THE UNIVERSITY OF MICHIGAN COLLEGE OF ENGINEERING Department of Aerospace Engineering High Altitude Engineering Laboratory Quarterly Report HIGH ALTITUDE RADIATION MEASUREMENTS 1 July, 1966 to 31 September 1966 Fred L. Bartman ORA Project 05863 under contract with: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT NO. NASr-54(03) WASHINGTON, D. C. administered through: OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR July 1967

V-111, d c5i 2~

Table of Contents Page List of Tables v List of Illustrations vii Abstract viii I Introduction 1 II Analysis of Balloon Flight Data I A. Balloon Performance 1 B. Air Temperature Data 1 C. Relative Humidity Data 2 D. Gondola Azimuth Data 2 E. Housekeeping Data 3 F. IRIS (Infrared Interferometer Spectrometer) Data Analysis 5 III Laboratory Testing of the F-4 MRIR Radiometer 5 IV Laboratory Testing of the IRIS 6 V Preparations for the Next Balloon Flight 6 VI Report Writing 6 VII Future Work 7 iii 111,

List of Tables Table Page 1. Meteorological Data, Lake Charles, La. 8 2. Meteorological Data, Shreveport, La. 9 3. Meteorological Data, Fort Worth, Texas. 10 4. Meteorological Data, Midland, Texas. 11 5. Meteorological Data, San Antonio, Texas. 12 6. F-4 MRIR Calibration Data, 6. 7 Micron Channel, Scanner 250/Electronics 250. 13 7. F-4 MRIR Calibration Data, 10-11 Micron Channel, Scanner 25~/Electronics 25~. 14 8. F-4 MRIR Calibration Data, 14-16 Micron Channel, Scanner 25~0/Electronics 250. 15 9. F-4 MRIR Calibration Data, 5-30 Micron Channel, Scanner 25~/Electronics 25~ 16 v

List of Illustrations Figure Page 1. Altitude vs. time curves, flight no. 214-P, 8 May, 1966. 17 2. Air temperature data, 8 May 1966 balloon flight, data taken during ascent, 1153-1337 G. M. T. 18 3. Air temperature data, 8 May 1966, 1200 G. M. T. radiosondes. 19 4. Air temperature data, 8 May 1966, 1800 G. M. T. radiosondes. 20 5. Air temperature data, 8 May 1966, 2400 G. M. T. radiosondes. 21 6. Air temperature data, 8 May 1966, profile for calculating transmissivities. 22 7. Sun azimuth and elevation angles, 8 May, 1966 balloon flight. 23 8. Gondola base plate instrument layout, 8 May 1966 balloon flight. 24 9. Gondola azimuth data, 8 May 1966 balloon flight. 25 10. Battery compartment temperature data, 8 May 1966 balloon flight. 26 11. Camera temperature data, 8 May 1966 balloon flight. 27 12. Telemetry chassis temperature data, 8 May 1966 balloon flight. 28 13. Miscellaneous gondola temperature data, 8 May 1966 balloon flight. 29 14. IRIS temperature data, 8 May 1966 balloon flight. 30 15. Filter wedge temperature data, 8 May 1966 balloon flight. 31 16. MRIR door motor and minor temperature data, 8 May 1966 32 balloon flight. 17. MRIR door and distribution chassis temperature data, 8 May 1966 balloon flight. 33 18. MRIR temperature data, 8 May 1966 balloon flight. 34 19. Housekeeping temperature data measured through entire flight, 8 May 1966 balloon flight. 35 20. Thermister power supply voltages, 8 May 1966 balloon flight. 36 vii

Abstract This report summarizes project activity during the period 1 July, 1966 to 30 September, 1966, Progress in the analysis of data obtained on the 8 May 1966 balloon flight, post flight tests and calibrations of the F-4 MRIR and the IRIS instrument, and preparations for the next balloon flight are described. viii

I Introduction This is the 15th Quarterly Progress Report on Contract No. NASr-54(03), covering the period 1 July, 1966 to 31 September, 1966. The project effort during this time period was divided among the following tasks: 1. Analysis of Balloon Flight Data. 2. Laboratory testing of the F-4 MRIR radiometer. 3o Laboratory testing of the infra-red interferometer spectrometer. 4. Preparations for the next balloon flight. 5. Report writing. II Analysis of Balloon Flight Data The evaluation of data from the 8 May 1966 balloon flight has continued. Summaries of results are given below. A. Balloon Performance Balloon performance was summarized in the progress report 05863 -14-P. Data on the balloon configuration, weight, the trace of the trajectory over the earth, and the NCAR altitude vs. time curve were shown. Analysis of pressure altitude data taken by U. of Michigan instrumentation indicates a float altitude slightly different than that obtained by the NCAR photobaro graph. The two sets of data are shown in figure 1. The U. of Michigan data indicates an average float altitude of 7 mb., which is about 0. 7 mb. (1700 feet) higher than indicated by the NCAR instrument. The U. of Michigan data also show greater fluctuations in float altitude during the day. The difference between these two sets of data is somewhat greater than would be expected and has not been resolved so far. B. Air Temperature Data Air temperature data obtained during balloon ascent was also shown in progress report 05863-14-P. Additional data is shown in figures 2 to 6. In figure 2 air temperature data taken during the balloon ascent by U. of Michigan thermister beads is compared with air temperature data obtained with the NCAR radiosonde. The U. M. data is significantly different from the radiosonde data except in the 400-600 mb. region. This difference may be due to errors in calibration of the U. of M. beads, however, since the beads were destroyed when the balloon gondola returned to earth the difference cannot be resolved. 1

