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ABSTRACT: The region very close to an electron (r � r0 = e2/mc2 ≈ 2.8 × 10−13 cm) is,
according to quantum electrodynamics, a seething maelstrom of virtual electron–positron
pairs flashing in and out of existence. To take account of this well-established physical
reality, a phenomenological representation for vacuum polarization is introduced into
the framework of classical electrodynamics. Such a model enables a consistent picture
of classical point charges with finite electromagnetic self-energy. © 2002 Wiley
Periodicals, Inc. Int J Quantum Chem 90: 144–147, 2002
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P er-Olov Löwdin was an enthusiastic advocate
of the application of the techniques and modes

of thought of quantum chemistry to a wide range
of scientific problems, including material science,
molecular biology, and even particle physics [1]. In-
spired by such a fearless spirit of adventure, we
propose to go possibly “where no quantum chemist
has ever gone” to explore a different vista of the the-
ory of matter—the interior of the electron. This work
is dedicated in fond memory to Per-Olov Löwdin
for his intellectual inspiration, guidance, and friend-
ship.

Since the discovery of the electron by J. J. Thom-
son over a century ago [2], a persistant puzzle has
been how to account for its electromagnetic self-
energy. This has been the subject of extensive theo-
retical contemplation by some of the leading figures
of twenty century physics [3]. The earliest models
(Thomson, Poincaré, Lorentz, Abraham, Schott) [4]
pictured the electron as a finite charged sphere,
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on the scale of the classical electron radius r0 =
e2/mc2 ≈ 2.818×10−13 cm. The electromagnetic self-
energy of such a finite structure would be of the or-
der of W ≈ e2/r0 ≈ mc2 and thus implies an electron
rest mass predominantly electromagnetic in origin.
Yet all experimental evidence implies an electron
radius much smaller than r0, consistent, in fact,
with a particle of point mass and point charge [5].
Recent high-energy electron–positron scattering ex-
periments imply an upper limit of 2 × 10−16 cm on
the electron size.

If the electron is indeed a structureless point
charge, as assumed in quantum theories, in partic-
ular quantum electrodynamics, then how does one
avoid the divergent electromagnetic self-energy?
An analogous problem is dealt with very ele-
gantly in quantum chemistry. In Hartree–Fock the-
ory, the electrostatic interaction between two spin-
orbitals φα and φβ is given by the difference between
the Coulomb and exchange integrals:

Jαβ − Kαβ = 〈
α, β

∣∣r−1
12

∣∣α, β
〉 − 〈

α, β
∣∣r−1

12

∣∣β, α
〉
. (1)
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This reduces to zero when α = β, thus canceling out
all orbital self-interactions. We should like to extend
this idea to treat the self-energy of a single electron.

A number of ingenious schemes to avoid a diver-
gent electromagnetic self-energy for a point electron
have been proposed over the years by Dirac [6],
Wheeler and Feynman [7], Rohrlich [8], Teitel-
boim [9], and many others. The more recent ap-
proaches invoke such arcana as advanced solutions
of Maxwell’s equations (superposed on the conven-
tional retarded solutions) and/or renormalization
of mass and charge infinities. This enables the diver-
gent part of the self-interaction to be avoided while
leaving intact the radiation reaction, an effect long
known and thoroughly tested.

From a more general perspective, the singular-
ities in fields and energies associated with point
charges in classical electrodynamics has been a per-
vasive flaw in what has been an otherwise beauti-
fully complete and consistent theory. An immense
number of attempts to address this problem have
been based, roughly speaking, on one of the follow-
ing lines of argument: (1) Actual point charges do
not exist—real particles have a finite size—hence the
problem is artificial. (2) By a clever limiting proce-
dure in the formalism, the radius of a charge can
be reduced to zero without introducing infinities.
(3) Point charges are quantum objects and classical
electrodynamics has no business dealing with them.
The last point of view, espoused by Frenkel [10]
and others, asserts that any classical model is fu-
tile because the electron is a quantum mechanical
object with no substructure. It is nonetheless of at
least academic interest to have a consistent classi-
cal relativistic model that connects to macroscopic
electrodynamics, while remaining cognizant of its
limitations. The purpose of the present study is
a modified theory able to handle the singularities
produced by point charges while reducing to stan-
dard electrodynamics for r � r0.

We propose to provide possible finishing touches
to Maxwell’s electromagnetism without making any
ad hoc modifications of the fundamental equations
of the theory. The key to our approach is the
physical reality of vacuum polarization in the sub-
microscopic vicinity of charged elementary parti-
cles.

We will proceed on the premise that the electron
rest mass (0.511 MeV/c2) is totally electromagnetic,
which was the original idea of Lorentz and Abra-
ham. This is consistent with the (nearly, if not ex-
actly) zero rest mass of the electron’s uncharged
weak isodoublet partner—the neutrino—and with

order of magnitude of the neutron–proton mass dif-
ference (1.29 MeV/c2). There is no need to invoke
any nonelectromagnetic forces within the electron—
collectively known as Poincaré stresses.

