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SUMMARY

In this paper, we will highlight the current research which employs the topology optimization to <nd
the optimal con<guration of various smart structures and microstructures, speci<cally, pressure actu-
ated compliant mechanisms, >extensional transducers, and porous material microstructures with unusual
thermoelastic properties. These examples demonstrate that the topology optimization problem involving
multiple physics domain is a viable direction for future research, in particular, for sensor and actuator
design. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decade, the <eld of structural topology optimization has expanded signi<cantly,
successfully addressing many practical engineering problems. As a result, this methodology
has been widely accepted in industry, with several commercial software packages available
[1; 2].

The optimal design of the topology of continuous structures is achieved by methods adopting
the approach of material distribution over a <xed reference region. The underlying spirit is
to represent the geometry of a structure by a grey-scale image. In the discrete form, the
problem of <nding the optimal layout of the structure is transformed into <nding the optimal
image representation of the geometry in the <xed reference domain. This <xed region, called
the extended design domain, can accommodate boundary conditions and the forcing terms of
the corresponding physic problem. The bene<t associated with this approach is that the <nite
element model is not changed during the optimization process, which makes the sensitivity
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Figure 1. Relaxation of the design domain using a microstructure.

calculation easier since the boundaries of the structure are <xed throughout the optimization
process.

The most straightforward image-based representation of a structural geometry is the ‘0–1’
integer problem where the design domain is represented by either void or full solid material.
However, this formulation is not well-posed mathematically. This problem can become well
posed by incorporating microstructures into the extended design domain yielding a set of
continuous design variables which allow materials with intermediate properties, not only zero
or full materials. This concept is called relaxation [3; 4]. Several diMerent material models
have been proposed for relaxation. The microstructure proposed by BendsHe and Kikuchi [5]
consists of a square unit cell with a rectangular hole inside which its dimensions are de<ned
by design variables a and b, and orientation �, as shown in Figure 1. Therefore, in each
point of the domain, there is a composite material de<ned by the periodic repetition of the
microstructure corresponding to that point. In this sense, the problem consists of optimizing
the material distribution in a perforated domain with in<nite micro-scale voids. The eMective
elasticity properties of this composite material in each point of the design domain is obtained
using the homogenization method described in Section 6. Alternatively, a material model
using only a single variable, �, to represent the material properties is also popular. This
material law models an ‘arti<cial’ isotropic material and is named solid isotropic material
with penalization (SIMP) [6]. Scalar variable � can be physically interpreted as the density
of the material whose properties are in proportion to �p. The introduction of these material
models is justi<ed as the <nal design is either entirely solid or entirely void (black-and-white
design).

In this paper, we will highlight the current research which employs this material distribu-
tion paradigm to <nd the optimal con<guration of various smart structures and microstructures.
Speci<cally, we shall apply the topology optimization methodology to design actuators, dif-
ferent compliant mechanisms, and porous material microstructures with unusual thermoelastic
properties. To this end, we will formulate the problem as a multi-objective optimization prob-
lem and use sequential linear programming (SLP) method to <nd the optimal design.

This paper is organized as follows: The optimization problem for general compliant mech-
anisms will be formulated in Section 2. A specialized compliant mechanism actuated by
hydrostatic pressure will be introduced in Section 3. In Section 4, we will design a compliant
mechanism actuated by electrical charge. This mechanism, called >extensional actuators, is a
coupled structure with piezoceramics. Extension based on the compliant mechanism design
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principle will be made. In Section 5, we will use the same material distribution paradigm
in the structural topology optimization to design material microstructures. Several materials
microstructures with unusual thermoelastic properties will be presented.

2. DESIGN OF COMPLIANT MECHANISMS

Compliant mechanisms are monolithic mechanical structures that rely on elastic deformation
to generate sophisticated mechanical functions. The structure is designed to be >exible in order
to achieve a speci<ed motion and to function as a mechanism. These kind of mechanisms
have advantages not found in their rigid-body counterparts. Since they are basically jointless,
they do not need assembly in the manufacturing process and require fewer parts. As a result,
they have reduced friction, wear, backlash, and noise [7].

Recently, the compliant mechanism has received much attention since it is conceptually
compatible with the micro-electro-mechanical system (MEMS) [8–10]. Micromechanical sys-
tems are built on a very small scale so it is diQcult to build individual parts and use hinges
or joints to assemble them as in the macro-scale manufacturing process. Designing microme-
chanical devices as compliant mechanisms is an easy solution for the manufacturing of MEMS
since they can usually be built in a single piece and require fewer fabrication steps.