Figure 3, 4 and 5 show air temperature data taken by radiosondes at five Weather Bureau Stations surrounding the launch site at 1200, 1800 and 2400 G. M. T. The rather large spread of temperatures shown by this data at low altitudes and in the tropopause regions eliminates any possibility of resolving the difference in the balloon ascent data noted above. The smooth curve of air temperature vs pressure altitude which has been adopted for transmissivity calculations is shown in figure 6. C. Relative Humidity Data Relative humidity data taken by the radiosondes at 5 stations in the vicinity of the launch site are given in tables 1 to 5. The temperature data plotted in figures 3-5 and the dew point temperature are also given for reference. D. Gondola Azimuth Data The interpretation of the "MRIR" radiometer solar radiation channel data requires a knowledge of the azimuth of the scan plane of the radiometer. Azimuth data is obtained by a Disc Instruments, Inc. Model 835 Rotoswitch, which is a photoelectric bi-directional incremental shaft encoder. The field of view of the photocell, determined by a mask with two slits, is a vertical plane. The position of the rotating vertical plane is monitored by the Rotoswitch shaft encoder. The aximuth angle between the vertical plane and a reference line on the balloon gondola is determined from the shaft encoder data for the various times at which the vertical plane passes through the sun. The azimuth of the gondola reference line is then calculated from sun azimuth data and the shaft encoder data. Figure 7 is a plot of sun azimuth and elevation vs. time for the 8 May 1966 balloon flight. Figure 8 shows the reference line on a plan view of the gondola. Figure 9 shows the time variation of the azimuth of the gondola reference line. In this figure azimuth is measured clockwise from north, as viewed from above. Thus 0~ azimuth is north, 90~ is east, etc.. The gondola rotational motion indicated in figure 9, is qualitatively typical of the rotations usually obtained on our balloon flights. During the 2

ascent to altitude there are fairly rapid rotations, due to the torque induced at launch and to the torques induced by the changing balloon configuration as it inflates during ascent. The rotation decreases when the balloon arrives at float altitude (0840 EST on this balloon flight). Usually there are occasional small motions during the rest of the flight at float altitude, with a minimum of rotation at local noon, and with noticeable increase in rotation in the afternoon as the sun elevation angle decreases. The rotational motions at float altitude on this balloon flight were smaller than on other U. of M. balloon flights. This decreased rotation is attributed to the ladder type suspension used on this flight. (see fig. 14 in quarterly report 05863-14-P). On previous flights the long portion of the load line was usually a single long cable, which had less resistance to rotational motions. On this balloon flight rotational motions of the gondola were introduced deliberately at one hour intervals during the morning. Torques were applied by 10 second jets of dry nitrogen through 2 orifices located on opposite sides of the balloon gondola. The nitrogen supply was carried in a small tank at 2200 psi initial pressure and was released by electrical valves after passing through a pressure regulator which reduced the pressure to about 65 psi. The quantity of gas (14 cu ft. at 70~F and 1 atmosphere) was sufficient for 11 cycles. On this flight 6 of these occured before launch. The results of 2 of these jets applied at 0720 and 0820 EST are not easily detected in the rotational motions because of the large rotations already existing during ascent. The rotations produced at 0920, 1020 and 1120 EST can be seen in figure 9. E. Housekeeping Data Housekeeping data obtained on the 8 May 1966 balloon flight are shown in figures 10-20. Complete data was obtained up to 0750 EST, when the failure of a stepping relay in the calibrate monitor circuit occurred. Figures 10-18 and 20 show data obtained up to this time. Figure 19 shows data obtained from three thermistors for the remainder of the flight. 3

Figure 10 shows temperatures measured at 3 places in the gondola battery compartment. The decrease in temperature which takes place after launch indicates that the battery compartment insulation was not as effective as it has been on previous flights. Data was not obtained for a long enough time to determine the minimum temperature obtained before the normal increase which occurs at float altitude during the day. However extrapolation of the decrease of the temperature of the bottom of the battery compartment to 0920 EST., in direct analogy to the decrease of the distribution box air temperature shown in figure 19, indicates a temperature minimum of perhaps 80C. Although this temperature is not dangerous for battery operation, it is much lower than should be obtained with proper insulation. Figures 11, 12 and 13 show temperatures at various locations inside and on top of the gondola. These locations are protected from the cold air in the tropopause by at least one inch of polyethelene beadboard. The cameras (fig. 11) are all protected against low temperatures by heaters with thermostats that operate at 60 C and therefore do not go below this temperature. The decrease obtained after launch for the other locations is quite normal. Temperatures of the IRIS (Infrared Interferometer Spectrometer) instrumentation are shown in figure 14. The head and warm blackbody temperatures are controlled. The temperature of the electronics package shows a variation which is considered to be normal for an instrument inside of the second level of the gondola. Filter wedge instrumentation temperatures are shown in figure 15. Again, the decrease in temperature of the door and electronic package are quite normal. Since a fairly large amount of power was dissipated in the instrument itself, the filter wedge bolometer, blackbody and the edge of the bottom plate do not show much temperature decrease after launch. MRIR temperature data is shown in figures 16-19. Figure 16 shows temperatures of the auxiliary mirror, which has no insulation, and the door motor which is only poorly insulated. The mirror temperature minimum of -32. 5C. was the lowest temperature recorded on the balloon gondola. The 4

The MRIR door motor (fig. 16), the MRIR door and the MRIR (fig. 17) distribution box show successively higher temperature minima, consistant with their power dissipation and insulation. MRIR instrument temperatures are shown in figure 18 and are as expected. Figure 19 shows the three "housekeeping" temperatures measured throughout the flight. The MRIR mirror temperatures shows the extreme temperature variations which are to be expected of an uninsulated portion of the gondola. The temperature maxima are due to direct illumination by the sun. The MRIR chopper #1 temperature indicates a minimum temperature of 9~C. and shows fluctuations due to solar heating. The distribution chassis air temperature shows an increase consistant with continuous illumination of the gondola by the sun. Figure 20 shows voltages of the thermister power supply which remained constant as long as they were measured. F. IRIS (Infrared Interferometer Spectrometer) Data Analysis The technique of analysing the IRIS data was perfected during this quarterly work period. Details of the work included: 1. Analog interferograms were put into IBM compatible format with the use of the Meteorological Department CDC computer. 2. Individual interferograms were carefully examined and a few selected for the calculation of spectra. 3. The analytical technique of applying calibrations was developed and programs were written for this purpose. 4. After considerable effort, it was realized that the pre-flight calibrations were not valid and so in-flight calibrations were used for data analysis. At the end of this work period, spectra had been calculated for all of the interferograms selected. III Laboratory Testing of the F-4 MRIR Radiometer The thermal channels of the F-4 MRIR have been recalibrated. These post-flight calibrations are in basic agreement with pre-flight calibrations made in February, 1966 and thus demonstrate that no serious damage was done to the instrument in the launch disaster of 26 May 1966. A portion of the data with 5