The energy of an electromagnetic field in a rest
frame is given by

W = 1
8π

∫
(E · D + B · H) d3r. (2)

The field produced by a point charge e in vacuum is
represented by D = E = er̂/r2, B = H = 0 and

W = 1
8π

∫
e2

r4 4πr2 dr = ∞, (3)

unless a lower cutoff is introduced.
It was suggested a long time ago by Furry

and Oppenheimer [11] that quantum electrody-
namic (QED) effects could give the vacuum some
characteristics of a polarizable medium, which
Weisskopf [12] represented phenomenologically by
an inhomogeneous dielectric constant, viz

D(r) = ε(r)E(r). (4)

Constitutive relations in classical electrodynam-
ics describe properties of matter which must be
determined experimentally or, in favorable cases,
by quantum-theoretical computation. In the same
sense, Eq. (4) represents a constitutive relation for
the vacuum, as implied by quantum electrodynam-
ics. Using (4) in (2),

W = 1
8π

∫ ∝

0

1
ε(r)

e2

r4 4πr2 dr (5)

and equating this to the self-energy of the electron

W = e2

2

∫ ∞

0

dr
r2ε(r)

= mc2. (6)

Remarkably, the functional form of ε(r) need not be
further specified, provided only that it satisfies the
limiting conditions

ε(∞) = 1 and ε(0) = ∞. (7)

Maxwell’s first equation ∇ · E = 4πρ applied to the
electric field

E = er
ε(r)r3 (8)

determines the charge density

ρ(r) = − eε ′(r)
4πr2[ε(r)]2 . (9)

Note that this represents the net or total charge den-
sity, the sum of the free and polarization densities.
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This function is appropriately normalized since
∫ ∞

0
ρ(r)4πr2 dr = −e

∫ ∞

0

ε ′(r) dr
[ε(r)]2

= e
[

1
ε(∞)

− 1
ε(0)

]
= e. (10)

An explicit functional form for ε(r) does follow if
it is conjectured that the net charge density (9) is
proportional to the field energy density from (6). For
then,

ε ′(r)
ε(r)

= − e2

2mc2r2 (11)

with the solution

ε(r) = exp
(

e2

2mc2r

)
= exp

(
r0

2r

)
. (12)

It should be emphasized for the benefit of QED
theorists who might be reading this that our use
of the term “vacuum polarization” is intended only
in a classical phenomenological context. The lead-
ing contribution to vacuum polarization in real life
comes from the interaction of the electron with the
transverse radiation field, which does not enter in
our model. We are thereby overlooking additional
self-energy contributions arising from fluctuations
hi the vacuum radiation field. Accordingly, our rep-
resentation of vacuum polarization is not to be com-
pared with QED computations.

Somewhat of a rationalization for the functional
form of ε(r) is suggested by Debye–Hückel theory
for ionic solutions and plasmas. The dielectric con-
stant depends on a Boltzmann factor e−E/kT . If in
place of the average thermal energy kT, we substi-
tute the relativistic energy of pair formation 2mc2,
regarding the vacuum as an effective thermal re-
servior, then Eq. (12) follows with E = e2/r.

An explicit expression for the charge density fol-
lows by substituting (12) into (9):

ρ(r) = er0

8πr4 e−r0/2r. (13)

Since ρfree(r) = eδ(r), the density from vacuum po-
larization must equal

ρVP(r) = er0

8πr4 e−r0/2r − eδ(r), (14)

which is represented graphically in Figure 1. Ac-
cording to this model, the free point charge is ex-
actly canceled by the delta function term of the
polarization charge. This is certainly reminiscent of
the self-energy cancellation that occurs in Eq. (1).

FIGURE 1. Vacuum polarization produced by a point
charge. The vertical bar at r = 0 represents a delta
function, which cancels the free charge.

The electrostatic potential corresponding to (14)
is given by

�(r) = 2e
r0

(
1 − e−r0/2r

)
. (15)

This implies a deviation from Coulomb’s law of the
same magnitude as the fine structure in atoms, but
totally negligible on a macroscopic scale reality such
as the Lamb shift. Note that (15) reduces to e/r when
either r0 → 0 or r → ∞.

An alternative evaluation of the electromagnetic
self-energy follows from transformation of Eq. (2):

W = 1
8π

∫
E · D d3r = 1

2

∫
�freeρ d3r (16)

using

D = −∇�free = er
r3 (17)

and assuming the requisite vanishing of integrands
at infinity. Thus

W = 1
2

∫ ∞

0
�free(r)ρ(r)4πr2 dr

= e2r0

4

∫ ∞

0

e−r0/2r

r3 dr = mc2 (18)

in agreement with the previous result, and fur-
ther justification for the conjectured functional form
of ε(r).

We have also been able to obtain the result of this
study by an alternative derivation from the view-
point of general relativity [13]. A modification of
the Reissner–Nordstrøm solution to the Einstein–
Maxwell equations has been shown to give a finite
electron self-energy.
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