THE UNIVERS ITY OF MI CHI GAN COLLEGE OF ENGINEERING High Altitude Engineering Laboratory Department of Aerospace Engineering Department of Meteorology and Oceanography Quarterly Report HIGH ALTITUDE RADIATION MEASUREMENTS 1 January 1969 - 51 March 1969 Fred L. Bartman ORA Project 05863 under contract with: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT NO. NASr-54(03) WASHINGTON, D. C. administered through: OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR May 1969

X t *F- OT>

Table of Contents Page List of Tables iv List of Illustrations v Abstract vii I. Introduction 1 II. Analysis and Processing of Data for 20 November 1968 1 Balloon Flight A. Balloon Trajectory 1 B. Aerial Photography 1 C. Supporting Atmospheric Structure Data 6 1. Temperature and Relative Humidity Data from Conventional Radios onde s 6 2. Special Frost Point Hygrometer Flights 6 3. Ozone Data 10 4. Atmospheric Parameter Support Data Obtained by Colorado State University 10 D. MRIR 0. 2-4. 0 pm Channel Data 14 E. Filter Wedge Spectrometer Data 17 F. U. of M. Interferometer Data (by L. W. Chaney) 17 III. Medium and High Resolution Measurements of the 15 Mm Absorption Band of CO2. 18 A. Medium Resolution Measurements 18 B. High Resolution Measurements 18 IV. Determination of the Vertical Distribution of O from Radiance Measurements in the 9. 6 Am Band. (By J. M. Russell) 19 V. Laboratory Tests of the IRIS Interferometer (by L. W. Chaney) 19 VI. The Study of Techniques for Measuring Molecular Collision Rates (Relaxation Times) 20 VII. Microwave Occultation Studies (by F. F. Fischbach) 20 VIII. Reports Published 21 iii

List of Tables Page I. Aerial Photographs Available for Balloon Flight 11. 2 II. Time for Each Photograph Taken by Cameras #1 and #2 3 III. Time for Each Photograph Taken by Camera #3 4 IV. Temperature vs. Altitude Data, Rapid City, S. D. 7 V. Temperature vs. Altitude Data, Denver and Boulder, Colorado 8 VI. Temperature vs. Altitude Data, North Platte, Nebraska 9 VII. Frost Point Hygrometer Data, Rapid City, South Dakota, 11/20/68, 1512Z, Ascent. 11 VIII. Frost Point Hygrometer Data, Rapid City, South Dakota, 11/20/68, 2005Z, Ascent 12 IX. Frost Point Hygrometer Data, Rapid City, South Dakota, 11/20/58, 2005Z, Descent 13 X. Sun Angle Data for 20 November 1968 Balloon Flight 15 iv

List of Illustrations Figure 1. Balloon Configuration, 20 November 1968 Balloon Flight 2. Altitude vs. Time Data 3. Ground Trace of Balloon Trajectory, 20 November 1968 Balloon Flight 4. Balloon as Viewed from Balloon Gondola 5. Parachute as Viewed from Balloon Gondola 6. Photograph 190 Taken by Camera #1 at 210:15 E. S. T. 7. Photograph 190 Taken by Camera #2 at 1210:15 E. S. T. 8. Photograph 75 Taken by Camera #3 at 1207:03 E. S. T. Page 22 23 24 25 26 27 28 29 30 9. Temperature and Relative Humidity vs. Altitude, South Dakota, 2315Z, 19 November 1968. Rapid City, 10. Temperature South Dakota, 11. Temperature South Dakota, 12. Temperature South Dakota, 13. Temperature South Dakota, 14. Temperature South Dakota, 15. Temperature South Dakota, and Relative Humidity vs. Altitude, 1115Z, 20 November 1968. and Relative Humidity vs. Altitude, 1308Z, 20 November 1968. and Relative Humidity vs. Altitude, 1515Z, 20 November 1968. and Relative Humidity vs. Altitude, 2005Z, 20 November 1968. and Relative Humidity vs. Altitude, 2332Z, 20 November 1968. and Relative Humidity vs. Altitude, 1733Z, 21 November 1968. Rapid City, Rapid. City, Rapid. City Rapid City, Rapid City, Rapid City, 31 32 33 34 35 36 16. Temperature and Relative Humidity vs. Altitude, Deny Colorado, 2315Z, 19 November 1968. 17. Temperature and Relative Humidity vs. Altitude, Deny Colorado, 1115Z, 20 November 1968. 18. Temperature and Relative Humidity vs. Altitude, Deny Colorado, 2315Z, 20 November 1968. 19. Temperature and Ozone Partial Pressure vs. Altitude, Boulder, Colorado, 2043Z, 20 November 1968. 20. Temperature and Relative Humidity vs. Altitude, N. P Nebraska, 2315Z, 19 November 1968. 21. Temperature and Relative Humidity vs. Altitude, N. P Nebraska, 1115Z, 20 November 1968. 22. Temperature and Relative Humidity vs. Altitude, N. P Nebraska, 1723Z, 20 November 1968 er, er, er, 37 38 39 40 latte, latte, 41 42 43 1 atte. v

Figure 23. Temperature and Relative Humidity vs. Nebraska, 2315Z, 20 November 1968. Page Altitude, N. Platte, 24. Temperature and Nebraska, 1549Z, 25. Temperature and N. Dakota, 2315Z, 26. Temperature and N. Dakota, 1115Z, 27. Temperature and N. Dakota, 1833Z, 28. Temperature and N. Dakota, 2315Z, Relative Humidity vs. 21 November 1968. Relative Humidity vs. 19 November 1968. Relative Humidity vs. 20 November 1968. Relative Humidity vs. 20 November 1968. Relative Humidity vs. 20 November 1968. Altitude, Altitude, N. Platte, Bismarck, Altitude, Bismarck, Altitude, Bismarek, Altitude, Bismarck, 44 45 46 47 48 49 29. Temperature and Relative Humidity vs. Wyoming, 2315Z, 19 November 1968. 30. Temperature and Relative Humidity vs. Wyoming, 1115Z, 20 November 1968. 31. Temperature and Relative Humidity vs. Wyoming, 2315Z, 20 November 1968. Altitude, Lander, Altitude, Lander, Altitude, Lander, 32. Geometry of Reflection and Scattering 33. Balloon Gondola, Rotating Photocell at Top 34. Analog Brush Record of Photocell Data 35. Gondola Azimuth vs. Time, for period 1400-1500 E. S. T. 36. Bi-directional Reflectance in the Principal Plane, 1150-1154E. S. T. 37. Bi-directional Reflectance in the Principal Plane, 1248-1259 E. S. T. 38. Bi:-directional Reflectance in the Principal Plane, 1347-1403 E. S. T. 39. Bi-directional Reflectance in the Principal Plane, 1448-1501 E. S. T. 40. Photo Showing Portion of the Earth for Which Reflectance Data of figure 36 Applies. 41. Field of View Contours for IRIS Interferometer 50 51 52 53 54 55 56 57 58 59 60 61 62 vi

Abstract This report summarizes project activity during the period 1 January to 30 March 1969. Topics discussed are: 1. Analysis and processing of data for 20 November 1968 balloon flight. 2. Medium and high resolution measurements of the 15pm absorption band of CO2. 3. Determination of the vertical distribution of 03 from radiance measurements in the 9.6pm. band. 4. Laboratory tests of the IRIS interferometer. 5. Study of techniques for measuring molecular collision rates. 6. Microwave occultation studies vii

I. Introduction This is the 25th Quarterly Progress Report on Contract No. NASr-54(03) covering the period 1 January to 31 March, 1969. The project effort during this period of time was divided among the following tasks. 1. Analysis and processing of data for 20 November 1968 balloon flight. 2. Medium and high resolution measurements of the 151Am absorption band of CO2. 3. Determination of the vertical distribution of 03 from radiance measurements in the 9. 6pam band. 4. Laboratory tests of the IRIS interferometer. 5. The study of techniques for measuring molecular collision rates. 6. Microwave occultation studies. 7. Report writing. II. Analysis and Processing of Data for 20 November 1968 Balloon Flight Some of the basic data on the balloon flight were reported on in the last quarterly report 05863-24-P. Figures 20-27 of that report include data on the balloon configuration, the balloon trajectory, a temperature vs. altitude curve, and housekeeping data on the Filter Wedge Spectrometer, the MRIR radiometer and the balloon gondola. Some of that data is included in this report for completeness. Thus this report will contain a complete set of data on the balloon flight for data analysis purposes. A. Balloon Trajectory The balloon configuration is shownin figure.land characteristics of the balloon flight trajectory are shown in figures 2 and 3. Figure 2 shows pressure altitude versus time and also shows the temperature versus altitude data taken by the radiosonde unit carried on the balloon gondola. Figure 3 shows the ground trace of the balloon trajectory. A photo of the balloon as viewed from the balloon gondola just before cutdown is shown in figure 4. Figure 5 shows the parachute as viewed from the balloon gondola during descent. B. Aerial Photography Table I describes the aerial photographs obtained on balloon flight 11. The time at which each photograph was taken by cameras 1 and 2 is given in table II. Table III gives the time for each photograph taken by camera 3. 1

TABLE I Aerial Photographs Available for Balloon Flight II Camera Film Field No. Type Sides 1 IR Ektachrome 41.6~ 2 PlusX 21.5~ 3 Plus X 73.7~ 4 Ektachrome EF 73.7~ of View Corners 56. 50 30. 1~ 93. 4 93. 40 Direction of View Downward Downward Sideward Sideward Number of Time Interval Photos of Photos 357 0949:29-1611 EST 415 0849:46-1611 EST 166 0849:46-1611 EST _ _>e_ _ --- —-------- *'Focal plane shutter inoperative. 2