both scanner and electronics module at 25 C. is shown in tables 6-9. IV Laboratory Testing of the.(IRIS) Interferometer Laboratory Tests of the IRIS instrument included a check of resolution and a post flight calibration. The Laboratory's large blackbody source was re-built and a new dry box was constructed for the calibrations. The resolution check and calibrations demonstrated two facts: a) That the interferometer suffered no deterioration in performance during the flight. b) The pre-flight calibrations carried out at Bendix Systems Division and at Chrysler Missile Division were not valid because of contamination of the calibration chamber by water vapor. As a result, data analysis of the 8 May 1966 balloon flight data has been carried out using in-flight calibration data and a new environmental chamber has been purchased for use in carrying out interferometer calibrations in the future. V Preparations for the Next Balloon Flight Work in preparation for the next balloon flight can be divided into two categories; repair of old equipment and design and construction of new equipment. Equipment repaired included: a) The pressure altitude measuring unit. b) Cameras (repaired by J. A. Maurer Co. ). c) Brush recorders. d) Thermisters for measurement of "housekeeping" temperature data. e) The MRIR electronics (distribution) chassis. After the construction and testing of prototype circuits for a new gondola timing and control system, parts were ordered for the new system. VI Report Writing A paper, published in May, 1966, and not reported on in the quarterly report covering that period is "The Effect of Time Jitter in the Sampling of an Interferogram", by M. T. Surh, Applied Optics vol. 5, pp 880, May 1966. 6

Another paper, by S. R. Drayson and C. Young, "Intensities of the Carbon Dioxide Band in the 12-18 Micron Spectral Region, " was presented at the Symposium on Molecular Structure and Spectroscopy, Ohio State University Sept., 1966. The work reported on was performed in part on this project and partly under another contract, cwb-11376. VII Future Work The main effort during the next work period will be devoted to: 1) Data analysis 2) Construction of new balloon flight instrumentation 3) Report Writing 7

8 May 1966 1200 GMT TABLE I METEOROLOGICAL DATA, Lake Charles, La. 8 May 1966 1800 GMT 9 May 1966 0000 GMT P(mb) T(~C) RH% TD(~C) P(mb) T~(C) RH% TD(OC) P(mb) T(~C) RH% TD( 0c) 1008 994 923 794 696 661 568 536 516 412 400 388 300 249 173 164 152 107 100 69 55 50 26 14 1Q 17.8 22. 1 17.8 7. 5 2.5 1. 9 -5.8 -9. 3 -10. 6 -23. 9 -24. 9 -26, 7 -40. 0 -50. 2 -61.2 -59. 0 -61.6 -63. 8 -61. 6 -64. 0 -59 6 -61.6 -48. 0 -43. 8 -37. 2 90 68 61 99 76 51 58 72 54 83 72 58 35 16. 1 15. 9 10.2 7. 4 -1.4 -7. 2 -13. 5 -18. 1 -26. 0 -32. 5 -49- 6 1009 996 826 782 740 720 708 654 538 460 438 400 328 297 244 199 193 162 132 107 100 91 75 40 26 20 15 27. 2 24. 8 11. 0 6. 7 3. 7 3. 7 5,5 2.8 -7. 4 -16.5 -19. 5 -24.0 -36. 2 -40.0 -49.0 -56. 0 -55.4 -62.0 -60. 5 -62.2 -61.1 -59. 6 -65.2 -52.8 -50. 0 -41. 7 -39. 9 57 48 63 86 67 47 39 45 43 43 52 38 20 18 17.8 13. 1 4. 2 4. 5 -1.9 -6. 5 -7. 4 -8. 0 -26. 2 -26. 9 -34. 4 -51.2 -55. 3 1006 807 772 709 582 508 481 446 438 400 292 221 176 162 156 142 110 100 72 59 52 50 38 35 27 25 16 27.2 11.0 8.2 5. 6 -2. 5 -11.2 -14. 4 -19; 2 -19. 6 -24. 3 -39, 9 -51,5 -59. 7 -58 4 -60. 1 -58. 7 -63. 3 -62. 8 -64. 3 -60. 8 -61.1 -57. 5 -54: 0 -55. 9 -48. 7 -49. 6 -43. 2 39 12.1 62 4.0 71 3.2 35 -8.7 48 -12 0 53 -18.9 63 -19. 9 61 -24.8 44 -28 8 18 -41.9 18 -55.2 8