In this section, we will formulate the optimization problem to design the topology of a
compliant mechanism. This formulation is based on the topology optimization techniques to
<nd a structure which will yield maximum output displacement of the speci<ed point in a
speci<ed direction under a given input force. Then we will extend this formulation to design
compliant mechanisms which are actuated by hydrostatic pressure instead of a <xed input
force. In the next section, this formulation will be extended one step further to design coupled
structures with piezoceramics, called >extensional actuators, which are actuated by electrical
charge.

2.1. The formulation of mutual mean compliance

For the <rst load case (LC = 1), considering an elastic body, S, subject to traction force t1
applied to boundary Tt1 , the equilibrium equation is∫

S
U(v1)tcEU(u1) dS =

∫
Tt
t1·v1 dT; ∀v1 ∈V0 (1)

where cE is the elastic tensor; 	ij(u) = 1
2 (@ui=@xj +@uj=@xi) is the symmetric gradient operator;

V0 = {v= vi Vei ; vi ∈H 1(S) with v= 0 on Tu i = 1; 2; 3} is the admissible displacement space;
u1 ∈V0 is the displacement <eld for LC = 1 as shown in Figure 2. By introducing the following
energy bi-linear and load linear form,

A(u; v) =
∫

S
U(u)tcEU(v) dS; Lt(t; v) =

∫
Tt
t · v dT

we can write Equation (1) in a compact notation

A(v1; u1) =Lt(t1; v1) ∀v1 ∈V0 (2)
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Figure 2. Two sub-programs and the structure problem in the compliant mechanism problem formulation.

Then we consider an auxiliary problem, the second load case (LC = 2), subject to unit dummy
load t2 in the direction of the desired output displacement, applied at speci<ed point A. The
equilibrium equation for LC = 2 in the compact notation is

A(v2; u2) =Lt(t2; v2) ∀v2 ∈V0 (3)

where u2 ∈V0 is the displacement <eld for LC = 2. Since v1; v2 ∈V0 are arbitrary, one can
substitute v1 for u2 in Equation (2) and v2 for u1 Equation (3). Furthermore, by employing
the symmetry property of the elastic tensor, one can apply the reciprocal theorem and get the
mutual mean compliance:

Lt(t2; u1) =A(u1; u2) = A(u2; u1) (4)

The mutual mean compliance, Lt(t2; u1), disguised in the energy form, is actually a projection
of displacement <eld u1 in the direction of t2 at the point where the dummy load is applied. If
one can denote this point load with the Dirac delta function at load application point A in the
direction of n, namely t2 = �A(x)n, the mutual mean compliance becomes the displacement at
point A projected in the direction of n:

Lt(t2; u1) =
∫

Tt2

(�A(x)n) · u1 dT = n · u1(x)|x=A

If this quantity is maximized, the displacement at the point of interest speci<ed by the dummy
load t2 should be maximized when the structure is subject to load t1. Mathematically, this
problem can be state as

Maximize WMMC =Lt(t2; u1) =
∫

Tt2

t2 · u1 dT

Subject to A(v1; u1) =Lt(t1; v1) ∀v1 ∈ V0

A(v2; u2) =Lt(t2; v2) ∀v2 ∈ V0

volume constraint

However, if we consider only the maximization of the mutual mean compliance, this problem
is not well posed. An implementation of this objective function results in a structure without
signi<cant stiMness, having no de<nite shape and pro<le thus failing to perform the task of
transforming the input force into the speci<ed output displacement. Therefore, an objective
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function incorporating the structural functionality must be de<ned to provide suQcient stiMness
at the region of speci<ed output displacement. Furthermore, the structure must produce a large
enough generative force and resistive reaction forces imposed by the objects the actuator
intends to move or hold. This goal can be achieved by solving an optimization problem
which minimizes the mean compliance of the structure subject to the resistive force at the
contact region imposed by the object to be moved or held. The mean compliance, widely
adopted in the topology optimization literature, is de<ned as the work done by the external
load:

Lt(t3; u3) =
∫

Tt3

t3 · u3 dT (5)

This energy quantity is a global measure of the structural stiMness. By minimizing this quantity,
one can <nd the stiMest structure under a given load.