TABLE II TIME1 FOR EACH PHOTOGRAPH TAKEN BY CAMERAS #1 AND #2 Photo # Est. Photo # Est. Photo # Est. Camera #3_ 2 & #4 start 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Xw3 36 37 38 39 40 41 42 43 44 13 46 47 48 49 50 0849:46 0850:50 0851:54 0852:58 0856:10 0857:14 0858:18 0859:22 0900:26 0901:30 0904:42 0904:42 0905:46 0906:50 0907:54 0908:58 0910:02 0911:06 0912:10 0913:14 0914:18 0915:22 0916:26 0917:30 0918:34 0919:38 0920,42 0921:46 0922:50 0923:54 0924:58 0926:02 0927:06 0928:10 0929:14 0930:18 0931:22 0932:26 0933:30 0934:34 0935:37 0936:41 0937:45 0938:49 0939:53 0940:57 51 52 53 54 55 56 Camera_57 #1 start 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0942:01 0943:05 0944:09 0945:13 0946:17 0947:21 0948:25 0949:29 0950:33 0951:37 0952:41 0953:45 0954:49 0955:53 0956:57 0958:01 0959:05 1000:09 1001:13 1002:17 1003:21 1004:25 1005:29 1006:33 1007:37 1008:41 1009:45 1010:49 1011:53 1012:57 1014:01 1015:05 1016:09 1017:13 1018:17 1019:21 1020:25 1021:29 1022:33 1023:37 1024:41 1025:45 1026:48 1027:52 1028:56 1030:00 1031:04 1032:08 1033:12 100 1034:16 101 1035:20 102 1036:24 103 1037:28 104 1038:32 105 1039:36 106 1040:40 107 1041:44 108 1042:48 109 1043:52 110 1044:56 111 1046:00 112 1047:04 113 1048:07 114 1049:11 115 1050:15 116 1051:19 117 1052:23 118 1053:27 119 1054:31 120 1055:35 12T 1056:38 122 1057:42 123 1058:46 124 1059:50 125 1100:54 126 1101:58 127 1103:02 128 1104:06 129 1105:09 130 1106:13 131 1107:17 132 1108:21 133 1109:24 134 1110:28 135 1111:32 136 1112:36 137 1113:40 138 1114:44 139 1115:48 140 1116:52 141 1117:56 142 1119:00 143 1120:07 144 1121:11 145 1122:15 146 1123:19 147 1124:23 148 1125:27 Photo # Est. 149 1126:30 150 1127:34 151 1128:38 152 1129:42 153 1130:50 154 1131:54 155 1132:58 156 1134:02 157 1135:06 158 1136:10 159 1137:14 160 1138:18 161 1139;22 162 1140:26 163 1141:30 164 1142:34 165 1143:36 166 1144:40 167 1145:44 168 1146:48 169 1147:52 170 1148:56 171 1150:00 172 1151:04 173 1152:07 174 1153:11 175 1154:15 176 1155:19 177 1156:23 178 1157:27 179 1158:31 180 1159:35 181 1200:39 182 1201:43 183 1202:47 184 1203:51 185 1204:55 186 1205:59 187 1207:03 188 1208:07 189 1209:11 190 1210:15 191 1211:19 192 1212:23 193 1213:27 194 1214:31 195 1215:35 196 1216:39 197 1217:43 Photo # Est. 198 1218:47 199 1219:51 200 1220:55 201 1221:58 202 1223:02 203 1224:06 204 1225:10 205 1226:14 206 1227:18 207 1228:22 208 1229:26 209 1230:30 210 1231:36 211 1232:40 212 1233:44 213 1234:48 214 1235:52 215 1236:56 216 1238:00 217 1239:04 218 1240:08 219 1241:12 220 1242:16 221 1243:20 222 1244:24 223 1245:28 224 1246:32 225 1247:36 226 1248:40 227 1249:44 228 1250:48 229 1251:52 230 1252:56 231 1254:00 232 1255:04 233 1256:08 234 1257:12 235 1258:16 236 1259:20 237 1300:24 238 1301:28 239 1302:32 240 1303:36 241 1304:40 242 1305:44 243 1306:48 244 1307:52 245 1308:56 246 1310:00 Photo # Est. 247 1311:04 248 1312:08 249 1313:12 250 1314:16 251 1315:20 252 1316:24 253 1317:28 254 1318:32 255 1319:36 256 1320:40 257 1321:44 258 1322:48 259 1323:52 260 1324:56 261 1326:00 262 1327:04 263 1328:08 264 1329:12 265 1330:16 266 1331:20 267 1332:24 268 1333:28 269 1334:31 270 1335:35 271 1336:39 272 1337:43 273 1338:47 274 1339:51 275 1340:55 276 1341:59 277 1343:03 278 1344:07 279 1345:11 280 1346:15 281 1347:19 282 1348:23 283 1349:27 284 11350:31 285 1351:35 286 1352:39 287 1353:43 288 1354:47 289 1355:51 290 1356:55 291 1357:59 292 1359:03 293 1400:06 294 1401:10 295 1402:14 -Photo # Est. 296 1403:18 297 1404:22 298 1405:26 299 1406:30 300 1407:34 301 1408:38 302 1409:42 303 1410:48 304 1411:52 305 1412:56 306 1414:00 307 1415:04 308 1416:08 309 1417:12 310 1418:16 311 1419:20 312 1420:24 313 1421:28 314 1422:32 315 1423:36 316 1424:40 317 1425:44 318 1426:48 319 1427:52 320 1428:56 321 1430:00 322 1431:04 323 1432:08 324 1433:12 325 1434:15 326 1435:19 327 1436:23 328 1437:27 329 1438:31 330 1439:35 331 1440:39 332 1441:43 333 1442:46 334 1443:50 335 1444:54 336 1445:58 337 1447:05 338 1448:09 339 1449:13 340 1450:17 341 1451:21 342 1452:25 343 1453:29 344 1454:33 Photo # Est. Photo # Est. 345 1455:37 394 1547:52 346 1456:41 395 1548:56 347 1457:45 396 1550:00 348 1458:49 397 1551:04 349 1459:53 398 -- 5 350 1500:57 351 1502:01 352 1503:05 353 1504:08 415 -- 354 1505:12 355 1506:16 NOTE 356 1507:20 1. All photos taken about 0. 3 sec 357 1508:24 before time indicated. 358 1509:32 2. _ indicates time 359 1510:32 estimated, telemetry record 360 1511:36 361 512 missing. 362 1513:44 3. indicates shift 363 1514:48 in time between gondola 364 1515:52 programmer clock and E. S. T. 365 1516:56 4. Gondola cut down at 1531 E. S. T. 366 1518:00 367 1519:04 5. Telemetry signal no longer 368 1520:08 received, therefore exact 369 1521:12 photo times not available. 370 1522:16 Add 1 min and 4 sec. for each 371 1523:20 photo after #397. 372 1524:24 373 1525:28 374 1526:32 375 1527:36 376 1528:40 377 1529:44 378 1530:48 3794 1531:52 380 1532:56 381 1534:00 382 1535:04 383 1536:08 384 1537:12 385 1538:16 386 1539:20 387 1540:24 388 1541:28 389 1542:32 390 1543:36 391 1544:40 392 1545:44 393, 1546:48

TABLE III Time For Each Photograph Taken by Camera #3 Photo# EST Photo# EST Photo# EST Photo# EST Photo# EST Photo# EST 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0849:46 0851:54 0855:06 0857:14 0900:26 0902:34 0905:46 0907:54 0911:06 0913:14 0916:26 0918:34 0921:46 0923:54 0927:06 0924:14 0932:26 0934:34 0937:45 0939:53 0943:05 0945:13 0948:25 0950:33 0953:45 0955:53 0959:05 1001:13 1004:25 1006:33 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 1009:45 1011:53 1015:15 1017:13 1020:25 1022:33 1025:45 1027:52 1031:04 1033:12 1036:24 1038:32 1041:44 1043:52 1047:04 1049:11 1052:23 1054:31 1057:42 1059:50 1103:02 1105:09 1108:21 1110:28 1113:40 1115:48 1119:00 1121:11 1124:23 1126:30 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 1129:42 91 1131:54 92 1135:06 93 1137:14 94 1140:26 95 1142:34 96 1145:44 97 1147:52 98 1151:04 99 1153:11 100 1156:23 101 1158:31 102 1201:43 103 1203:51 104 1207:03 105 1209:11 106 1212-23 107 1214:31 108 1217:43 109 1219:51 110 1223:02 111 1225:10 112 1228:22 113 1230:30 114 1233:44 115 1235:52 116 1239:04 117 1241:12 118 1244:24 119 1246:32 120 1249:44 121 1409:42 151 1529:44 1251:52 122 1411:52 152 1531:52 1255:04 123 1415:04 153 1535:04 1257:12 124 1417:12 154 1537:12 1300:24 125 1420:24 155 1540:24 1302:32 126 1422:32 156 1542:32 1305:44 127 1425:44 157 1545:44 1307:52 128 1427:52 158 1547:52 1311:04 129 1431:04 159 1551:04 1313:12 130 1433:12 160 1316:24 131 1436:23 161 1318:32 132 1438:31 162 1321 44 133 1441 43 163 1323:52 134 1443:50 164 1327:04 135 1447 05 165 1329:12 136 1449 13 166 1332:24 137 1452:25 1334:31 138 1454 33 1337:43 139 1457:45 1339:51 140 1459:53 1343:03 141 1503:05 1345:11 142 1505:12 1348 23 143 1508:24 1350:31 144 1510:32 1353:43 145 1513 44 1355:51 146 1515:52 1359,03 147 1519:04 1401 10 148 1521:12 1404:22 149 1524:24 1406:30 150 1526 32 4

Figures 6, 7 and 8 are examples of photos taken by cameras 1, 2 and 3 respectively. Figure 6 shows photograph 190 taken by camera #1 at 1210:15 EST. This camera has a 41. 6 side to side field of view. Since the balloon was at 110, 000 feet altitude, the photo shows an area on the surface which is 15. 9 miles square. This photo was taken with IR etachrome film. The color rendition of this film for three representative botanical subjects is as follows: Subject Color Healthy-deciduous, green foliage Red Diseased or deficient foliage Greenish, bluish Conifers Dark, purple The color rendition of figure 3 may not be a faithful representation of the original, however it can be noticed that most of the photo is predominantly bluish in color, indicating that the surface is barren, i. e., the vegetation is mostly dead at this time of the year. The very dark purple area probably indicates the presence of conifers. All of the infrared photos taken have the characteristic greenish, bluish, color indicative of barren surface. Occasionally in these photos some field will show a reddish tinge indicative of deciduous green foliage. Figure 7 shows photograph 190 taken with camera #2, at the same time as photo 190 of camera #1 shown in figure 6. Camera #2 has 21. 5 side to side field of view and therefore shows an almost square area on the surface about 8 miles wide. (The area is not precisely square, since it is the intersection of the square field of view with the spherical earth). Unfortunately, the focal plane shutter on this camera did not operate properly. Light was allowed to leak in on one side of each photo. As much as 30% of each photo is washed out because of this effect. Figure 8 shows photo 75 taken with camera #3, at 1207:03EST. This camera viewed the earth with its optical axis tilted at 45e to the vertical. Thus with its side to side field of view of 73. 7~ it views an area off to one side of the sub-balloon point, which in the vertical plane through the optical axis extends from 3. 0 to 159. 4 miles from the sub-balloon point. 5