TABLE 2 METEOROLOGICAL DATA, Shreveport, La. 8 May 1966 1200 GMT 8 May 1966 1800 GMT 9 May 1966 000 GMT P(mb) T(~C) RH% TD(~C) P(mb) T(~C) RH% TD(~C) P(mb) T(~C) RH% TD( (OC) 1000 986 850 824 720 584 552 400 310 259 207 171 162 136 108 100 62 37 32 22 10 7 14. 9 22. 3 12. 8 12. 8 6. 0 -7. 5 -8. 2 -17.0 -26. 0 -40. 0 -48. 4 -56. 6 -60. 8 -59.2 -63. 0 -61. 3 -63. 3 -62. 0 -51. 3 -52. 5 -44 8 -37. 7 -37. 3 95 60 64 41 44 44 44 33 33 35 14. 1 14. 1 6. 2 -0. 1 -5. 4 -17. 7 -18. 3 -37. 6 -49. 7 1000 851 832 602 486 400 342 303 251 197 132 100 92 82 54 43 10 8 25. 7 12.2 14. 2 -2. 6 -14. 7 -24. 7 -33. 9 -40. 0 -48. 3 -56. 5 -62. 8 -61.0 -60. 3 -63 5 -56. 7 -56. 7 -34. 6 -35. 5 51 66 31 29 43 27 26 28 14. 8 6. 0 -2. 7 -24. 5 -38.4 -51. 6 997 986 852 808 613 458 311 260 204 160 130 115 96 79 29 18. 5 10 28. 4 26 14. 6 12. 9 -2. 3 -17. 6 -39. 8 -48. 8 -57. 1 -61.1 -60. 2 -63. 0 -61.7 -64. 5 -49. 6 -45. 4 -36. 8 43 44 58 30 30 29 30 14 6 12.8 6.4 -4 3 -31.4 -50. 8 9

TABLE 3 METEOROLOGICAL DATA, Fort Worth, Texas 8 May 1966 0600 GMT 8 May 1966 1200 GMT 8 May 1966 1800 GMT 9 May 1966 0000 GMT P(mb) T(~C) RH% TD( C) P(mb) T(~C) RH% TD(0C) P(mb) T(~C) RH% TD( C) P(mb) T(~C) RH% D ~~~~~~~...D TD(~C) 991 968 868 840 684 654 616 605 574 400 333 309 268 228 223 200 19.8 22. 9 16.0 14.2 3.2 0.5 -2.5 -1.5 -4.2 -26. I -37. 0 -40. 0 -46.8 -51.8 -51.8 -58.0 78 57 58 41 28 44 28 16 17 20 20 20 15. 9 13.9 7.7 1. 1 -13.5 -10.4 -18.5 -24.1 -42.5 -51.8 -54.5 989 962 840 789 735 704 654 642 590 400 350 310 269 195 185 148 141 122 115 108 100 82 40 34 30 18 15 16.0 21.0 13. 3 9. 0 7. 7 5.0 -0.2 0.2 -3. 3 -26.8 -34.1 -40.0 -47.5 -60. 3 -59. 6 -64.0 -62.0 -64.0 -62.2 -64.0 -62. 3 -66.0 -57. 1 -51. 7 -52. 9 -43.8 -41. 7 90 51 41 71 21 26 51 23 16 18 18 18 14.4 10.5 0. 3 4.0 -13. 3 -9. 1 -18.5 -25.6 -44.0 -50.2 -55.3 989 979 844 807 775 666 655 520 400 304 227 200 26.2 23.6 13.5 11.8 11.1 2. 9 4.0 -7.7 -24.8 -40.0 -54.1 -57.8 51 39 32 46 21 24 15 15 16 15 15.2 8.8 -2. 9 0. 5 -10. 5 -15. 7 -20. 3 -43. 5 -56. 8 986 868 847 802 732 722 591 476 400 299 226 212 196 172 163 158 138 127 118 114 100 92 82 75 65 43 35 31 28 26 18 27. 0 16.3 16. 7 15. 3 9. 5 10.8 -1.9 -13.8 -24. 3 -40. 0 -54. 7 -56. 1 -59. 9 -63. 4 -62. 6 -59. 6 -62. 1 -60. 3 -62. 9 -62.1 -64. 8 -63. 1 -64.5 -62. 0 -64. 0 -55. 5 -50. 0 -51.6 -47. 5 -48. 1 -43. 3 18 18 18 20 -42. 0 -54.4 48 15.0 54 7.0 19 -7.1 17 -9.6 15 -15.8 15 -14.8 10

TABLE 4 METEOROLOGICAL DATA, Midland, Texas 8 May,1966 1200 GMT 8 May, 1966 1800 GMT 9 May 1966 0000 GMT P(mb) T(~C) RH% TD(~C) P(mb) T( C) RH% TD(~C) P(mb) T(~C) RH% TD(.~~~ ~~ _.D C) 910 886 833 787 633 533 523 480 400 362 304 284 264 186 173 157 146 114 100 57 48 40 38 10 8 14. 0 19.1 18. 6 17.0 2. 8 -9. 4 -9. 2 -13.5 -24. 5 -29.6 -40. 0 -44. 0 -46. 2 -61.1 -63. 4 -60. 9 -63. 4 -61.5 -64. 3 -63. 4 -58.8 -58. 5 -54. 5 -35. 9 -36. 2 71 44 18 20 23 32 18 17 21 19 25 8.8 6. 6 -6.1 -6. 1 -16. 3 -23. 0 -29. 3 -33. 4 -40. 7 -52. 5 910 900 836 796 733 642 620 561 550 531 463 400 340 297 201 176 171 153 145 121 106 100 59 54 44 34 21 17 13.5 10 26. 9 24. 6 19. 1 18. 5 12. 9 3. 3 0. 3 -6. 4 -6, 4 -7.1 -16. 0 -24. 3 -34. 0 -40. 0 -60. 0 -61. 6 -61.1 -63. 0 -60. 5 -60. 0 -63. 4 -62. 5 -62. 5 -58. 0 -58. 5 -51.4 -44. 3 -42. 9 -36. 3 -33. 2 30 27 24 22 22 26 39 33 19 17 18 19 21 20 7.8 4. 4 -1. 9 -3. 6 -14. 4 -12. 1 -20. 0 -26. 3 -28.1 -41.5 -48. 9 -54. 4 916 892 700 622 568 548 400 290 216 165 156 142 130 100 76 58 50 38 25 10 7 5. 6 31.5 29.0 11. 1 2. 9 -3. 5 -4. 5 -23.. 1 -40. 0 -57. 2 -64. 0 -59. 1 -61.8 -60. 8 -65. 0 -65. 8 -64. 1 -59.0 -57. 6 -46. 8 -38. 0 -30. 0 -31.2 19 18 25 27 27 17 18 5.0 2. 3 -19.8 -25. 9 -40. 9 11

