soluble factors. These soluble factors,
which may be growth factors, cytokines, and extracel-
lular matrix (ECM) components, may alter the expres-
sion of cell adhesion molecules (CAMs) involved; thus,
their affects on PC cell-endothelial cell interaction
should be determined.

Tumor cell binding to the microvascular endothe-
lium involves two distinct steps that are described in
the docking and locking hypothesis.33 The initial dock-
ing of the tumor cell to the endothelium is mediated
by lectins. Integrins are responsible for the subse-
quent locking of the tumor cell to the endothelium.
Both lectins and integrins have been implicated in PC
adhesion to HBME cells. PC-3 cells treated with galac-
tose-rich, modified citrus pectin (an antibody to ga-
lectin-3) and arginine-glycine-aspartic (RGD) pep-
tides, had a reduced ability to bind HBME cell
monolayer in vitro.30 The effects of modified citrus
pectin and galectin-3 polyclonal antibody suggest the
involvement of a lectin, whereas the RGD peptide
effect suggests integrin involvement. Other investiga-
tions suggest that �-1 integrins, hyaluronan, and a
type C cell surface lectin expressed on the surface of
PC-3 cells also may mediate PC-3-HBME interac-
tion.32,34,35

Previously, we demonstrated that �-1 integrins
expressed on HBME cells did not mediate PC-3 cell
adhesion to these cells.36 It has been reported that the
�v�3 integrin mediates the adhesion of PC-3 and
DU145 cells to cytokine-activated HUVEC monolay-
ers.37 We characterized �v�3 expression in a variety of
PC cells and determined that PC-3 cells expressed the
greatest amount (Table 1). To determine the role of
�v�3 in PC-3-HBME interaction, PC-3 cells were
treated with LM609, a well-characterized �v�3-block-
ing antibody, prior to starting HBME adhesion assays.
The data demonstrated that LM609 treatment did not
significantly alter the adhesion of PC-3 cells to HBME
cell monolayers, suggesting that this integrin, ex-
pressed on PC-3 cells, does not mediate preferential
adhesion (data not shown). Although HBME cells ex-
press �v�3 as well (data not shown), its role in the
PC-3-HBME interaction could not be tested because

treatment of HBME cells with LM609 causes detach-
ment of HBME cells from the plastic substratum. To
date, CAMs involved in PC-3-HBME interaction that
are specifically expressed on HBME cell surface have
yet to be identified and characterized. Because it has
been demonstrated that activation of PAR1 can alter
CAM expression, we currently are investigating
whether thrombin stimulation of PAR1 alters CAM
expression.

PC-Endothelium Interaction: Locking
The expression of CAMs on endothelial cells as well as
tumor cells is not static, but is dynamic and is regu-
lated strictly by factors like growth factors, cytokines,
and the composition of the ECM.26,40 – 43 Some CAMs
involved in docking and locking a tumor cell to the
microvascular endothelium typically are not produced
by endothelial cells until stimulated by a cytokine.42

Therefore, the effects of these naturally occurring fac-
tors on CAM expression should be considered when
trying to identify CAMs involved in tumor cell-endo-
thelial cell interaction. This consideration is especially
vital to the study of PC adhesion to HBME cells due to
the plethora of growth factors and cytokines in the
bone marrow.44

We investigated how PC cell adhesion to HBME
cell monolayers was affected by growing HBME cells
on soluble ECM components extracted from kidney,
bone, and placenta.31 The growth of HBME cells on
bone, kidney, and placenta ECM proteins significantly
increased their ability to bind PC-3 cells, independent
of the ECM protein concentrations. It was expected
that bone matrix components would enhance PC-3
cell adhesion to HBME cells selectively; however, sim-
ilar results with kidney and placenta ECM compo-

TABLE 1
Evaluation of �v�3 Expression on Prostate Carcinoma Cell Linesa

Cell lines �v�3 �1

LNCaP 6 95
C4-2 12 98
MDA PCa 2a 4.4 96
MDA PCa 2b 2.8 95
ALVA-41 13 96
VCaP 45 98
DuCaP 20 97
PC-3 78 96

a Flow cytometric analyses of �v�3 expression on the surfaces of prostate carcinoma cell lines. The

numbers represent the percentages of positive cell minus background in a population. The LM609

antibody (Chemicon) was used to detect �v�3 expression, and 3S3 antibody (Chemicon) was used to

detect �1 expression. The MDA PCa 2a and 2b cells were derived from bone lesions in the same patient

and were kindly provided by Dr. Nora Navone (see Navone et al.38) The ALVA-41 cell line also was

derived from a bone metastasis and was kindly provided by Dr. Rosner (see Nakhla and Rosner39).
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nents were demonstrated. These results suggest that
the expression of CAMs involved in PC-3-HBME cell
interaction also is regulated by soluble components of
the bone matrix.