C. Supporting Atmospheric Structure Data 1. Temperature and Relative Humidity Data from Conventional Radiosondes. A considerable amount of temperature and relative humidity data were obtained from conventional radiosonde flights. Additional data was obtained on the ozonesonde flights which use a modified radiosonde unit. Temperature and relative humidity data obtained at Rapid City, S. D. are shown in figures 9-15; for Denver, Colo., figures 16-18; for Boulder, Colo. (Temperature and Ozone) figure 19; for N. Platte, Nebr., figures 20-24; for Bismarck, N. D., figures 25 —8; and for Lander Wyo., figures 29-31. Since the balloon trajectory was southward from Rapid City to Kimball, Nebraska, it seems that the temperature data obtained at Rapid City, Denver and Boulder, Color. and North Platte, Nebr. are most appropriate for determinini atmospheric parameters for the balloon flight, therefore the temperature data for these locations has been listed in tables IV, V and IV. The rather significant temperature differences between the three locations, and time variations in temperature at Rapid City should be noticed when using this data for correlation with radiation data. 2. Special Frost Point Hygrometer Flights. Two special radiosondes were flown at Rapid City by H. J. Mastenbrook of the Naval Research Laboratories to provide frost point hygrometer data to high altitudes. The. d-ata from'thes-e 2 flights is given in tables VII, VIII; and IX. Mr. Mastenbrook's comments on the flights and on the data obtained are given below. "Enclosed are the data tabulations for the two water vapor soundings at Rapid City on November 20. As you know, our flight configuration is designed to collect data during a balloon descent to avoid contamination from sources external to the sensing cavity. The ascent sounding is subject to large contamination error in the stratosphere, however, at lower tropospheric levels the contamination component is generally negligible. The tabulations therefore include the ascent data for the lower troposphere to the elevation where the ascent and descent data begin to diverge. Descent data is presented as far down as data was obtained. A failure of the turn-around control on the first flight resulted in a fast parachute descent which did not yield reliable data. The flight did provide useable data for the lower tropospheric ascent. 6

TABLE IV Temperature vs. Altitude Data, Rapid City, S. D. Pressure Altitude mb 19 Nov. 2315Z 900 800 700 600 500 400 300 200 150 100 90 80 70 60 50 40 30 20 15 10 9 8 2.8 C 0 -1.0 -8. 7 -18. 1 -29. 0 -45. 0 -60. 0 -56. 1 -60. 5 -61.4 -62.4 -61. 5 -60. 0 -59. 6 -60. 8 -59. 3 20 Nov. 20 Nov. 20 Nov. 20 Nov. 1115Z 1308Z 1515Z 2005Z 9.8~C 2.50C -- 17.5~C 5.5 5.5 6.0 10.1 0 0 2.8 4.0 -5.1 -4.2 -3.0 -1.5 -14.0 -14.1 -11.0 -12.0 -24.0 -24.0 -25.0 -25.0 -42.0 -41.0 -40.0 -41.5 -63. 5 -61. 0 -51.5 -62. 1 -62. 5 -65.0 -64.1 -64.5 -64. 5 -63.7 -63. 9 -65. 1 -63. 2 -63. 3 -65. 5 -62.7 -62. 7 -62. 5 -62.0 -62.1 -59.5 -61.3 -61.3 -59.2 -60.4 -6Q.'5 -58.5 -59. 5 -59. 3 -56. 7 20 Nov. 21 No' 2332Z 1733Z 13.2~C 11. 6 9. 7 -0. 9 -13. 1 -25. 1 -41. 5 -59. 0 -66. 0 -67. 5 -65. 8 -64. 0 -62. 0 -59. 9 -59. 8 -59. 1 -56. 0 -56. 0 -59. 0 4. 5 -6. 8 -10. 2 -1 z. 1 -27. 3 -43. 8 -56. 7 -59. 2 -64. 6 -66. 2 -59. 1 -58. 1 -56. 9 -55. 6 -56. 2 -53. 5 -55. 1 -55. 9 -54. 9 -52.5 -49. 9 -58. 3 -57. 5 -58. 1 -57. 5 7

TABLE V Temper, Pressure Altitude mb 900 800 700 600 500 400 300 200 150 100 90 80 70 60 50 40 30 20 15 10 9 8 ature vs. Altitude Data, Denver Denver Denver 19 Nov. 20 Nov. 2315Z 1115Z and Boulder, Colorado 5.5~C 0. 9' -8.0 -16. 6 -28. 6 -45. 3 -59. 0 -56. 4 -62. 1 -64. 6 -66. 5 -63. 9 -62. 4 -63. 9 -59. 9 -62. 1 -59. 6 12.8~C 5. 6 -3. 7 -14. 3 -26. 3 -42. 8 -61.5 -65. 9 -65. 9 -67. 6 -66. 1 -67. 6 -65. 4 -62. 7 -61. 9 -61. 6 -61. 0 Boulder 20 Nov. 2043Z 13.0~C 5. 5 -3. 5 -10. 5 -23. 5 -40. 7 -58. 0 -63. 0 -67. 2 -66. 5 -65. 3 -64. 5 -63. 2 -61. 5 -59. 5 -57. 1 -53. 5 -55. 1 -50. 9 Denver 20 Nov. 2315Z 13. 2 C 4. 2 -4. 5 -11.4 -23. 6 -41.0 -57. 0 -64. 5 -69. 2 -67. 4 -65. 7 -66. 9 -64. 2 -62.2 -62. 7 -59. 1 -59. 1 8

Table VI Pressure Altitude mb Temperature vs. 19 Nov. 2315Z Altitude Data, North Platte, Nebraska 20 Nov. 20 Nov. 20 Nov. 1115Z 1723Z 2315Z 21 Nov 1549Z 900 1.50C 800 -4.2 700 -5.6 600 -10.0 500 -19.0 400 -32.0 300 -46.8 200 -54. 0 150 -54.5 100 -60.6 90 -62.2 80 -63. 9 70 -63. 9 60 -61.0 50 -60. 9 40 -60.8 30 -60.5 20 -60. 3 15 -57.8 10 -52. 3 9 8 7 4.5~C 0. 8 -5. 6 -15. 0 -25. 0 -34. 5 -63. 2 -61.4 -63. 5 -63. 4 -63. 3 -63. 1 -63. 0 -62. 8 -61. 8 -60. 4 -58. 3 5.3~C 6. 6 4. 0 -4. 4 -10. 3 -22. 6 -38. 6 -61.4 -63. 5 -63. 2 -62. 5 -61. 7 -60. 8 -59. 8 -58. 5 -60. 2 -57. 7 -53. 7 -50. 6 -50. 6 -50. 8 -51. 0 -49. 0 13. 6~C 7., 4. 1 -2. 6 -12.2 -25 2 -41.2 -62. 5 -65. 0 -65. 0 -65. 2 -65. 5 -65. 8 -64. 7 -63. 3 -61. 7 -56. 6 -60. 4 -58. 4 -53. 5 6. 9 10. 1 2. 1 -3. 6 -13.4 -25. 5 -41. 9 -57. 6 -63. 2 -66. 8 -65. 9 -64. 9 -63. 8 -62. 5 -61. 0 -59. 2 9

The three soundings through the troposphere indicate that atmospheric saturation was encountered in the general altitude range of 350 millibars to 400 or 450 millibars. The disturbed appearance of.the ascent record above 350 millibars suggests that ice crystals were encountered. The apparent supersaturation observed in the interval is a further indication of an intake of ice crystal, since the sampled area in the sensing cavity is heated somewhat above ambient and can take on additional moisture through evaporation. Further evidence of saturation may appear in the sky photographs although a uniform thin cirrus may lack sufficient contrast to be identified on film. The stratospheric distribution at Rapid City is in reasonable agreement with the distributions observed at Washington, D. C. in October and November, preceding and following the Rapid City flights. Please let us know if you have further questions about the data. " 3. Ozone Data Ozonesonde data for the unit launch at Boulder, Colo., by W. Komyhr and his colleagues is the only ozone data available for this flight. The ozone distribution obtained is shown in figure 19. 4. Atmospheric Parameter Support Data Obtained by Colorado State University Personnel of Colorado State University flew their Aero-Commander 500B under the balloon during the flight and obtained data with the following apparatus: a. A particle sampling system consisting of an air intake system and a Bausch and Lomb dust counter, b. A Barnes IT-3 infrared radiometer looking vertically downward at the earth's surface. c. An environmental temperature measuring system consisting of wet and dry bulb outside air temperature measurements. The data obtained for this balloon flight is summarized in a report "Aero Commander 500B Support Data for Balloon Flight, November 20, 1968.' by D. Adam, G. Cobb and B. Meline, Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, February 18, 1969. 10