TABLE 5 METEOROLOGICAL DATA, San Antonio, Texas 8 May 1966 1200 GMT 8 May 1966 1800 GMT 9 May 1966 0000 GMT P(mb) T(~C) RH% TD(~C) P(mb) T( C) RH% TD(~C) P(mb) T(~C) RH% TD(C D..D )C) 982 966 922 895 839 814 739 719 697 674 600 430 400 365 298 275 215 192 168 157 151 130 120 106 100 78 63 44 18 14 13. 3 16. 6 14. 8 15. 6 11.1 10. 7 4. 0 3. 4 5. 7 5.2 -1.2 -22. 5 -25. 0 -25. 0 -40. 0 -43. 9 -54. 7 -59. 4 -61. 7 -61.5 -62. 4 -61.2 -61.4 -65.2 -63. 8 -64.8 -66. 0 -57. 5 -44. 7 -43. 2 97 100 90 63 85 62 62 35 14 14 15 18 18 12.8 16.6 13. 3 8. 6 8. 6 3. 7 -2. 6 -10. 6 -19.8 -20. 2 -24. 6 -40. 4 -42. 5 982 966 905 827 758 728 698 590 400 326 309 200 178 160 151 140 132 127 111 100 67 45 40 31 25.0 22. 5 16.5 12. 3 5. 7 6. 1 7. 8 -2.2 -24. 5 -35. 9 -38. 9 -56. 0 -59. 6 -57. 5 -60. 6 -60. 1 -61.7 -60. 9 -64. 2 -62. 8 -66. 1 -56. 0 -55. 7 -50. 6 60 53 71 45 48 23 19 19 20 21 23 16. 7 12.4 11.2 0. 7 -4. 5 -13.5 -14. 5 -41.2 -52. 3 979 872 823 764 746 708 704 638 466 400 343 294 204 193 190 172 152 142 129 112 100 95 84 62 36 28 23 17 27. 2 16. 8 12. 6 8.0 9. 5 8. 2 9. 1 4.5 -15. 4 -23. 6 -32. 5 -40. 0 -57. 8 -59. 0 -57. 6 -60. 3 -60.1 -57. 6 -61.9 -63. 6 -67. 7 -69. 2 -64. 9 -65. 3 -51.2 -51.2 -45. 2 -44.8 47 58 65 58 23 16 16 15 15 17 17 18 14. 9 8. 5 6.2 0. 2 -10. 6 -16. 2 -15.5 -19. 9 -41. 9 -55. 3 12

TABLE 6 F-4 MRIR CALIBRATION DATA 6. 7 Micron Channel Scanner 25~0/Electronics 25~ S.B. S. B U.M. S.B. U.M. S.B. S. B U.M. U.M. ~C 10/2/64 10/12/64 2/65 4/8/65 9/65 12/20/65 12/29/65 2/1/66 7/6/66 -93 5.20 5.25 -- 4.70 4.95 4.70 4.70 5.15 -83 5, 15 5.15 -- 4.60 4.85 4.65 4.65 5.00 4.88 -73 5.00 5.10 -- 4.40 4.65 4.55 4.55 4.84 4.75 -63 4.80 4 90 4.20 4.25 4.40 4.30 4. 30 4.56 4.50 -53 4.50 4.55 3.95 3.95 4.05 4.10 4.10 4.25 4. 13 -43 4.05 4,05 3.55 3.45 3.60 3.60 3.60 3.75 3.63 -33 3.40 3.40 2.90 2.80 3.05 3.00 3.00 3.10 2.95 -23 2.55 2.60 2.05 2.10 2.20 2.10 2.10 2.26 2.10 -13 1.50 1,50 1.00 1.05 1.10 1.10 1.10 1.15 1.00 -3 13

TABLE 7 F-4 MRIR CALIBRATION DATA 10-11 Micron Channel Scanner 25~/Electronics 25~ S. B. S.B. U.M. S. B. U.M. S. B. S. B. U.M. U. M. oC 10/2/64 10/12/64 2/65 4/8/65 9/65 12/20/65 12/29/65 2/1/66 7/6/66 -93 6.30 6.25 -- 6.10 6.10 6.10 6.05 -83 6, 20 6.15 -- 6.00 6.05 6.00 5 95 6.14 5.90 -73 6.00 6.05 -- 5.90 5. 90 5.85 5.80 5 96 5.80 -63 5,85 5.85 5.60 5.65 5,70 5. 65 5. 65 5. 75 5. 60 -53 5.65 5.60 5.40 5.45 5.45 5.45 5.40 5.50 5. 35 -43 5, 35 5.30 5.15 5.1 5..15 5.15 510 5.19 5.05 -33 5.00 5.00 4.80 4.85 4.80 4.85 4.85 4.85 4.70 -23 4.60 4.55 4,40 4.40 4.40 4.45 4.35 4.45 4.30 -13 4.05 4.10 3.90 4.00 3. 95 3. 95 3.90 3. 99 3.85 -3 3.55 3.50 3.40 3.50 3.45 3.50 3.40 3.45 3.35 7 3.00 3.20 2.85 2.90 2.90 2.90 2.85 2.85 2. 75 17 2.30 2.25 2.20 2.25 2.25 2 25 2.20 2.20 2.15 27 1.50 1.50 1.50 1.50 1.55 1.55 1.50 1.50 1.50 37 0,65 0.70 -- 0.70 0.7 05 0.75 0.70 0.70 0. 75 47 14