Similarly, we may need to consider the structural stiMness at the region of input force to
ensure the mechanism can maintain its shape when it deforms. This requirement can be dealt
with by considering the mean compliance for the <rst load case,

Lt(t1; u1) =
∫

Tt1

t1 · u1 dT

The problem of <nding the stiMest structure at both the input and output regions can be
formulated as a composite mean compliance function,

WMC = �Lt(t3; u3) + (1 − �)Lt(t1; u1); 06�61 (6)

and the optimization problem is

Minimize WMC

subject to t3 =−t2 (Tt3 = Tt2)
06�61
A(v1; u1) =Lt(t1; v1) ∀v1 ∈V0

A(v3; u3) =Lt(t3; v3) ∀v3 ∈V0

volume constraint

To design a compliant mechanism which ful<ll these con>icting design objectives, a compro-
mising solution based on multi-criteria optimization is proposed:

Maximize F
subject to A(v1; u1) =Lt(t1; v1) ∀v1 ∈V0

A(v2; u2) =Lt(t2; v2) ∀v2 ∈V0

A(v3; u3) =Lt(t3; v3) ∀v3 ∈V0

t3 =−t2 (Tt3 = Tt2)
volume constraint

(7)
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Figure 3. Hydrostatic pressure: design-dependent load.

where the objective function F is de<ned as

F =
WMMC

WMC
=

Lt(t2; u1)
�Lt(t3; u3) + (1 − �)Lt(t1; u1)

; 06�61

If one wants to control the contribution of the composite mean compliance, Equation (6), and
mutual mean compliance, Equation (4), the following objective function is proposed:

F =w ln(WMMC) − (1 − w) ln(WMC); 06w61

where � and w are weight coeQcients to adjust the contribution of each participating objective
function.

3. DESIGN OF COMPLIANT MECHANISM ACTUATED BY
HYDROSTATIC PRESSURE

In this section, we will formulate the optimal design of the compliance mechanism actuated
by hydrostatic pressure. The hydrostatic pressure forces act perpendicular to the surface of
the outer boundary of the structure and are classi<ed as design-dependent loads since they
may alter their direction and location of application while the shape of the structure changes
as illustrated in Figure 3.

It is not hard to <nd applications of the design-dependent load in many engineering disci-
plines. The hydrostatic pressure acting on the dam or the underwater container and the weight
of snow acting on the roof are typical examples of such design-dependent loads. In a wider
perspective, all structures involving solid and >uid interaction, including ducts, pipes, and
airfoils, carry such design-dependent loads.

Finding an eQcient algorithm to deal with design-dependent loads for structural topology
optimization problems has troubled researchers in this <eld ever since the seminal paper by
BendsHe and Kikuchi [5] a decade ago. The underlying scheme of topology optimization
originally proposed by BendsHe and Kikuchi is based on a speci<c choice of a <xed-grid
region upon which the optimal material distribution is to be found. This <xed region, called
the extended design domain, on which the loads and constraints are speci<ed, should be
properly chosen to accommodate the loads and constraints as shown in Figure 4(a). With
this approach, one can successfully <nd the optimal structure subject to the <xed load as
illustrated in Figure 4(b) while failing to design a structure subject to the design-dependent
load because the loaded surface changes as shown in Figure 4(c). The <xed-grid paradigm,
though elegant and compositionally eQcient for numerical implementation, has been regarded
as insuQcient to address the problems involving design-dependent loads such as hydrostatic
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Figure 4. The structural topology optimization subject to the <xed and design-dependent loads: (a) shows
the <xed extended design domain with the boundary condition and the <xed load; (b) is a possible
optimal topology for a <xed loading; (c) is a possible optimal design where the pressure is allowed

to change the direction and location as the loaded surface changes.

pressure. Some strategies to address this problem have been proposed. BendsHe [11] pro-
posed to simultaneously design the structural topology and shape of the boundary which
carries the pressure loads. This approach is not eQcient enough since it requires imbed-
ding re-meshing capacities into the analysis code and complicated sensitivity analysis [12]
for the optimization. Hammer and OlhoM [13] retained the <xed-grid scheme to avoid the
complexity inherited from the domain shape change but used a diMerent approach to deal
with the pressure-loaded surface. A smooth surface was extracted from the iso-volumetric
density curve on which the pressure acts. This approach does not need re-meshing dur-
ing the analysis process, but still suMers from a rather involved sensitivity analysis for the
optimization.