TABLE VII Frost Point Hygrometer Data Rapid City, South Dakota 11/20/68 1515Z Ascent P(mb) T( C) F(~C) w(g/kg) 0(~K) M(cm) EM(cm) 867.00 847.00 829. 00 816. 00 800.00 787. 00 770.00 759.00 748.00 735. 00 722.00 710.00 700. 00 686.00 675. 00 663.00 652.00 641.00 630.00 619.00 608. 00 599.00 588.00 575.00 566.00 555.00 545.00 535.00 525.00 516.00 506.00 497.00 486. 00 476.00 468.00 459.00 450. 00 440.00 431. 00 423.00 414.00 406.00 397.50 389.00 382. 00 374. 00 366. 00 358.00 350.00 343.00 335. 00 329.00 321.00 315.00 308.00 301.00 294. 00 288.00 281.00 276.00 9.2 8.5 7. 6 7. 0 6.0 5. 3 4. 7 4.4 4. 3 4.2 3. 9 3. 3 2.8 1.9 1. 1.6 -.2 -.6 -1.2 -1. 7 -2.4 -3.0 -3.5 -4.2 -4.8 -5. 3 -6. 1 -7. 1 -8.1 -9.2 -10. 0 -11.2 -12.4 -13. 6 -14.8 -15. 9 -17. 7 -18.8 -20.2 -21.5 -22. 9 -23. 9 -25.0 -26.1 -27.0 -28.2 -29.5 -30.8 -32.2 -33.1 -34.4 -35.4 -36. 5 -37.8 -39. 3 -40.4 -41.8 -43. 1 -44.4 -45.4 -5. 9 -5. 9 -5. 3 -5. 3 -5. 9 -6.4 -7.5 -8.0 -9. 1 -9. 6 -8. 6 -8.6 -8.6 -8.6 -8.0 -8.6 -8.6 -10. 0 -10. 0 -11.4 -12. 3 -14. 7 -14. 7 -15.1 -15. 9 -15.5 -14. 7 -15.1 -15. 9 -18. 0 -18. 3 -20.8 -21. 7 -22.8 -22.2 -21. 7 -21. 9 -21.4 -22.5 -22.8 -23.0 -23.0 -23.8 -24.8 -26.0 -26. 7 -28.5 -30.1 -31.4 -33.2 -36.5 -37. 9 -38.6 -37.1 -38. 7 -40.5 -42. 7 -44. 7 -46. 1 -47.8 2.68298 2. 74661 2. 94289 3. 00016 2. 90873 2.81995 2.61759 2.5 3866 2. 35667 2.29458 2.54970 2. 59297 2.63017 2. 68408 2.85603 2. 77761 2.82468 2.52061 2.56480 2. 30883 2.16941 1.76251 1.79558 1.77135 1.67960 1. 77375 1. 93769 1. 90420 1.81115 1.51223 1.49564 1.19938 1.12729 1.03330 1.10861 1.19373 1.18539 1.28096 1.17154 1.16301 1.15688 1.17971 1.11467 1.03088.93065.88633.75763.65520.58255.49204.35025.30848.29249.34891.30030.24935.1984 3.16171.14067.11645 294. 1 295. 3 296.2 296.9 297.5 298.2 299.4 300.4 301.5 302.8 304.1 304. 9 305.5 306.4 306. 9 307.8 308.4 309.4 310.4 311.3 312.2 312.8 313.8 315.1 315. 7 316.9 317.6 318.1 318. 6 318. 9 319.6 319. 9 320.4 320. 9 320. 9 321.3 320.9 321.6 321.7 321.8 322. 0 322.5 323.0 323. 6 324.1 324. 5 324. 7 325.0 325. 3 325.8 326. 3 326. 7 327.4 327. 3 327.4 328. 0 328. 3 328.4 328.8 329.1.05540381.05234218.03948437.04823567.03799623.04716215.02893798.02747369.03085001.03213026.03148557.02664855.03795874.03109230.03449149.03144126.02999891.02854040.02735187.02513289.01805468.01996879.02365813.01584616.01938099.01893583.01960137.01895580.01526038.01534621.01237503.01305780. 01102337.00874244.01.057194.01092449.01258337.01126143.00952870.01065247.00953706.00995009.00930461.00700541.00741620.00670999.00576660.00505202.00383779.00343786.00201650.00245292.00196345.00231859.00196303.00159921.00110248.00107995.00065592.05540381.10774599.14723036.19546603.23346226.28062440.30956239.33703607.36788608.40001634.43150191.45815046.49610920.52720150.56169300.59313425.62313317.65167357.67902544.70415834.72221301.74218181.76583993.78168610.80106708.82000291.83960429.85856009.87382047.88916668.90154171.91459951.92562288.93436532.94493726.95586175.96844512.97970656.98923525.99988772 1.00942478 1.01937486 1.02867948 1. 03568488 1. 04310109 1.04981108 1.05557768 1.06062970 1.06446749 1.06790535 1.06992185 1.07237478 1.07433823 1.07665682 1.07861985 1.08021906 1.08132154 1.08240148 1. 08305740 11

TABLE VIII Frost Point Hygrometer Data Rapid City, South Dakota 11/20/68 P(mb) T(~C) F(~C) 905.00 17.7 -6.8 894.00 15.9 -6.8 879.00 14. 4 -8.5 862.00 13.1 -7.6 830.00 11.7 -6.4 805.00 10.5 -6.8 796.00 9.1 -6.8 783.00 8.1 -6.8 766. 00 6. 9 -7. 6 753.00 6.5 -14.8 737.00 5.8 -20.9 723.00 5.2 -20.2 708.00 4. 5 -20. 7 697.00 3.8 -26.4 681. 00 2 9 -27.1 671.00 2.1 -24.0 659.00 1.5 -23.6 648.00.7 -24.4 637.00.3 -26. 6 628.00,.2 -23.8 617.00.-. 5 -22.3 606.00 -1.3 -19.0 592.00 -2. 5 -17.1 583.00 -3.1 -21.2 570. 00 -4.1 -27.5 558.00 -5.2 -29.9 547.00 -6.7 -30.5 535. 00 -7.7 -30. 3 523.00 -9. 1 -26.2 514.00 -10.3 -17.9 502.00 -11. 9 -17.7 492.00 -13.2 -19.0 481. 00 -14.6 -18.5 471.00 -15.8 -19.0 460.00 -17.3 -20.5 451.00 -18.6 -20.9 440.00 -20.0 -20. 9 431.00 -20.8 -21.4 420. 00 22.1 -22.5 410. 00 -23.1 -23.2 400.00 -24. 9 -24.0 302.00 -26.2 -25.2 382.00 -27.2 -28.0 372.00 -28.8 -29.2 362.00 -30.5 -30.8 35 300 -31.7 -32.0 343.00 -33.3 -33.9 335.00 -34.7 -36.0 326.00 -36.7 -38.6 318.00 -37.8 -40.3 310.00 39.4 -41. 9 w(g/kg) 0(~K) 2. 37601 299.3 2. 405 36 298 4 2. 11082 298.4 2.31328 298. 7 2.69017 300.5 2. 67243 301.8 2.70278 301.3 2.74785 301.6 2.60441 302.2 1. 39390 303. 3 79595 304. 3.86894 305.4.84741 306.4.49143 307.0.46696 308.1.64619 308.5 68555 309. 5.64257 310.0.52760 311.1.70502 312.2.83195 313.0 1.16849 313.7 1.42834 314.4. 98368 315.1.53761 315. 9.42996 316.6.41045 316.6.42649 317.4.66784 317.7 1.52311 317.9 1.59884 318.1 1.43987 318.4 1.54843 318.7 1. 50422W 319.1 1.33604 319.4 1.30176 31 9.6 1. 33437 320.1 1. 30120 320. 9 1.19629 321.7 1.15040 322.6 1.08474 322.6.98179 322.8.76069 323.8.69044 324.2.60006 324.4.54164 325.1.45704 325.6.37178 325.9.28828 325.8.24134 326.5.20647 326.6 M(cm).02683407.03456244 03837214.08168861.06840026.02468199.03615199.04642245.02651927.0t787625.01189202.01313527.00751385.00782353.00567928.00815345.00745371.00656728.00565997.00862582.01122694.01854874.01107557. 01009017.00592387.00471653.00512405 00669993'.01006043.01911388.01550356.01677102.01557471 01594019.01211227.01479451. 01210204.01401646.01197286.01140374.00843480.00889020.0040373.00658420.00524248.00509529.00338295.'00303091 00216171.00182779 2005Z Ascent ZM(cm).02683407 06139651.09976865.18145727.24985753.27453952.31069151.34711396.38363323.40150948.41340150.42653677.43405062.44187415.44755343.45570688.46316059.46972787 4 7538784.48401366.49524060.51378934.52486491.53495508.54087895.54559548.55071953.55741946.56747989.58659378.60209733.61886835.63444306.65038325.66249552.67729004.68939207.70340854.71538140.72678514.73521994.74411014.75151387.75809807.76334055. 76843584.77181879 77484970.77701141.77883920 12