TABLE 8 F-4 MRIR CALIBRATION DATA 14-16 Micron Channel Scanner 250/Electronics 250 S. B. S. B U.M. S.B. 2/65 4/8/65 U.M. 9/65 S. B. 12/20/65 S. B. 12/29/65 U.M. 2/1/66 U.M. 7/6/66 ~C 10/2/64 10/12/64 -930 -83~ -730 -63~ -530 430 -33~ -23~ -130 -5.50 5. 00 4, 70 4. 35 3. 85 3,40 2. 75 2. 30 1.55 0.80 -0.20 5.00 4. 70 4. 35 3. 90 3. 35 2. 75 2. 15 1.50 0. 75 4.80 4.40 4.10 3.45 3. 75 3.05 3.25 2.55 2.60 1.95 2.00 1.25 1.35 0.45 0.60 4. 75 4. 55 4. 15 3. 70 3, 20 2.65 2.00 1. 35 0. 55 4.75 4.40 4.00 3.50 3. 05 2.50 1.85 1. 20 0. 50 4. 75 4.40 4. 10 3. 60 3.10 2.55 1. 90 1.25 0. 50 4. 94 4.63 4.51 4.25 4.16 3. 77 3. 70 3.30 3.19 2.75 2.61 1. 95 -1.25 0.50 -0. 15 0.00 +0.05 +0.05 +0. 05 15

TABLE 9 F-4 MRIR CALIBRATION DATA 5-30 Micron Channel Scanner 25~/Electronics 25~ S. B, S.B, U. M S. B 0/12/64 2/65 4/8/65 U. M. 9/65 S. B. 12/20/65 S. B. 12/29/65 U. M. 2/1/66 U.M. 7/6/66 ~C 10/2/64 1( -93 -83 -73 -63 -53 -43 -33 -23 -13 -3 17 27 37 47 5.80 5. 60 5.40 5. 25 5.00 4, 65 4, 30 3. 95 3. 50 3, 00 2,40 1.80 1. 15 0. 40 5.80 5. 65 5.50 5.25 5. 00 4. 70 4. 35 3. 90 3. 50 3. 00 2. 40 1.80 1.10 0. 50 - 5.70 5. 50 5.35 5.30 5.10 5.10 4.85 4. 80 4.60 4. 40 4.25 3. 95 3. 90 3.50 3.40 2. 95 2. 95 2.40 2.40 1.80 1.85 1 15 1. 15 0.35 0.40 5.80 5. 70 5. 55 5. 30 5. 00 4. 70 4. 30 3. 90 3.45 3. 00 2.45 1. 80 1. 15 0. 35 5.65 5. 50 5. 35 5. 15 4.85 4.55 4.20 3.80 3.40 2. 90 2.40 1. 75 1.15 0. 35 5. 70 5. 50 5. 35 5. 10 4.85 4.55 4.25 3. 80 3.40 2. 90 2. 35 1. 75 1.15 0. 35 5. 98 5. 80 5. 60 5, 35 5. 05 4. 75 4.40 4. 00 3. 50 3.00 2. 45 1.82 1. 10 0. 35 5. 70 5.50 5.26 5. 00 4. 70 4. 33 3, 90 3.46 2. 96 2.43 1,81 1. 15 0.41 16

_#+L#4t+ i M LL. I00 — I 2 CO -J z P-* CO C6 90 20 — 40 c 60 ao 8 M l66 20_4 -_ _i_ _ _ ___ig 1 2! 1 - I I ~~~IV. of I Iga 5L - _+ -1 _Oi -fM -tfn___ __ — o-fNCAR bu i d ta - - I ~ / 0600 0700 0800 0900 1000 o100 TIME (CST) Figure 1 1200 1300 1400 1500 1600

4 ___ ___ ___ 123,400 5 - - --- 17300 6 -- - -- - -- - -- - -- - -.- - -- - -- - -- - -- - -- 113,5 0 0 7 -— 109,900 8e --- --- - 106,900 10 o/ I W o L. I lJ a<1: a, I 4 1 0 20 o0 30 401 I I = 1 = I.; AIR TEMPERATURE ~~~~50~~0 __ I II __, I I 8 May 1966 BalloonFlight 70 8L0 I x U of M Thermistor Beads 90 - - o NCAR Radiosonde 00 I I Data taken during ascent, S / 1153-1337 GMT _, -,,,,, I I 101,700 86,400 *0 a. 78,200 1 72,200 67,600 63,900 60,500 57,700 55,300 53,000 I -J I. 0 w (3 N N: 300 400 -' ' ---500 600 700 800 900 I000 38,700 30,000 23,500 18,200 13,800 9,900 6,400 3,300 400 -80 -60 -50 -40 -30 -20 -10 TEMPERATURE - Deg. C. 0 +10 +20 +30 Figure 2

(A.0 1 -w c-: CD ) 0n a. 4 1 — ^- -- - --- --- - - -— _ - -- -- ^^- - 12350 58 11 7,90( 6 113,50( 7 -4- 109,90 8 - x 106,90 9...-1_ 104,20 10 -- - -- - -- OA — ---- - -- - -- -- - -- - -- - - 10 1,70 -30 20.. - 0 86,4.0 30- F I --- —-___III____ | A___ ____ ___ ___ ___ ____ 78,20 40 o _ __ AIR TEMPERATURE DATA 72,20 50 -_ n — 8 May 1966 Balloon Flight 67,60 670 — 0 -- -- 0~ SHREVEPORT 63590 80o, x MIDLAND 57,70 90~ t- --- 0 SAN ANTONIO 0 55,30 ~100 -- - --- - - -- - - - A LAKE CHARLES 5300 t~ FrT lo 0 FORT WORTH xi 1200 GMT Radiosondes 200 - -- - -__ _ _ 38,70 300 ___30,00 400 - - - — s 23,50 500 - -- ---- X S 18,20 600 — --- - — _ -— __ __ --- —-- oI —_ I__ ___ ___380 180 700 %,__ o 87 0 0 --- --- -- --- --- -- --- --- -- --- -- --- --- -- --- - _ --- -- -— 0 — 9,90 800 --- _- -- --- 6,40 900 3, 3,30 I1000 -n[' -. OA 40 0o 0 0 0 0O 0 0 0 0O 10 0 0o 0 0o 10 '0 0o 10 10 10 10 '0 0o '0 '0 0 0 L. I -J z 0 0 -0 -80 -70 -60 -50 -40 -3C -20 -10 TEMPERATURE - Deg. C. 0 +10 +20 +30 Figure 3