We proposed a new approach to simulate design-dependent loads within the context of
the classical topology optimization <xed-grid paradigm [14]. The <xed-grid scheme is re-
tained to reduce the computational complexity associated with the domain shape change.
The design-dependent loads are simulated by the <ctitious thermal loads as a result of a
mismatch of thermal expansion coeQcients among the constituent phases. The topology op-
timization problem is transformed into a three-phase material distribution problem within
a design domain in which the solid, void, and hydrostatic >uid phases are optimally
distributed.

3.1. Formulation of design-dependent load

Let S be the design domain composed of three distinctive regions, the solid Ss; the void
Sv; and the >uid Sf . Each region is non-overlapping, i.e. S = Ss ∪Sv ∪Sf ; Ss ∩Sv = ∅;
Ss ∩Sf = ∅; and Sf ∩Sv = ∅. The material properties are homogeneous within each region.
The >uid exerts hydrostatic pressure p on the solid region along interface Tp as shown in
Figure 5(a).

The equilibrium equation written in the variational form is

A(v; u) =Lt(p; v) ∀v∈V0(S) (8)

with the load linear form due to hydrostatic pressure p

Lt(p; v) =
∫

Tp
−(pn) · v dT (9)
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Figure 5. Schematics of the pressure loading on a structure: (a) three-phase material distribution;
(b) three-phase decomposition. The domain is composed of >uid and non->uid regions, exerting
pressure at the interface. The non->uid region is further decomposed into solid and void as in

the classical two-phase topology optimization.

Figure 6. The loads acting on phases 1 and 2 regions when subject to the unit temperature rise: (a) two
homogeneous regions with the common interface Tp and the free boundaries T(1)

b and T(2)
b ; (b) thermal

forces acting on the free boundaries and the common interface.

where n is the unit outward normal vector of interface Tp and (−pn) is the hydrostatic
pressure force acting perpendicular to surface Tp. The goal is to simulate this pressure force
by a <ctitious thermal load. The hydrostatic pressure force is simulated by the thermal load
due to a mismatch of the thermal expansion coeQcients of two materials along the material
interface.

Let domain S be composed of two regions, region 1 S1 and region 2 S2; made of homo-
geneous material phases 1 and 2, respectively. Region 1 joins region 2 on common interface
Tp with unit outward normal vector n. Phase 1 and phase 2 regions have free boundary T(1)

b

and T(2)
b ; respectively as shown in Figure 6(a). Thermal stress tensors �(1) and �(2) are homo-

geneous in each region where �(1) = c(1) : �(1); �(2) = c(2) : �(2) and c(1); �(1); c(2); �(2) are elastic
and thermal expansion coeQcient tensors of each phase, respectively. The thermal virtual work
associated with the uniform unit temperature rise can be expressed as∫

S
vi; j�ij dS =

∫
S1

vi; j�
(1)
ij dS +

∫
S2

vi; j�
(2)
ij dS (10)
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Applying the Gauss divergence theorem to each region individually, one can rewrite the
thermal virtual work on the homogeneous region 1 as∫

S1

vi; j�
(1)
ij dS =

∫
T(1)

b

vi�
(1)
ij nj dS +

∫
Tp
vi�

(1)
ij nj dS −

∫
S1

vi�
(1)
ij; j dS

The last term vanishes due to homogeneity. Similarly, one can transform the virtual work on
region 2. Then Equation (10) can be simpli<ed by the relation that the outward normal n of
interface Tp in phase 2 region point in the opposite direction as in region 1:∫

S
vi; j�ij dS =

∫
T(1)

b

vi�
(1)
ij nj dS +

∫
T(2)

b

vi�
(2)
ij nj dS +

∫
Tp
vi
(
�(1)
ij − �(2)

ij

)
nj dS (11)

The <rst two terms are due to the thermal force acting on the free boundary and the last
term derives from the mismatch of thermal stress tensors along interface Tp as shown in
Figure 6(b). By manipulating terms in Equation (11), one can de<ne the ‘pseudo’-linear form
Lp(v) as the virtual work due to thermal load, subtracting the virtual work done by the forces
acting on the free boundary as