TABLE IX Rapid City, S P(mb) T(~C) F(~C) w(g/kg) 0(~K) M(cm) EM(cm) 866.00 14.9 -3. 5 3.28828 300.2 852.00 13.8 -3.5 3.34260 300.4.04736324.04736324 840. 00 12.8 -3.5 3.39061 300.6.04122360.08858684 829.00 11. 9 -3.5 3.43585 300.7.03831165.12689848 820. 00 11.0 -3. 5 3.47377. 300.7.03172775.15862623 810.00 10.0 -3.5 3.51690 300.8.03566657.19429280 798.00 9.4 -3.5 3.57009 301.4.04338957.2376823-7 786.00 8.7 -4.5 3.33436 301.9.04227194.27995431 775.00 8.1 -7.2 2.67275 302.5.03371319.31366751 765.00 7.7 -11.1 1.91421 303.2.02340275.33707026 756.00 7.2 -13.5 1.56013 303.7.01595351.35302377 745.00 6.8 -18.5.99885 304.5.01436152.36738528 737.00 6.5 -20.5.83322 305.1.00747779.37486307 727.00 6.2 -23.6.62136 306.0.00742130.38228437 717.00 5.9 -25.6.51556 306.9.00580059.38808496 709.00 5.2 -26.4.48311 307.1.00407607.39216113 695.00 4.5 -26.4.49285 308.0.00697105.39913218 686.00 3.6 -26.6.48989 308.2.00451253.40364471 678.00 2.9 -26.8.48672 308.5.00398614.40763085 669.00 2.2 -27.3.46655 308.9.00437725.41200809 659.00 1.5 -27.7.45680 309.5.00471096.41671905 650.00.6 -27.8.45473 309.6.00418554.42090459 640.00 -.2 -26.6.52513 310.0.00499922.42590381 631.00 -1. 1 -27.1.50399 310.4.00472550.43062931 622.00 -1.2 -28.9.42753 311.5.00427736.43490668 615.00 -1.2 -29.2.41745 312.5.00301778.43792446 606.00 -1.6 -22.8.81145 313.3.00564289.44356735 596.00 -2.3 -19.2 1.16022 314. 1 01005951.45362686 589.00 -3.1 -18.5 1.26393 314.2.00865766.46228452 580.00 -3.7 -16.8 1.49576 314.8.01267199.47495651 572.00 -4.4 -16.6 1.55823 315.3.01246519.48742171 565.00 -4.9 -16.6 1.57758 315.8.01119928.49862099 558.00 -5.8 -16.8 1.55488 315.9.01118731.50980830 550.00 -7.0 -17.1 1.53768 315.8.01262264.52243094 541.00 -7. 9 -17.1 1.56333 316.2.01423928.53667022 534.00 -8.9 -17.7 1.50280 316.2.01095042.54762064 526.00 -9. 8 -18.5 1.41566 316.4.01191203.55953267 520.00 -10.8 -17.9 1.50549 316.3.00894226.56847493 513.00 -11.3 -16.6 1.73794 316.9.01158363.58005856 507.00 -12.1 -16.3 1.80495 317.0.01084554.59090410 501.00 -12.7 -16.0 1.87756 317.3.01127295.60217705 495.00 -13.7 -15.7 1.95373 317.2.01172838.61390543 489.00 -14.3 -15. 7 1. 97777 317.5.01203515.62594058 481.00 -15.2 -16.3 1.90282 318.0.01583907.64177965 474.00 -15. 9 -17.1 1. 78494 318.4.01317050.65495014 466.00 -16. 9 -17. 7 1.72270 318.7.01431683.66926697 460.00 -17. 6 -17.9 1. 70240 319.1.01049493.67975190 452.00 -18.4 -18.7 1.60708 319.6.01350801.69325991 446.00 -19. 3 -19.0 1.58875 319.7.00978312.70304303 438.00 -20.3 -19.5 1.54161 320.1.01277696.71581998 431.00 -21. 1 -19.7 1.53070 320.6.01097251.72679250 423. 00 -22.3 -20.0 1.52257 320.7.01246230.73925480 416.00 -23.2 -20.5 1.47769 321.1.01071517.74996997 409.00 -24.3 -20.9 1.43574 321.3.01040506.76037504 402.00 -25.1 -23.2 1.17334 321.8.00931808.76969312 396. 00 -26.2 -24.2 1.07404 321.8.00687967.77657279 388.00 -26.9 -24.6 1.05225 322.7.00867867.78525147 381.00 -27.7 -27.1.83513 323.3.00674061.79199208 374.00 -28.6 -29.0.69894 323.9.00547880.79747088 367. 00 -29.7 -29.7.66532 324.2.00487232.80234320 361.00 -30.6 -30. 3.63226 324.5.00397216.80631536 355.00 -31.7 -32.8.49834 324.6.00346099.80977635 350.00 -32.5 -34.4.42216 324.8.00234820.81212455 P(mb) T(~C) F(~C) 344.00 -33.4 -35.6 338.00 -34.4 -36.6 331.00 -35.5 -37.0 326.00 -36.7 -37.0 320.00 -37.5 -37.5 314.00 -38.4 -43.1 309.00 -39. 7 -45.0 303. 50 -40.5 -46.0 299.00 741.5 -47.2 294.00 -42.7 -48.0 288.00 -44.2 -48.1 283. 00 -44.7 -48.3 278.00 -46.0 -50.0 273.00 -46.6 -50.9 267.00 -47.8 -51.9 263.00 -48.7 -52.3 258.00 -49.8 -52.7 254.00 -51.0 -53.8 249. 00 -52.0 -55.4 244.00 -52. 9 -56.3 239.00 -53.7 -57.1 234.00 -54.3 -57.8 229.00 -54.9 -58.1 224.00 -55.5 -58.8 219.00 -56.2 -60.2 215.00 -57.0 -61.2 210.00 -57.2 -62.2 205.50 -57. 7 -64. 1 201.00 -57. 9 -64.7 197.00 -58.1 -65. 9 192. 00 -58.3 -67.2 188.00 -58. 3 -68. 1 184.00 -59.0 -69.0 180.00 -59.5 -70. 0 176.00 -59.5 -71.1 172.50 -60.2 -71.5 168.00 -61. 6 -71.9 165.00 -62.9 -72.2 161.00 -64.2 -72.5 157. 00 -64.2 -73.1 153. 00 -64.5 -74. 7 149.00 -64. 7 -76.8 146.00 -65. 6 -78. 3 142. 00 -66. 7 -79. 1 139.00 -67.0 -79. 9 135.00 -66.7 -80. 3 132.00 -66.4 -80.3 129.00 -66.1 -80.3 126.00 -66. 7 -80.5 122.50 -67. 0 -80. 8 120. 00 -67.0 -80.8 118.00 -66.7 -80.6 114. 00 -65. 9 -80. 3 111. 0 -65.0 -79.9 108. 00 -64.5 -79. 7 105.50 -64.2 -79.7 102.50 -64.2 -79.8 100. 00 -64.5 -80.8 97. 00 -64. 7 -80. 3 94.90 -65. 0 -80.4 92. 00 -65. 0 -80.5 89.50 -65. 3 -80. 6 87. 00 -65. 3 -80. 7 w(g/kg) 37763 34391 33711 34228.33051.17918.14525.13115.11582 10605 10712.10678 08774 08003 07269 07027 06756 05995 04960 04518 04161 03870. 03774 03547 02986 02670 02226 01849 01736.01504.01283.01141.01023.00906 00784 00758 00730.00711.00690 00648 00523 00383.00309.00278 00250 00240 00245 00251 00246 00242 00247.00259.00284.00309 00332 00340 00344.00338 00334 00337 00342 00347 00346 8(OK) 325.2 325.5 325.9 325.8 326. 3 326. 9 326.5 327.2 327. 1 326. 9 326.8 327: 7 327.5 328.2 328. 6 328. 7 329. 0 328. 6 329.0 329.5 330.3 331.4 332.5 333.7 334. 9 335. 3 337.2 338. 7 340.4 342.1 344.2 346. 3 347. 3 348.8 350.3 351. 9 352.1 351.8 352.1 354.6 356.8 359. 0 359. 7 360. 6 362.3 365.8 368.7 371.6 373.1 375.6 377.8 380.2 385.5 390. 1 394. 1 397. 3 400. 6 402. 9 405.9 407. 9 411.5 414.2 417. 6 M(cm).00244832.00220877.00243218.00173312.00205955.00156027.00082763.00077561.00056702.00056599.00065257.00054568.00049624.00042798.00046748.00029173.00035159.00026022.00027946.00024177.00022139.00020486.00019500.00018676.00016665.00011542.00012489.00009356.00008231.00006613.00007111.00004947.00004415.00003935.00003447.00002752.00003414.00002205.00002860.00002730.00002389.00001846.00001058.00001198.00000808.00001000.00000742.00000760.00000761.00000872.00000624.00000516.00001109.00000907.00000980.00000855.00001046.00000870.00001028.00000718.00001004.00000878.00000884 EM(cm).81457287.81678164.81921382.82094695.82300650.82456677.82539439.82617000.82673702.82730301.82795557.82850125.82899749.82942547.82989295.83018468.83053628.83079650.83107595.83131772.83153911.83174397.83193897.83212572.83229238.83240780.83253269.83262625.83270857.83277470.83284581.83289528.83293943.83297679'.83301325.83304077.83307491.83309697.83312556.83315286.83317675.83319521.83320579.83321777.83322585.83323584.83324327.83325087.83325848.83326720.83327344.83327860.83328968.83329876.83330856.83331712.83332758.83333628.83334656.83335374.83336379.83337256.83338140 P(mb) 84.90 82.50 79. 90 77.50 75.00 73.00 71.80 68.50 66. 30 64.00 62.30 60.00 58.50 56.00 54.00 52.50 51.00 49.40 47.60 45.90 44.50 43.00 41.50 40.20 38.80 37.40 36.20 34. 90 33.70 32.40 31.25 29.80 28.50 27.10 26.00 24.60 23.50 22.20 21. 00 20. 00 19.00 18.20 17.40 16.70 16.10 15.50 14. 95 14.40 14.00 13.50 13.15 12.80 12.50 12.20 11.90 11.60 11.40 11.20 11.00 10.80 10. 70 T(QC) F(~C) -65.6 -80.9 -65.9 -81.3 -65.6 -81.6 -65.3 -82.1 -64.5 -82.1 -63. 7 -82.2 -62.6 -82.3 -61.9 -82.5 -60. 9 -82. 7 -60.2 -83.0 -59. 7 -83.1 -59.5 -83. 3 -59. 3 -83.5 -59. 3 -83. 6 -59.0 -84.0 -58.6 -84.1 -58.3 -84.3 -58. 6 -84.5 -59. 3 -84. 6 -59.5 -85.0 -59. 7 -85.2 -59.5 -85. 3 -59.3 -85.4 -58. 6 -85. 7 -58. 1 -86. 0 -57. 9 -86.4 -57. 7 -86.5 -57.5 -86.8 -57.2 -86. 9 -57. 0 -87. 3 -56.8 -87.5 -88.0 -88. 3 -88.6 -88. 9 -89.2 -89. 7 -90.4 -91. 6* -91.2 -91.8 -92. 3 -92. 4* -92.8* -92.5 -93. 1 -93. 3 -93.3 -93.4 -93.4 -93. 6 -93. 6 -93. 6 -94. 7 -94. 7 -94. 7 -96. 0 -96.2 -95.8 -95. 3 -95. 1 w(g/kg).00345.00334 00324.00310 00320.00324.00324.00329.00329.00325.00328.00324.00322.00331.00320 00324 00322 00321 00327 00321 00320 00325 00331 00323 00316 00309.00313 00306.00311 00304 00303 00292 00286 00288 00281.00284.00270.00254.00215 00242 00229 00214 00223 00215 00236 00218.00219 00228 00228 00236 00235 00241 00247.00203 00308 00214.00171.00168.00183.00207.00217 O(~K) 420. 0 422.9 427.3 431.6 437.4 442.5 446.8 454.5 460.9 467.1 471.8 477.4 481.3 487.4 493.0 498.1 502.7 506.8 510.6 515.3 519.4 525.0 531.0 537.5 544.1 550.4 556.2 562. 6 568.8 575.8 582.4 M(cm) ZM(cm).00000739.83338879.00000830.83339709.00000873.83340582.00000776.83341359.00000802.83342160.00000656.83342816.00000396.83343212.00001098.83344311.00000738.83345048.00000766.83345814.00000566.83346380.00000764.83347145.00000493.83347638.00000831.83348469.00000663.83349133.00000492.83349624.00000493.83350118.00000525.83340642 00000595.83351237.00000562.83351798.00000457.83352256.00000493.83352749.00000501.83353250.00000432.83353682.00000456.83354138.00000446.83354583.00000380.83354963.00000410.83355373.00000377.83355750.00000407.83356157.00000356.83356513.00000440.83356953.00000383.83357336.00000410.83357745.00000319.83358064.00000402.83358467.00000310.83358777.00000347.83359124.00000286.83359410.00000232.83359642.00000240.83359882.000000180.83360063.00000177.83360240.00000156.83360396 00000137.83360533.00000139.83360672.00000122.83360794.00000125.83360919.00000092.83361012.00000118.83361129.00000083.83361213.00000085.83361298 00000075.83361372.00000069.83361441.00000063.83361503 00000064.83361568 00000039.83361606 00000034.83361641.00000036.83361676.00000039.83361715.00000021.83361736