4 - - I - I I I I I I 1 23,400 5 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 11 7,9 0 0 6- --- __- - - - -- - ---- [113,500 7 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- - -- --- --- --- --- -— _ _ _ _ _ _ _10 9,9 0 0 8 106,900 9.... -- - ',- -A ir I ' I w 0 U, w o o or) o: x X 20 -- 8e 30 [] 7_ 40t= __==::= _ L AIR TEMPERATURE DATA 7i x ~o - - -- -- - __ 8 May 1966 Balloon Flight 67 60 x * 70 I Io I I I I I I I 0 SHREVEPORT 7801 ZZ0 I II __ _ x MIDLAND 6C 90 — I o SAN ANTONIO 5 -- — 100 1 — I-I-I-I-I- - A LAKE CHARLES -n i l | l 0 o FORT WORTH A[3 Special Radiosondes at 1800 GMT 200 3 0 300 — _ -3 400 2 500 600 _ 700, 0 0 9 800A o _ 100. ' ---: 100o I rjk~' L,70V 1,700 3,400 - LLJ 3,200 I.,200 3!,600 I.,900 j ),500 < 7,700 z 5,300 W 35P00 O0 (. 3,700 3,000 5,500 3,200 3,800 1,900 >,400 5,300 400 -80 -70 -60 -50 -40 -30 -20 -10 TEMPERATURE - Deg. C. 0 +10 +20 +30 Figure 4

4 - I I I I I I I I I I I 1 -23t400 205 -- - - - - - - - -- - - - - - - - - - 117,900 6 - - 113,500 7 i — -- - I- -- - ---- -- - -- - -- - - -- - -- 109,900 8.... -- -- - --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- - - 106,900 10-4,Lo I9 — 104,200 o10 ---- 101,700 ~20 86t4O(~ 20 -- -- - -- - -- -- - -- - -- -- - -- - -- -- - -- - -- - ' 86,400 I co.0 I._ 0 Alk A -_ 40 50 so --- __-f L i-F --- -I fIA-x A x & W. l^ cr 70 1 0; l = = 80 __ ___I _ ___ ___ 1 __ ___ 9 0 _ _ I I_ _ _ I I I I I AIR TEMPERATURE DATA 8 May 1966 Balloon Flight O SHREVEPORT x MIDLAND o SAN ANTONIO A LAKE CHARLES o FORT WORTH 2400 GMT Radiosondes U. 78,200 1 I72,200 ( 67,600 I 63,900 _j 60,500 - 57,700 z 55,300 W 53,000! o a. 0 w C/V) - - c() 100 w a. 200 al 0 1 O.^ou -I _I _ ToI __ I _ I _ I _ I I I _ I_- I I I I I_ ~P o A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,, A V 400 500 P v 600 x__x__ 700__-.______ 800 __ 900 - O --- ----- m --- 1000^ i___ 0 1 - i i i i i i i i I T - I I 38,700 30)00 23,500 18,200 13,800 9,900 6,400 x,,300 400 -80 'O -60 -50 -40 -30 -20 -10 TEMPERATURE - Deg. C. 0 +10 +20 v.F3 u Figure 5

4 I -- - 5 -— I I 7 -I 8 L r T T 1 I I T I R r I 1 I T I 1 T I 1 1 T I 23,400 117,900 13,500 09,900 06,900 AA9)Ao I {^ I C0.0 2,,) I C,) w ab < O') n 20 30 40 I I I I AIR TEMPERATURE DATA 50 / 8 May 1966 Balloon Flight 60 70 / I PROFILE FOR CALCULATING o80 TRANSMISSIVITIES 90 o00 101,700 86,400 Lt 78,200 1 72,200 I Rit 67,600 I 63,900 - 60,500 < 57,700 ' z 55,300,w 53,000 o 0 0 w W Ld I I I \ 200 300 400 500 600 700 800 900 1000 I I I l1 I I I I I I I I I I I I I 38700 30,000 23,500 18,200 13,800 9,900 6,400 3,300 400 -80 -70 -60 -50 -40 -30 -20 -10 TEMPERATURE - Deg. C. 0 10 20 30 Figure 6

SUN AZIMUTH AND ELEVATION ANGLES 8 May 1966 Balloon Flight CAD 90 ' " 7 0. 2 8C 60o- z z 0o w -IJ w 40...:::3 30- -- 0 ---— _ _-_ --- —--------—..... --- —------------- -10 280 - 260 240 w - 220 Z _ I-. -2160 - - 140 - 120 - 100 80! I I I 0700 0800 0900 1000 1100 1200 TIME - E.S.T. Figure 7 1300 1400 1500 1600 1700

12ft. F A.T..T. BOOM HORIZONTAL Figure 8

3 3 2 2 '~ ~t /i^ \I lJ 0700 0705 0710 0715 0720 0725 0730 0735 0740 0745 0750 0755 0800 550 v 00 5oo - 50 -0 / 0 0 0 0700 0805 0810 0' 815' 0820 ' 02 0830 0735 0840 0845 0850 0855 0900 060 00 5 10 ' 0815 0820 0825 0830 0835 0840 0845 0850 0855 0900 3 3 2 2 I I( 35C 30( 25C 20C 15( 10( IOC 5( II 35C w 30': 25C 0D 201 5( r 0 -O 0 -+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0 - I O'3 0 -3 -3 -0 -3 -0 -of) 00 0905 ' 0910 0915 0920 0925 0930 0935 0940 0945 09 50 09 55 1000 -~V~~ 10 IJ 350. " 300 250 -Z 200 -150 100 -I 50 -- 0, 350' - 300' N 250 < 200 -150 < 100 -J 50. O o 0 12 Z 350 -0 300 CD 250 200 L 150 0 350 300. 250 200 150 0 1 i005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1100 )0 1105 1110 l15 1120 1125 1130 1135 1140 1145 1150 1155 1200 0O 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1300........ I I. - i. i... i I 30 1305 1310 1315 1320 1325 - 1330 135. 1340. 1345 1350 355 1400. )0 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1500 50' n 14 350 -300 -250 -200 -150 -K00 50 — I. 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1600 TIME (E.S.T.)