Lp(v) =
∫

S
vi; j�ij dS −

(∫
T(1)

b

vi�
(1)
ij nj dS +

∫
T(2)

b

vi�
(2)
ij nj dS

)

=
∫

Tp
vi
(
�(1)
ij − �(2)

ij

)
nj dS (12)

For a special case, when both the �(1) and �(2) are isotropic, namely, �(1)
ij =�(1)�ij; �(2)

ij =�(2)�ij;
and �(2) and �(1) diMer by the amount of p, the pseudo-linear form Lp(v) is identical with
the linear form Lt(p; v) as in Equation (9):

Lp(v) =
∫

Tp
vi
(
�(1) − �(2)) ni dS =

∫
Tp
vi(−pni) dS =Lt(p; v)

3.2. Material model

We will extend this two-phase result to the three-phase system as in Figure 5(a) by adopting
an engineered material model. An extended material model based on the SIMP [6] is used
to simulate the three-phase material distribution. Since we want to simulate the hydrostatic
pressure, the thermal stress tensors have to be isotropic. As a result, we favour this isotropic
model over the orthotropic material model of microscopic square cell with a rectangular hole
as shown in Figure 1.

Two sets of material models for two diMerent regions, namely the non->uid and >uid regions
are devised. Since hydrostatic pressure forces act only at the interface between the solid and
>uid regions and no interface forces exist between the solid and void regions, the non->uid
region should be free of interface force. As a result, throughout this region one needs to set
the � constant regardless of the density distribution.

In the non->uid region, an arti<cial mixing assumption for the local elastic tensor, c(NF)
e

and thermal stress tensors �(NF)
e for the element e of the <nite element model are
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stated as:

c(NF)
e (de) = (de)pc(s); �(NF)

e (de) =�(s) (13)

In the >uid region, the classical SIMP is employed to simulate the local thermal stress
tensor as

c(F)
e (de) = (de)pc(s); �(F)

e (de) = (de)p�(s) (14)

where c(s) and �(s) are elastic and thermal stress tensors of the base solid material. The local
density de ∈ [dmin; 1] is assumed to be constant for given element e. The element is regarded
as a full solid material with de = 1 while it denotes void for de =dmin¿0. The small number,
dmin, is used to prevent singularity in the <nite element calculation.

An additional parameter is necessary to distinguish between the >uid and non->uid region.
‘Dryness coeQcient’ me for each <nite element is introduced for this purpose. Those elements
free from >uid entrenchment are designated with me = 1, regardless of their local density,
de, while the >uid elements are distinguished with me = 0. It should be emphasized that this
coeQcient is used primarily to track the >uid and solid interface and is not a design variable
in its own right. CoeQcient me for each <nite element can be regarded as an implicit function
of its own local density, de, and all the coeQcients me of its adjacent elements. An algorithm
to determine this coeQcient will be described in detail later.

Incorporating the material law in the >uid and non->uid region in Equations (14) and (13)
into a uni<ed formula, the local material properties in element e can be written as functions
of coeQcients de in me:

ce(de; me) = (de)pc(s)

�e(de; me) = me�(NF)
e + (1 −me)�(F)

e

where the thermal stress tensor �e is the arithmetic mean of >uid �(F)
e and non->uid �(NF).

3.3. Compliant mechanism actuated by hydrostatic pressure

We will extend the problem formulation developed for the compliant mechanism, Equation (7),
to a more general case when the input loads are design-dependent hydrostatic pressure as
illustrated in Figure 7. Linear load form Lt(t1; v1) for the <rst load case (LC = 1) is replaced
by pseudo-linear form Lp(v1) in Equation (12). Since we want to design a mechanism stiM
enough to sustain the input pressure load, the following optimization problem is formulated
to <nd the stiMest structure subject to hydrostatic pressure p:

Minimize Lp(u1)
subject to A(v1; u1) =Lp(v1) ∀v1 ∈V0

volume constraint
(15)

Once we <nd the topology of this optimization problem, the resulting structural layout is
employed as an initial guess for optimization problem, Eq. (7), to <nd the optimal topology
of the compliant mechanism actuated by hydrostatic pressure. The composite mean compliance
function, Equation (6), is modi<ed to accommodate the fact that the pressure loads for LC = 1
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Figure 7. Problem formulation for the compliant mechanism actuated by hydrostatic pressure forces.