D. MRIR 0. 2-4. 0mm Channel Data. Earth reflectance data have been determined from the MRIR 0. 2-4. O/m channel data. The quantity measured is the bi-directional reflectance f( 0 o 09o 0, ), where 00, o are the zenith and azimuth angles of the incident ray and O, are the zenith and azimuth angles of the reflected ray. The geometry is illustrated by figure 32. The azimuth angle= - -o is used instead of, thus: P (0O, o, 0,). The sun angles 00 and s (the azimuth angle of the sun, measured clockwise from north, not the same as ~0) are calculated from: cos 00 sin I sin + cos cos 6 cos H. Q os* sin H sin = i s sin 00 where ' = the latitude of the sub-balloon point 5 = the sun's declination (from Air Almanac) H= GHA - GHA= Greenwich hour angle of the sun (from Air Almanac) A = longitude of the sub-balloon point Sun angle data for this balloon flight are given in table X, which is the computer print out for the calculations indicated above. The elevation angle of the sun (El), and the azimuth angle of the sun (Az), measured clockwise from the south are given as a function of time (MST). thus: 0 = 90 - El = Az-180 where s is measured clockwise from north. The azimuth of a point on the gondola relative to the sun is measured throughout the flight by a rotating photocell device which is mounted on the top side of the gondola, see figure 33. The photocell receives its signal through a slit which defines a vertical plane. The device is rotated about a vertical axis once every 4. 89 seconds. It's position is indicated by a commutator which produces a pulse for every 2 degrees of rotation. The position of a horizontal 14

TABLE X Sun Angle Data for 20 November 1968 Balloon Flight $RUN -LOAD# 5=*SOURCE* 6- =SINK EXECUTION BEGINS MONTH 11 DAY= 20 MST = 5.00 LAMBDA = 103.18 PHI = 44. 04 EL = -20. 36 AZ = -81. 78 MST = 6.00 LAMBDA = 103.18 PHI = 44. 04 EL = -9.89 AZ = -71. 98 MST = 7.00 LAMBDA= 102. 75 PHI = 43. 45 EL = 0.57 AZ= -61.59 MST 7. 33 LAMBDA = 102. 75 PHI = 43. 27 EL = 3.80 AZ = -58. 08 MST = 7. 67 LAMBDA = 102.80 PHI = 43.20 EL = 6.83 AZ = -54. 51 __ A ---~rr T 0~91. 111 n1 II II~ —~ - f A r-72 r- r% f% n MST = MST = MST = MST = MST = MST = MST = MST = MST = MST = MST = MST = MST = MST = MST = MST = MST = MST= MST = MST = MST = MST = MST= MST= I 8. 00 8. 33 8. 67 9. 00 9. 33 9. 67 10. 00 10. 33 10. 67 11.00 11. 33 11. 65 11. 67 11. 90 12. 00 12. 33 12. 67 13. 00 13 33 13. 67 14. 00 14. 33 15. 00 16. 00 LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = LAMBDA = 103. 08 103. 16 103. 28 103. 30 103. 32 103. 34 103. 35 103. 40 103. 44 103. 48 103. 48 103. 50 103. 50 103. 51 103. 52 103. 54 103. 56 103. 60 103.66 103. 66 103. 64 103. 64 103. 64 103. 64 5 PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = PHI = 43. 17 43. 06 42. 98 42. 92 42. 88 42.80 42. 75 42. 62 42. 50 42. 38 42. 24 42. 12 42. 12 42. 04 42. 00 41.83 41. 67 41. 50 41. 35 41.20 41.10 41.08 EL = EL= EL= EL = EL = EL = EL = EL= EL = EL= EL = EL = EL = EL = EL = EL = EL= EL = EL= EL = EL = EL = 9. 59 12. 37 14. 96 17.40 19. 62 21. 64 23. 39 24. 93; 26 18 27. 12 27. 76 28. 04 28. 04 28. 03 27. 98 ' 27:64 26. 93 25. 92 24. 59 22. 95 20. 97 18. 70 13.51 4.44 AZ= AZ= AZ= AZ= AZ= AZ= AZ= AZ= AZ= AZ = AZ= AZ= AZ = AZ= AZ= AZ= AZ= AZ= AZ= AZ= AZ= AZ = AZ = AZ - -5o. t -47.17 -43. 24 -39. 07 -34. 71 -30. 18 -25. 45 -20. 62 -15. 62 -10. 49 -5. 23 -0. 26 0. 06 3. 78 5. 37 10. 65 15. 85 20. 91 25. 81 30. 60 35. 20 39 57 47. 73 58. 68 I -- 41.05 EL= 41.05 EL = FIOCS-END OF FILE ON. -- 15

line on the gondola, which is in the same direction as the horizontal axis of the MRIR, is indicated by a marker pulse. In addition a pulse is obtained when the vertical plane defined by the slit passes through the sun. A sample of the data obtained is shown in figure 34. The photocell rotates in a clockwise direction. If we let ( be the angle from the marker pulse to the next sun pulse, t'hen the azimuth of the reference line on the gondola, i. e. the horizontal axis of the MRIR, measured clockwise from north, is given by: fM =fS - The radiometer scans a vertical plane at right angles to its horizontal axis, therefore the aximuth of the reflected ray recieved by the radiometer is: IA = ST - -90= a-90 or 'B S - + 90 = a + 90 where TA is the azimuth for the initial or downward portion of the scan and UB is the azimuth for the second half or upward portion of the scan. A plot of EM vs. eastern standard time for one hour (1400-1500 EST) of the flight is shown in figure 35. The gondola rotation in azimuth tends to damp out after the balloon is at altitude and so a turning moment is applied to the gondola once every hour to increase its rotation. The moment is applied by two jets of nitrogen gas. The resulting increase in rotation typically achieved can be seen in figure 35 at 1449:24 EST. A portion of the bi-directional reflectance data obtained so far is shown in figures 36-39. An aerial photograph showing a portion of the earth's surface for which this reflectance data apply is shown in figure 40. The peak in the curve of (OQ 0 o, O, ) at 0=80, =0 in figure 36 is associated with the cloud mass at the top right of the photograph.

E. Filter Wedge Spectrometer Data. As noted in progress report 05863-24-P for the period 1 October 1968 -31 December 1968, magnetic tape recordings and Brush recorder records of the analog IR data and comutated housekeeping data were sent to GSFC personnel on 7 December, 1968 for data analysis and interpretation. Late in January, we were informed that the magnetic tape data had been digitized and that an analysis had been attempted, however the results were not intelligible. Another Brush recorder with a different time scale and recorder gain were desired so that "hand" data processing could be attempted. This recording was made and was sent to GSFC on 31 January. F. U. of M. Interferometer Data (By L. W. Chaney) As noted in the progress report 05863-24-P there were 2 problems in the analysis of the interferometer data caused by equipment failures during the balloon flight. The first was associated with the gain switching amplifier in that the quiescent voltages associated with the low and high gain conditions were not equal. A probable offset voltage was established to correct for this error. The second problem was associated with the commutator used for interferometer housekeeping data. A malfunction in this unit resulted in failure to recieve data on the cold blackbody and bolometer temperatures. In addition, when the other channels were monitored, they were effected in a manner equivalent to having a voltage source with series resistance and another resistor placed in parallel with the voltage being monitored. The cold blackbody temperature was also monitored in the general gondola housekeeping data and so its temperature is known, although with less accuracy than desired. The bolometer temperature can be assumed to have been 1 C, based on previous experience with the instrument. The warm blackbody data was corrected for the impedance change by reference to data obtained during the flight from other channels. The characteristics of these other channels were known accurately and thus values of the parameters associated with the circuit failure could be calculated. Assuming that the calculated parameters also apply to the warm blackbody channel, corrected values of the warm blackbody temperature were obtained. 17

In a sample case, the values of blackbody and bolometer temperatures as indicated above were not consistant with the relative radiances obtained for cold and warm blackbody spectra and so a final adjustment of the calibration blackbody temperatures was made to achieve this consistancy. The adjusted values of blackbody temperature were used for calculation of spectra. The estimated uncertainty in the spectral radiances due to the -2 -1 -1 uncertainties in blackbody temperatures is about 4 ergs-cm * sec * ster -1 -2 -1 -1 -1 Am at 15 um (a precision of about 0. 5 ergs. cm sec ster ~ um is required for accurate temperature inversion). Most of the data obtained during the flight were examined and the best (noise free) scene and calibration interferograms were processed to spectral radiance curves. The results have not yet been evaluated. III.Medium and High Resolution Measurements of the 15 um Absorption Band of CO2 A. Medium Resolution Measurements The work on medium resolution measurements of the 15 Mm band of CO and the technical report describing the results has been completed. This work, which is the PhD thesis of Henry Reichle, Jr., has been approved by his Doctoral Dissertation Committee. The thesis is now being printedin report form (report 05863-17-T) and will be distributed in May. B. High Resolution Measurements The work on high resolution measurements of the 15 Mm CO2 band will be carried out on the 1. 8 meter Jarrell-Ash spectrometer located at the University's Willow Run Research Laboratories. Modifications of the instrument for this work have been started, as follows. 1. A new grating has been obtained and has been installed. This grating, made by Bausch and Lomb, is 190mm long by 135mm high, has 60 lines per mm, is blazed at 16pm, and Will be used in the 1st order in the double pass mode. A resolution of 0. 05 cm should be achieved. 2. The instrument is being modified to use a Cu:Ge detector instead of a thermocouple. An intiial design using available lenses was found to be inadequate because the "circle of confusion" obtained was too large for the available detector. The final design uses an an elliptical minor. 3. The instrument is being converted to vacuum operation. 18