In another study, we determined the effects of
tumor necrosis factor � (TNF-�), TGF-�, and dihy-
drotestosterone (DHT) on PC-3-HBME interaction.45

Both TNF-� and TGF-� regulate CAM expression on
endothelial cells, and TGF-� also regulates CAM ex-
pression on PC-3 cells.42,46,47 DHT enhances the effect
of TNF-� on HUVEC monolayers and may contribute
to the effect of TNF-� on HBME cell monolayers.48 The
data demonstrated that treatment of HBME cells with
TGF-� prior to performing adhesion assays, signifi-
cantly reduced PC-3 cell adhesion in a dose-depen-
dent fashion. However, the treatment of PC-3 cells
with TGF-� did not alter PC-3-HBME adhesion. TNF-�

alone, or in combination with DHT did not demon-
strate a measurable effect in these adhesion assays.45

In a recent study, we determined the effect of
SDF-1 on PC cell adhesion to HBME cell monolay-
ers.25 C4-2B cells and PC-3 cells were pretreated with
SDF-1 (at doses that ranged from 0 ng/mL to 200
ng/mL) for 30 minutes at 37 °C prior to performing
adhesion assays. The data demonstrated that SDF-1
significantly increased the adhesion of both PC-3 cells
and C4-2B cells to HBME cell monolayers in a con-
centration-dependent manner.

The effects of bone ECM components and TGF-�

on HBME cell growth was not determined in the stud-
ies described above; thus, it is possible that altered
HBME cell growth, mediated by both of these soluble
bone factors, may alter PC-3-HBME cell interac-
tion.31,45 To characterize the effects that bone ECM
components and TGF-� have on the growth of HBME
cells in our adhesion assay model system, HBME cells
were grown on bone ECM components for 24 hours or
were treated with TGF-� for 24 hours, and growth
rates were determined. The data demonstrated that
neither bone ECM components nor TGF-� altered the
growth of HBME cells significantly in our adhesion
assays (data not shown). These results suggest that the
enhanced adhesion of PC-3 cells to HBME cell mono-
layers, mediated by bone ECM components, and the
reduced adhesion of PC-3 cells to HBME cell mono-
layers, mediated by TGF-�, are due to the ability of
these soluble factors to regulate CAM expression on
HBME cells.

Along with TGF-� and ECM components, the
bone microenvironment contains other cytokines that
conceivably may modulate PC cell interaction with the
bone marrow endothelium. One family of cytokines is
the bone morphogenic proteins (BMPs), which are a
group of proteins that belong to the extended TGF-�

family.44 These proteins, including BMP-1–BMP-7, in-
duce cartilage and bone formation, and it has been
reported that BMPs regulate integrin expression and,
subsequently, cell adhesion.49,50 Normal human pros-
tate and neoplastic human prostate cell lines express
BMPs, with BMP-4 being the most prevalent.50,51 Al-
though it has been reported that BMP expression by
PC cell lines contributes specifically to the osteoblastic
nature of bone lesions mediated by PC cells, the role of
BMPs in PC adhesion to bone marrow endothelium is
not known. We demonstrated in a previous study that
TGF-� had a significant effect on PC-3 adhesion to
HBME cell monolayer.45 Because BMPs belong to the
extended TGF-� family, it is possible that these cyto-
kines, like TGF-�, can alter PC-3-HBME interaction as
well.

The potential role of BMPs in PC-3-HBME inter-
action was determined by treating HBME cell mono-
layers with BMP-4, BMP-5, and BMP-6 or by treating
PC-3 cells with the same BMPs for approximately 24
hours prior to performing the adhesion assays. The
data demonstrated that treatment of HBME cell
monolayers with BMP-4, BMP-5, and BMP-6 at several
concentrations did not alter PC-3-HBME adhesion or
the growth of HBME cells significantly (data not
shown). BMP-4 treatment of PC-3 cells significantly
increased their ability to bind HBME cell monolayers
in a dose-dependent fashion (Fig. 2). It is interesting to
note that BMP-5 and BMP-6 treatments of PC-3 cells
failed to alter their interaction with HBME cell mono-
layers (data not shown). This study strongly suggests
that distinct BMPs have varying effects on PC cell
adhesion to bone endothelium and that BMP-4 spe-

FIGURE 2. The adhesion of bone morphogenic protein 4 (BMP-4)-treated

PC-3 cells to human bone marrow endothelium (HBME) cell monolayers. PC-3

cells were treated for 24 hour with BMP-4 prior to performing adhesion assays.

1: HBME/PC-3 control; 2: BMP-4 1.0 ng/mL; 3: BMP-4 10.0 ng/ML; 4: BMP-4

100 ng/mL.
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cifically may increase PC cell adhesion to the bone
endothelium.