_ laha~~e SBORoO 013 40 --- - -- - - -11111111:3A 00 20 0 --- —-0 10 — a Battery Compartment Bottom o - 0 Battery Compartment Top a Regulated Power Supply Compartment -~~ - -.r-.-r-.-.,r-.t..,,T,-,-, 13 a, a. iL k -10 ~ IJ I --- I — * I 0400 0500 0600 TIME - E.S.T. Figure 10 0700 0800 26

A. 30. M -,: 20eCtt~ttiF~+*hb88^i2z umov%. u v a0 I, n~ 0 Q) 1 w c: aa. LJ 10 0 ~03 0 Camera I o Camera 2 o Camera 3 X --- - 1 — 1 1- - - -- - -- - - - — I -10 -20 -301 041 00 0500 0600 0700 0800 TIME - E.S.T. Figure 11 27

d 4) aIr w I.a.:2 - 30 --- — D-ClAZ --- —- -- -Q -— I 40 AO A. I:]1::[::A pO[:] 0[:r'q 0 0 et 20 0 20 --- —10 — A Telemetry Chassis Transmitter o0 0 Telemetry Chassis Power Supply o Telemetry Chassis VCO's -10 --- — I r I r I I I I I I IT-. TItr O I I I I I I I I I I I I,- I I I a I I I -3 - I 0400 0500 0600 TIME - 0700 0800 E.ST. Figure 12 28

20 ao II. I CI~ ~3 ^ 0 a 2 |0 cDirbuOCOi OCh OO OC O b" 20 Q) 10 La:- 0 Distribution Chassis Temperature, 0 0 A Photocell Case F — 0 Pressure Measurements Box o Distribution Chassis Air Temperature -I0 -20 - — _3 0 ' ' I;; 0400 0500 0600 0700 0800 TIME - E.S.T. Figure 13 29

10 I0 IC d 1-0 lHo0 IRIS Head z IRIS Warm Blackt -20 -30 - 0400 0500 0600 TIME - E.S Figure 14 ackage )ody 0700 0800 i.T. 30

40 30 d~ 20 t lo ~ ~~ ~o' o o 1o*A *~ ~ ~ ~ ~ ~ 41 ~ ~ ~ ~ ~, ) 0 0 * 0 * 0 * * * 0 0 |,0 0 o lo 00 00 00 0 F W 20 A0 o0 20 2 0 — oFILTER WEDGE BOLOMETER -0 IoO, r- I0* 0 2 --- ---- - -- I o FILTER WEDGE BOLOMETER I- z~ F.W. REFERENCE BLACK BODY = EDGE OF F.W. BOTTOM PLATE F.W. DOOR TARGET -10 0 F.W. DEMODULATOR -20 0400 0500 0600 0700 TIME - E.S.T. _0 0800 Figure 15

30I II I --- —I I- -- --- 200 100 ooo^ _o_ I C -- -..,. -... x o __ ---A 0 OMRIR Door Motor 0a AMRIR Mirror 0 ci ai C) I a. 7 -I — -10 -20 I I I I II I I I I I a1 I TI I I ' 8 | 4 |. _ A _mrA _ _ __ _ _ __ _ _ _ __ _ _ _ __ _ _ __ _ _ _ __ _ I- - 4a -I I I- I -I - I - - I - I - I I - I I - -..I -. - I - - I I 0400 0500 0600 0700 A 0800 TIME - E.S.T. Figure 16 32

d C, QL 10 |< ~ ~ x MRTR Door o0 o MRIR Door X n MRIR Distribution -10 --- -20 --- — -30 --- - 0400 0500 0600 TIME - E Figure 17 Chassis 0700 0800:.S.T. 33

MRIR TEMPER; 0 Choaaer No. d0,,U ---- -NW l --- - --- rrI O3 Chopper No. -29__0._,0 Housing No. A Housing No. w2 XElectronics F 2 28 E, 27 w - 26 25- 24~ 23 2 - 20400 0500 0600 TIME - Figure 18 %TURES 2 I 2 'ackage E.S.T. 34

6T an'FITj. '*'S'3 ' 3l.L 00LI 0091 00 1 00,I 00~1 001 0011 I 0001 0060 0080 OOL0 3n.LvU33d N31. itV SISSVHO NOllnasliSia-o 3 d n.LV3dlw31 IOUddl Nns IlN-V 3unltl3dWl31 I # d3ddOHO IhII W l -V 0 C:0 S9 c i I v v v I.... v ~~........,".... ". I I I I I I ElE^^E^^iE^^iEES~~~~~~~~~~~~~i^E^EEE?~~~~. 01 v v _ - -I-I-I-I ---[ I 'o~~~- _,I I I,,~ <i> I _ _ _ i I _ 1_ 1 1 ' " " _ _ _ _ 1V ' ~U TI | I I I v I I I I I Iv, Ioo + oo I 0 000OO..-O - o~ o....... v V- V

C) - 0 0) 0 40 ----- - 36 --- —--- 32 --- -- - 0 000000 0 00000 030,00 0000 0000 00 0 00000 28 ----- -- - - 24 2 --- 16 --- —------ 0 Regulated Thermistor Supply o Regulated Thermistor Battery (2 ------ 4 - - - - - -- ------------------ 0 - - - - - - - - - - - - - - - - - - - - - - - - - - h 0400 0500 0600 TIME - E.S.T. 0700 0800 0840 Figure 20 36

UNIVERSITY OF MICHIGAN 3 9015 02227 1020