IV. Determination of the Vertical Distribution of 0 from 3 Radiance Measurements in the 9. 6 /4m Band (by J. M. Russell) A study was undertaken to determine the dependance of the weighting functions for the 9. 6p region on instrument viewing direction and resolution. Calculations were performed using a line-by-line integration program developed at this laboratory and they included a range of resolution from -1 -1 o 5 cm to.2 cm and zenith angles rangeing from 0 to 75. The results indicate that there is very little decrease in the amount of overlap of the weighting functions for resolutions down to 2. 5 cm and there is no great improvement even for the presently unattainable resolution of. 2 cm 1 Also, data from the zenith angle scan indicates that there is essentially no improvement in the degree of overlap of the weighting functions from 00 up to 60~ and only a slight improvement at 75. It is recognized of course, that the weighting functions do not reveal how much independent information is available in the radiance data. Currently an eigenvector analysis of the problem is in progress in an attempt to determine this information. V. Laboratory Tests of the IRIS Interferometer (by L. W. Chaney) Examination of the instrument after the balloon flight revealed that some of the instrument cables had been damaged during recovery. These cables "were replaced. The instrument was taken to Texas Instruments and completely checked out. The instrument field of view was then determined using a pin hole mask and hot target arrangement. The results are shown in figure 41. The field of view is defined by three curves of constant intensity. In the figure, the circle corresponds to the theoretical 4 degree half angle field of view of the instrument. The three contours having relative intensities of 30, 80, 300 respectively have their centers displaced slightly from the theoretical center of the field of view. Next, the instrument was placed in an evironmental test chamber for calibration purposes. At this point work was suspended for about six weeks because the technician most skilled at carrying out this work suffered a heart attack. 19

VI. The Study of Techniques for Measuring Molecular Collision Rates A literature search is being made on the status of theoretical studies and experimental measurements of relaxation times because of their great importance to an understanding of the atmospheric heat budget. Relaxation times are generally defined at atmosphere pressure and room temperature. Although the manner in which they vary as a function of pressure is no great problem, since relaxation time and pressure vary inversely, variation with temperature is much more uncertain. Theoretical calculations indicate that the temperature variation may be very large, however there isno experimental verification at low temperatures. The influence of foreign gases on relaxation times is also very important and experimental data is also needed. The spectrophone is the instrument most often used for relaxation times. Study has indicated that obvious improvements in the experimental technique can be made, so that accurate low temperature measurements of relaxation times can be made. VII. Microwave Occuitation Studies (by F.: F. Fischbach) Technical Report 05863-16-T, "Analysis of Microwave Occultation Techniques for Atmospheric Soundings" was written and published. This report contained information relative to the microwave inversion process which bears heavily on the Stanford University proposal, and interestingly, on the Mariner flights to Mars and Venus. It suggests that a non-approximate method was in fact available to planetary occultation data reduction but does not conclude that a significant error attaches to the published results. That possibility is not eliminated by the present analysis because no effort has been expended in the analysis of planetary probe data. A complete mathematical formulation of the Abel transform and its application to earth occultation techniques at both microwave and optical wavelengths is giveti in an appendix. Also included is the discussion of a theoretical paper on microwave inversion which contains an error in an important section. This discussion was submitted to the Journal of Geophysical Research and is now under review. During the report period the study of water vapor asphericity was concluded by the analysis of a case in the literature in which the refractivity at the surface was described by a parabolic function of distance. Our conclusion was that the Stanford technique of analyzing this problem had little 20

meaning because of the omission of second order spatial derivatives of air density and scale height. The problem of interpretation of Earth-moon occultation data contained on digital tape output of the ATS-1 spin-scan camera system was referred to computer format specialists at the University of Wisconsin. When the data problem is resolved, the reflected radiation values for lunar features will serve as the refraction input to recover profiles of atmospheric density A thorough reveiw of the Abelian inversion technique and error analysis previously done for the stellar-refraction case has been completed as necessary preparation for the microwave phase-delay data inversion and error analysis. The latter analysis is underway. Contribution was made to the paper by Dr. M. A. Alaka, "Theoretical and Practical Considerations for Network Design, " presented at the Symposium on Meteorological Observations and Instrumentation, Washington, D.C., February 10-14, 1969. VIII. Reports Published Two technical reports were written during this work period, they are: 1. M. F. Graves and F. F. Fischbach "Analysis of Microwave Occultation Techniques for Atmospheric Soundings, " Report 05863-16-T, University of Michigan, High Altitude Engineering Laboratory, Contract No. NASr-54(03), January, 1969. 2. H. G. Reichle, Jr. "The Effect of Several Infrared Broadening Gases on the Absorption of Infrared Radiation in the 15 im Band of Carbon Dioxide, " Report 05863-17-T, University of Michigan, High Altitude Engineering Laboratory, Contract No. NASr-54(03). To be distributed in May 1969. 21

-2- 56 DIA. CABLE 2-SQUIBS FOR TIMER 2-SQUIBS-RADIO COMMAND < 3' SPREADER <- " DIA. CABLE < TRUCK PIN FITTING ' ---- /'-i6 DIA. CABLE Figure 1. Balloon Configuration, 20 November 1968 Balloon Flight 22

Figure 4. Balloon as Viewed from Balloon Gondola 25

Figure 5. Parachute as Viewed from Balloon Gondola 26

Figure 6. Photograph 190 Taken by Camera #1 at 1210:15 E. S. T. 27

Figure 7. Photograph 190 Taken by Camera #2 at 1210:15 E. S. T.

Figure 8. Photograph 75 Taken by Camera #3 at 1207:03 E. S. T. 29

(U D co 00 '- 0 7 E s O > N. CO r4 0). C P: S= *r-< < 30

RELATIVE HUMIDITY - % CO I.;TEMPERATURE - Deg.-C. Figure 10. Temperature and Relative Humidity vs. Altitude, Rapid City, South Dakota, 1115Z, 20 November 196&

0 m a) o) C >() ~3 Cd 00 0 Cd io a) ~ > d T I bra O o a) Cd r-. 0 a e * U *.i 32

RELATIVE HUMIDITY - % 00 CO TEMPERATURE - Deg. C. Figure 12. Temperature and Relative Humidity vs. Altitude, Rapid City, South Dakota, 1515Z, 20 November 1968.

co CCl hoo 4-3 C'3 w E-4~~~~~~~~~~~~~~~~~~~~~~~~~cj i re~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- - - - - - - - r-4 CDe ~~~ # -~~~~~tft-r~~~~~~~~~..........::zzzz: fj ET~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ k~~~~~~~~~~C Z ~ ~ ~ ~ ~ ~ ~ ~ ~ E Q P; ao~~~~~~~~3

nF -896T iaqLuAON og IZZCEZ 1,eoNeC[ qjnoS '-SITD pTd-ejj flapnjTTV -SASjTpTu-inH GATTeTall Pue aan-eaadw,L ':PT ajnkTj oz? 09 OT 0 OT- 09- 09- OL- 09 -- - - - - - - - - - - - - - - - -...... - - - - - - - - - - - - - - - - -- - - - - - - - - - -......................... - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - -..................... - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -...... - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - -............ - - - - - - - - -- - -............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 1. M., I IM M ------ ----....................... M Ill... I L Jill Ill gilH fill till 11 Till[ I I.1111 fill Ill) till] I 11 lilt Ill 11 little 11 I I if 11 IIllL --- I I II I I I I I I I I I L I I II I I I I I I f I 11 I LL -1-11 IIi I I I I I II I I IIIIIII [ i I I I II I-Li I L --- I I I LH111 I fill lilt 11111 Ill 11111111. I -LH I I Hill Hf lilt I I I I I I I H lilt 1-111 Hill lil- M LILLL Ill I I I L M fill-M I --- LHR 11111 lim it M 11111 111111 11111 title lim it -111L- A L M III 11111 11 HM I I 1111111- I I I.... 111111111 li m it IIIIII [it It [lilt Ill title 11111 1 11 1111 I I M lim i t IIIIIIIII li m it title I IL I III lim i t................. - - - - - - -......................... - - - - - - - - - - - - - - - - -....... - - - - -.......................... - - - - - - - -....................................... - - - - - - - - - - - - - - - - - - -.......... - - - - - - - - - -............................................................................................................... - - -............................................................................................................................................ LO i H I I I I I it I I I I co 04 - AJAQIIWflH aALLV'Tal

0' 0 To 0 el n.! E-4 3' c o "0 cD * z 3 0 +-3 C4 O *,t0r Cd. CrI * U *O 0 t. bP, ^ Q ctf ^ 36

RELATIVE HUMIDIY - % "80 T,0.Ei --- —— PE RATU RE - Deg, -. -- -- - ---- — 10 2 Figure 16. Temperature and Relative Humidity.s. Altitude, Denver, Colorado, 2315 Z, 19 November 1 968. 11111111111.... Illllrllllllllllllllllllllls~llellllllllllllllllllllllllllllllllllllllllll~llgllll-l-atmllllllllllllllllllll~lll................lll 1111111111....... IIIIII~tIIIII~lllllllllllllNIIIIIIIIIIIIIIII................li.......'.....IIIIIIIIIIIIIIIIIIIIII 111111111111~ ~~~~~~~~~-8:7:~6:5:74:3: lllll~ iiiiiiiiiiillllllllllllllll-2 0 l-10 0 1 0 2 CIIIIIIIIIIIIlliillII~ 1111111i11 a 111111111111111-111|11111|1111111111111111211111111111111111111111111111111111.1111111111111111111111111111P1ERAT11J11E11Deg111:111 111111 ~ ~ ~ ~ igr 16lll..Te...mperature11111111111111 1l an Reltiv Hu idt vs.ll A11111111111111111 1llltitude, lll11111 1111111111IT1,ll ~ ~ ~ Devr Colorado., 231. 19.November,,,,,,,.,,,,,,,,,,,,,,.,,,,,.,,,,,,,,,,,,,1968,,,,,,,,,,,,,,,.,,,,,,, 0 30

0 Iz Ez w irq 00 o Cr 7 03 o. CO q a) o O 3 ~ Q. Od a) o 1 ( U co Q) 0~ t~ 38

-_ W 1-4 a> *" -a a) E Q *r-I - I d a) *4r ' r - <Ur 0) Co O 0 cq 0 LD cv) 0 T4 a) t 39

OZONAGRAM I -r~~~~~ — v... Figure 19. Temperature and Ozone Partial Pressure vs. Altitude, Boulder, Colorado, 2043Z, 20 November 1968.

eI Up S> 5 M-I. Q ") *r-. at tQ CO,. a) 0 a ) H a d cl 'X hL C rt a ^? 41

-r o o 0 O C. r4........ Cd~~~~~~~~~ C....... cd i...... ) G p;.r' O~~~~~~~~~~~~....C..... 2 q.... *E E — q ~....... LO~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a............ Cd~~~~~~e UILLI b.0~i a ffli~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~kc 42