Extravasation
The locked PC cell must break through the endothelial
barrier and extravasate through to the underlying tar-
get bone microenvironment. We hypothesize that ac-
tivation of PAR1, on both the tumor cell and the en-
dothelial cell, plays an important role in this step. The
adherence of the PC cell to the endothelial cell creates
a mini-microenvironment at the point of adherence
that includes the fibrin clot, the tumor cells, the plate-
lets, and the endothelial cell. PAR1-activated PC cells
may have increased motility, increased secretion of
MMPs and vascular endothelial growth factor (VEGF),
and alterations in the cell cytoskeleton that allow
movement through the endothelial monolayer.13,14,16,52

Activation of PAR1 on endothelial cells causes endo-
thelial cell retraction and increased expression of
VEGF receptors.53,54 We have demonstrated that bind-

ing of PC cells to endothelial cells causes endothelial
retraction (Fig. 3). Recent evidence suggests that this is
mediated by apoptosis of the endothelial cells.55

Bone Stromal Elements and PC Cell Growth
The bone microenvironment is replete with growth
factors and cytokines that can regulate the prolifera-
tion of PC cells.4 Koeneman and colleagues50 reported
that basic fibroblast growth factors (bFGF), IGF-I, IGF-
II, platelet-derived growth factor (PDGF), epidermal
growth factor (EGF), and TGF-� are mitogens for PC
cells. Some bone growth factors, such as TGF-�, can
inhibit or stimulate the growth of PC cells, depending
on their phenotype.4 SDF-1 alone is not a mitogen for
PC cells but may synergize the mitogenic effect of
other growth factors.25

Because advanced PC metastasizes to bone and is
hormone refractory, we hypothesized that bone-asso-
ciated growth factors and cytokines preferentially
stimulate the growth of hormonally independent PC

FIGURE 3. Photos of a PC-3 cell interacting with a human bone marrow

endothelium (HBME) cell monolayer. The cell attached within 15 minutes

(mins), induced endothelial cell retraction within 30 minutes, and started to

traverse the HBME cell monolayer within 45 minutes.
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cells. This hypothesis was tested by comparing the
mitogenic effects of bone-associated growth factors
and cytokines, including EGF, bFGF, TNF-�, IGF-I,
PDGF, TGF-�1, interleukin-6 (IL-6), and IL-1�, on an-
drogen-sensitive cell lines (LNCaP, VCaP, MDA PCa
2a, PCa 2b, and DuCaP) to androgen-insensitive cell
lines (PC-3 and DU145).17,18,38 The data demonstrated
that no tested bone growth factor preferentially stim-
ulated the growth of androgen-insensitive cells, sug-
gesting that androgen-independent PC cells do not
respond preferentially to mitogenic signals mediated
by bone-associated growth factors and cytokines.56

In the current investigation, we determined the
effect of BMPs on PC cell growth. The growth re-
sponses of LNCaP and PC-3 cells were determined and
compared. The results showed that BMP-4 preferen-
tially inhibited LNCaP cell growth (Fig. 4A). BMP-5
and BMP-6 inhibited the growth of PC-3 and LNCaP
cells in a dose-dependent fashion (Fig. 4B,C). These
observations suggest that some BMPs may be growth
inhibitors for PC cells, and their effect is independent

of androgen receptor expression and metastatic phe-
notype. It is noteworthy that BMP-4, which reportedly
inhibits prostate epithelial cell proliferation, preferen-
tially may inhibit the growth of PC cells that do not
metastasize to bone.57

Emerging Concepts
PC cell metastasis is a multistep process that requires
the tumor cell to interact with three distinct microen-
vironments; those of the primary organ, the circula-
tion, and the target organ. The soluble and insoluble
factors present in the microenvironments can both
enhance and inhibit tumorigenesis at every step. We
hypothesize that PAR1 plays a role in prostate tumor-
igenesis by increasing tumor cell motility and activat-
ing MMPs. It has been demonstrated that PC cells
bind to each other and to platelets to survive in the
circulation, and we have demonstrated that PC cells
adhere preferentially to HBME cells independent of
their respective metastatic phenotypes. For instance,
the rate of lymph node-derived LNCaP cell adhesion
to HBME cell monolayers was equal to or, in some
instances, greater than the rate of bone-derived PC-3
cell adhesion.30 Based on this observation and on the
docking-and-locking hypothesis, we speculate that
LNCaP cells may be able to dock equally as well as
PC-3 cells, but only cells with a bone-homing pheno-
type preferentially will lock to HBME cells. Experi-
ments currently are being designed to test the prefer-
ential lock concept for PC cells with a bone-
metastasizing phenotype (Fig. 1).

PAR1 expression is up-regulated especially in PC
cells derived from bone metastases compared with PC
cells derived from soft tissue metastases.9 Soluble fac-
tors produced by osteoblasts can alter the expression
of several genes in PC cells, affecting the migration
and growth of PC cells in the target organ.58 Thrombin
activation of PAR1 may facilitate PC cell secretion of
MMPs, allowing these tumor cells to liberate potential
growth factors from the bone matrix and enhance PC
extravasation and migration with the bone microen-
vironment. PAR1, therefore, may play an important
role in PC tumorigenesis both in the escape of tumor
cells from the primary site and in their movement into
the microenvironment at the site of metastasis.
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