and the resistive force for LC = 3 are of diMerent orders. In addition, as the optimization
iteration process unfolds, resulting in direction and location change of the pressure loads, the
order discrepancy for these two sets of loads changes accordingly. The modi<ed composite
mean compliance function is

W′
MC = (�)(s)Lt(t3; u3) + (1 − �)Lp(u1) (16)

where scaling factor s is the ratio of the L∞ norms of vector of the element strain energy
(Ae(u; u) = {Ae(u; u)}T, e= 1 to NE) between the two diMerent load cases,

s=
‖Ae(u1; u1)‖L∞

‖Ae(u3; u3)‖L∞

In this work, we choose the objective function F as

F=
WMMC

W′
MC

=
Lt(t2; u1)

(�)(s)Lt(t3; u3) + (1 − �)Lp(u1)
(17)

and weight coeQcient �= 0:5.

3.4. Numerical example of compliant mechanism actuated by hydrostatic pressure

This example demonstrates the applicability for sensors and actuators design in the form of
the compliant mechanisms. We want to design a compliant mechanism which converts the
pressure loads into the rotational motion as illustrated in Figure 8.

In the <rst stage, we will <nd the optimal topology of a structure subject to the input
pressure load as formulated in Equation (15). The solid region shall occupy no more than 30
per cent of the total volume of the design domain.

The initial design domain is composed of ‘<xed >uid’ regions from which the >uid origi-
nates, and are not subject to change during the subsequent optimization iterations. The >uid
will propagate to all the neighbouring elements unless stopped by the solid elements which
the >uid cannot penetrate. The >uid propagating process is illustrated in Figure 9. By using
this algorithm, one can keep track of the interface of the >uid region.

The pressure force is kept <xed during the <rst 25 iterations and results in a constant
distributed load acting on the boundary of the <xed >uid region within the design domain. In
other words, it is not until the 26th iteration that the ‘>ood-over’ algorithm will be applied
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Figure 8. Design domain and the speci<ed rotational motion.

Figure 9. The schematic of the >uid >ooding algorithm to track the interface of solid and >uid regions:
(a) the >uid originates from the <xed >uid region and will propagate to the adjacent neighbours. This
propagating process is stopped at the solid interface; (b) after the propagating process, the design domain

is separated into three regions, the solid, void, and >uid.

to track the >uid interface. The primary reason for this scheme is to prevent the >uid region
from >ooding all over the domain, should the >ood-over algorithm be applied in the <rst
place when there is no signi<cant structure acting as a containment for the >uid region. The
resulting optimal structural topology for this stage is shown in Figure 10.

In the second stage, we <nd the optimal topology of the compliant mechanism which con-
verts the pressure loads into the rotational motion. The topology found in the <rst stage is used
as the initial guess for the second stage. The objective function is de<ned in Equation (17).
The optimized topology of the mechanism is shown in Figure 11(a) and the deformation is
shown in Figure 11(b).
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Figure 10. The optimal structural topology subject to hydrostatic pressure considering structure stiMness.

Figure 11. (a) Topology result; (b) deformed structure.

4. DESIGN OF FLEXTENSIONAL ACTUATORS

Piezoelectric materials have the property of converting electrical energy (electric <eld and
electrical charge) into mechanical energy (strain and stress) and vice versa. They are widely
used in electromechanical sensors and actuators, ultrasonic transducers for medical imaging
and non-destructive evaluation (NDE), underwater acoustics (some hydrophones and naval
sonars), and other applications. In engineering, the piezoelectric materials applied are usually
ceramics (piezoceramics).

However, the displacements generated by piezoelectric materials are very small (order of
nanometers) and since in most part of applications large output displacements are necessary, a
>exible mechanical structure (coupling structure) is connected to the piezoceramic to amplify
and convert the output piezoceramic displacements. This generates a device called >extensional
piezoelectric transducer [15]. These transducers can be used to control vibration in structures,
to actuate >ap wings in modern airplanes, and also can be applied as sonar devices. The
performance of a >extensional transducer is measured in terms of output displacement and
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generative (or ‘blocking’) force, and in dynamic applications the transducer must oscillate
in a desired resonance frequency. Generative force is the maximum force supported by the
transducer without deforming for a certain applied voltage.