>-4 l 5 EH M t> 3 o r>E o 0) b.O C S I * P < (UV ' 43

Ed. I - m 5 U4 W tf a) *r+b.0 Hi -I a aCl a) 0o CO 0) 0 ToCO Cl Cl a) a; +-s P., 44

c 05 co '-4 0 ~.0) rzl o I r 0) * 05 6 3 " g ^~ c a F ^ 45

o T + <60 ---- -- o c rl ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r LO 3 a) ~~~~~~~~~~~-c~P~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c ~~~~-~~~~~~~90~~~~~~;~a P~~~~~~~~~~~~~~~~~~~~~ a) w~~~~~~~~~~~~~~~~~~~,i ~ M M. co~~~~~~~~~~~~~~a) c Er;~~~~~~~~~~~~~~~~ Q Il q cdc P4 ir1 0 a-q H 4+k 46

03 t33 co L Cd L MI: Cd I l cr ------.........~ ~~M d - coO fit. ~ ~ ~ ~ ~ ~ m~k( TE ~ ~ ~;~S1 4+~~~~ RMF~~~~~Iedr 47

'896 JiaquiGAON OgZ ZSS8T1 'eOWBQa eC MON 'Nale UIsIHg 'apnTllV 'SA XlTpTLunH aATleaIU pue ajnlaeduIaL LZg aJn~TjI 3 *'2i - anILVuadwIAIiL CO 00 aAILJV'Ta

0 CS 0 1 >4 rl Er4 0 0 Lo ~ a 0 +) co -r 'o — CDi., fl c1 a a - *r3 F 49

RELATIVE HUMIDITY - % 100 80 6 j nn nnn I I I H II H II......... I H I I 11 II I 11 I II I I II I i f I I I 1 1 1 1 I I I 1 1 I I I I I I II 1 1 I I I I I I I I I I II 1 1 I I I I I 1 1 I I I I II 1 1 I I I II I I I I I I I I 1 1 1 1 I I I I I I I I H il l I I I I I 1 1 I I 1 1 I I I H I ''I 11 I I I I I M I 11 I I 11111111 I................................................ I 11 H ill 1 1 I IIII I 11 I II I 11 I 11 lil l 1 l ilit r H I I II IIII H il l III IIII IIIII II II IIIII 11 I I IIIII IIII 11 I IIII III I I II IIII I 11 I I IIIII IIIII I II II IIIII I II 1 1 III I I II II II 1. I I I I I I II I I I I I I I I I I I I [A I I I I I I I I 1 1 I I I HIM I I I H I It I I 1 1 I I l l I I l l H l l I I I I I l l I I I I 11 I H I 11 1111 11111 I 1111 1111 I 11 H I H I i l l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 F I L - I I ll I I 1 1 1 1 1 1 1 1 1 1 1 1 I II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1, I I 1 1 I 1 1 1 1 1 1 1 1 1 1 I H I 1 1 1 1 I 1 1 H I I IL I I l l I IIII I 1111 H ill ill I IIIII 1 1 II Ill I I I I IIII Il l I II I I II 11 I I IIIII Il l H IM I I I I I I H l i 1 1 1 1 1 1 1 1 I l l I I I I 1 1 1 1 I l l I I I I I l l 1 1.................. Il l I I I 1 1 H IM I I ll I [H i H H 11 17 -111111 I L.............................. Q1 0 -80 -70 -60 -50 -40 -30 -20 TEMPERATURE - Deg. C. -10 0 10 20 30 Figure 29. Temperature and Relative Humidity vs. Altitude, Lander, Wyoming, 2315Z, 19 November 1968.

RELATIVE HUMIDITY - % 100 80 60 40 20 -80 -70 -60 -50 -40 c30 -20 -19 0 10 20 _ 30 TEPERATURE...- Deg. C. Figure 30. Temperature and Relative Humidity vs. Altitude, Lander, Wyoming, 1115Z, 20 November 1968. 4 m N Myrf I 11111111fill I 1111111 IIIII HIM 11 1. 11 ILIJ M I rl "p4b] "! [ l i l t I l l I l l I I I t It l i l t I t i l l 1,

................... zz HIM 7 m- - - - - - - - - -i. JI -TFTT '896 T -TaqrzuaAON OZ 'ZSTC9Z 'BJuo~M'crUaO-~A,"TPu-e Capnj~jTV -SA I JTPTU-1-114 A-1TeT~11 Pue a~xmjeexadrxuaj, TE ax8 -09 oz OT 0 OT- oz- oc- of- 09- 09- OL- 08-.......... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ C l It M ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ c:na M UG 04 - ALI(IIWE1lH aAIJVIHH, VV&

Zenith Principal Plane ScotterinQg mane i' -/</ T ' \ - ^ ' ' Source, / \ E/ V ^-\ NP \ / To North / Fiue. GoerofRfetoanSctr Figure 32. Geometry of Reflection and Scattering 53

Figure 33. Balloon Gondola, Rotating Photocell at Top.

I~~~~~~~~~~~~~~~~~~~I I 'I t:.V) - 1 -r - - t " H 11 1 11 I 1i ~1 iI! 1 11 1 1I 1",1! TI1ThM h I I__;;g4 O. -.,I p TI LY Ii I H i l 1 1 1 1 1 I i l l 1 1 1 1 I WW Wl In! 2o I I I?7... I in f: f I i I I I, I U1 I r i r: ' i I i e-r I I I,, I i I I ' f I,8 ]j I i:: tD`'i I: ' I I (: I I r I 1 I I I,;:: P ~rr i I rI I ' I I 1 i I: I.! 1 I~~' i i I I I I: I 1 - - I 1. - w.V k r I' 1,, f, i I: i I I I i I! I111111111! 1 I I Figure 34. Analog Brush Record of Photocell Data. 55

Figure 36. Bi-directional Reflectance in the Principal Plane, 1150-1154 E. S. T.~~~~~~~~~~~~~~~~~~~~II I II.I I I. II I....

*s Qs N AK g vl I 1% 1^........... 1,....................................... 1 1............................. I......... I L I I I I IIII I I II I I I I I I I I I B i l l ie I 1111 1 1 1 1.......... 1 11 1 1 1 I............. I... H i l l I I.- F i l l I I I 111 1 1 1 1 1 1 1 1 1 1 1 1 1 l i l t I I B i l l I I..... 1 1 l i l t l i l t I I I I R. f i l l I f i l l_ I t I It I I I J i l l I I l i l t J i l l I I I 1 1 I f ffz I R..1. I I t,. 1 l l t l l I t 1 1 1. 1 1 l i l t I l i l t I l i l t [ I I l i l t I l i l t t e l l I I lilt If A.A.L fill I lilt I J i l l I l i l t l a f i l l I 1 1 1 1 1 I l i l t I I MLLA, lit....... I I I I I l i l t 1 1 a I I I I I l i t t l e [ 1 1 1 1 1 f l I [ [ I lilt I II I J i l l................. If I -LAnZA1 it Ili lit Jill lilt l i l t I lilt Al — LLME it I I I i t I l l I l l l i t l i t I l it I I t 11 lit 11!+H+ ICA 10.4 A 4'A ZA 17A Al 07?0 'O?V bu0 v sT C v xI V /uv //U Ov Ov 7v / 'v uv Iv o v Fe,/7. en/r e, n Figure 37. Bi-directional Reflectance in the Principal Plane, 1248-1259 E. S. T.

-VA t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ " " '" " I '"" T *T 111111r 11i11111111111111111111111 m 11'i 1111111m 1111111111111 in 111111111111111111111ItnIn n11 i i rm f^ SO 70 L0 3O 10 300 O 0 /O RO 36 D SO ~60 70 <fi? P Figure 38. Bi-directional Reflectance in the Principal Plane, 1347-1403 E. S. T.... t 1X 24 2t1 2i i0 WEi 4i4 liillliilliiilli-LIll-l|-~ilLLLWLL~WL~~l~lII~ilII~luSILIIIIIItII K 2 2 2 2 a 2 j -. 2 j j j - j i iG - j - H i- I Ilililililililililililil-lW4MILLIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Art 41S ~~~~t IP3 It I iiiiiiilLIIltillll-4Il:kll~ iiiitMLL~l~lLLlI~klIL~I 4k I ]]AI.IIiI I2iEiI I l l llllllllllllfll-ll0Wlllllllllliltlllllllllllll WIlLLLLII wew I4 4a 4-l 22 1i itI i i i] IIII~L~giiilliillliilliillliilliiilliillliIIIIIIIIIIIIIIIIIIIIII~IIItill IIIIIIIII I I I [B l F Ill r I- -- C --- —— C-iC 1-l111 111l1 ll 111111 l 11 ltll ll l1 111 1111l111 1111 tl lIII T Il 1 111111 w~~~~~~~~~~~~~ B. I I t... [ i t.| I l ilt I I iI i q t X iXi i IIILIILIIIIIIIIIIIII1IITT IILL L lFII IIILLLLIILIIIILIIILIIIILIIIL11 O III I; II III III 1 ifi Li i[] ii4 3L3 i lliilll~imTI~li-lL4XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIitIIIIII 1 i s I I L. L L' c I llllllll I I mgl I IL llllllllllllllllllllllll l IIitl...l...l..l....l....l. Itil + _ _ 2 t t t ~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---- - *~~~~~~~~fi JD Ji Ao tz:t t9:lL: L Figure 38. Bi-directional Reflectance in the Principal Plane, 1347-1403 E. S. T.

............ I r I I I I I I t i l l I t i l l I t i l l L ------ --- --- -- JA t i l l 1 1, 11 I till- I fill I I t [ f i l l 1 1 I [fill........... I I t I I I t i l l I I I f i l l I f i l l... 'el I I I I Tr -t-r -12 0 400 00 Ao Ao 9110 64-10 fo 20 /O a /a a Ce Figure 3 9. Bi-directional Reflectance in the Principal Plane, 1448-1501 E. S. T.

Figure 40. Photo Showing Portion of the Earth for Which Reflectance Data of Figure 36 Applies 61

a a 'a i Ve Cnor ~ IS I r 4 Field of View Contours for IRIS Interferometer Figure 41. Field of 62

UNIVERSITY OF MICHIGAN 3 9015 02227 1178