Flextensional transducers have been developed by using simple analytical models and ex-
perimental techniques [16; 17], and the <nite element method [18; 19] (FEM). However, the
design is limited to the optimization of some dimension of a speci<c topology chosen for
the coupling structure. These studies showed that the performance and resonance frequency
depend on the distribution of mass, stiMness, and >exibility in the coupling structure domain,
which is related to the coupling structure topology. Therefore, the design of the coupling
structure can be achieved by using topology optimization. The nature of the design of >exten-
sional transducers makes the application of topology optimization very attractive. By designing
other types of >exible structures connected to the piezoceramic, we can obtain other types
of >extensional transducers that produce high output displacements (or generative forces) in
diMerent directions, and also in a desired frequency, according to a speci<c application.

Based on this idea, a method for designing >extensional transducers for static and dynamic
(inertia eMect is considered) applications is proposed by applying topology optimization. The
problem is posed as the design of a >exible structure coupled to the piezoceramic that max-
imizes the output displacement and generative force in a speci<ed point of the domain and
direction, in a speci<ed frequency. The topology optimization method applied is based on
the homogenization design method developed by BendsHe and Kikuchi [5]. FEM is applied
to the structural analysis in the optimization procedure. Although the method introduced is
general and can be applied to three-dimensional (3D) models, the examples presented herein
are limited to two-dimensional (2D plane strain) models due to lower computational cost.

4.1. FEM piezoelectric modelling

A general method such as the <nite element method (FEM) is necessary for the structural
analysis since complex topologies are expected as a topology optimization result.

The >extensional transducers considered for design operate in a frequency !. Therefore, the
<nite element equations for modelling a linear piezoelectric medium considering a harmonic
analysis are [20]: {[

Kuu KuM

Kt
uM KMM

]
−!2

[
M 0
0 0

]}{
U
M

}
=

{
F
Q

}
(18)

where Kuu; KuM, KMM, and M are the stiMness, piezoelectric, dielectric and mass matrices,
respectively, and F, Q, U and M are the nodal mechanical force, nodal electrical charge, nodal
displacements and nodal electric potential vectors, respectively. Damping was not considered
in a <rst implementation. For more details, refer to Reference [20].

4.2. Formulation of the topology optimization problem

4.2.1. Mean transduction. In the formulation of the design optimization problem of >exten-
sional transducers, the concept of mean transduction is introduced. This concept is obtained
by extending the reciprocal theorem (Betti’s theorem) from elasticity theory to the piezoelec-
tric medium. This extension is described in detail in Reference [21] and here only the <nal
result is discussed.
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Considering a piezoelectric body, subjected to electrical charges d1; d2 applied to the bound-
ary Td1 and Td2 , respectively, and tractions t1, t2 applied to the boundaries Tt1 and Tt2 , respec-
tively, we can say that

L1(u2; "2) =
∫

Tt1

t1 · u2 dT +
∫

Td1

d1"2 dT =
∫

Tt2

t2 · u1 dT +
∫

Td2

d2"1 dT =L2(u1; "1) (19)

where "1 and "2 are electric potentials. We will call L1(u2; "2) (or L2(u1; "1)) mean trans-
duction since mechanical and electrical quantities are involved.

In dynamic applications, u1 = Vu1ej!#; u2 = Vu2ej!#, t1 = Vt1ej!#; t2 = Vt2ej!#, d1 = Vd1ej!#,
d2 = Vd2ej!#, "1 = V"1e

j!# and "2 = V"2e
j!#, where ! stands for an excitation frequency, # stands

for time, and Vu1; Vu2; Vt1; Vt2, Vd1; Vd2, V"1 and V"2 are the amplitudes of u1; u2; t1; t2; d1; d2; "1

and "2, respectively. Since no damping is considered, there is no phase diMerence among
these quantities.

Equation (20) consist of the weak formulation of the equilibrium equations of the piezoelec-
tric medium [21]. Notice that the dependence on ej!# is not represented because it appears in
both sides of the equation, and therefore it cancels out. In addition, for the sake of simplicity
of notation, the amplitudes are represented without using the overbar:∫

S
U(u)tcEU(v) dS −!2

∫
S
�utv dS +

∫
S
(∇")tetU(v) dS =

∫
Tt
t · v dT

∫
S
U(u)te∇’ dS −

∫
S
(∇")tUS∇’ dS =

∫
Td

d’ dT

for u; "∈V and ∀v;∀’∈V

(20)

where V = {v= vi Vei ; ’ : vi; ’∈H 1(S) with v= 0 on Tu and ’= 0 on T"; i = 1 or 3}; S now
is the domain of the piezoelectric medium (but it may contain non-piezoelectric materials
also), ∇ is the gradient operator, and cE, e, and US are the elastic, piezoelectric, and di-
electric properties, respectively, of the medium, and � is the density. ‘t’ denotes transpose,
	ij(u) = 1

2 (@ui=@xj + @uj=@xi), and v and ’ are virtual displacements and electric potential, re-
spectively. The index i assumes value 1 or 3 because the problem is considered in the plane
1–3. The piezoceramic is polarized in the #3 direction.

To write Equation (20) in a more compact form, we de<ne the following operators:

A(u; v) =
∫

S
U(u)tcEU(v) dS; B("; v) =

∫
S
(∇")tetU(v) dS

C(";’) =
∫

S
(∇")tUS∇’ dS; Lt(t; v) =

∫
Tt
t · v dT

Ld(d;’) =
∫

Td

d’ dT; M (u; v) =
∫

S
�utv dS

(21)

Therefore, Equation (20) becomes

A(u; v) −!2M (u; v) + B("; v) = Lt(t; v)

B(’; u) − C(";’) = Ld(d;’)
(22)
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By making u; v equal to u1 and u2, t equal to t1 and t2, d equal to d1 and d2, and ", ’
equal to "1 and "2, (for every u1, u2, "1, and "2 admissible), and substituting the de<nitions
Lt(t1; u2) and Ld(d1; "2) into Equation (19), this equation can be written in the form

L1(u2; "2) = A(u1; u2) −!2M (u1; u2) + B("1; u2) + B("2; u1) − C("1; "2)

= A(u2; u1) −!2M (u2; u1) + B("2; u1) + B("1; u2) − C("2; "1)

= L2(u1; "1) (23)

Now, applying the FEM formulation by discretizing the domain S (displacements and elec-
tric potentials are approximated by using shape functions), the reciprocal theorem and mean
transduction for the piezoelectric medium in the dynamic case can be written in the following
matrix form:

L1(U2;M2) = {U2}t{F1} + {M2}t{Q1}

=

{
Ut

2

Mt
2

}t{[
Kuu KuM

Kt
uM −KMM

]
−!2

[
M 0
0 0

]}{
U1

M1

}
= {W2}t[ VK]{W1}

= {W1}t[ VK]{W2}=

{
Ut

1

Mt
1

}t{[
Kuu KuM

Kt
uM −KMM

]
−!2

[
M 0
0 0

]}{
U2

M2

}

= {U1}t{F2} + {M1}t{Q2}=L2(U1;M1) (24)

where Ui ; Mi ; Fi ; Qi ; (i = 1; 2); Kuu; KuM; KMM, and M were de<ned in Section 4.1. Equa-
tion (24) allows us to implement the concept of mean transduction for the piezoelectric
medium in the dynamic case by using FEM formulated in a discretized domain. For static
applications != 0, and inertia eMects are neglected. Thus, we can express the displacement
or electric potential in any region of the piezoelectric medium as a function of a known
displacement and electric <elds caused by an external applied dummy traction or surface
charge.

4.2.2. Formulation of objective function and constraints. Two diMerent objective functions
must be considered in the >extensional transducer design [21]: mean transduction and mean
compliance.

Mean transduction described in Equation (24) is related to the electromechanical conversion
represented by the displacement generated in region Tt2 in a certain direction due to an input
electrical charge in region Td1 of the design domain (see Figure 12). The larger this function,
the larger the displacement generated in region Tt2 in the speci<ed frequency !. The mean
transduction is calculated considering the two load cases described in case 1 of Figure 12:
the <rst one is related to the transducer response due to the application of a periodically
oscillating surface charge on surface Td1 of the transducer; and the second one is related to
an applied periodically oscillating dummy traction t2 to region Tt2 , in the same desired output
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Figure 12. Load cases for calculation of mean transduction (case 1) and mean compliance (case 2).

displacement direction. Therefore, the maximization of the mean transduction is related to the
maximization of the output displacement.

Considering Equation (24), since the mechanical traction is null in the <rst load case (t1 = 0)
and the surface charges are null in the second load case (d2 = 0), the mean transduction in
dynamic applications between regions Td1 and Tt2 is given by [21]

L2(u1; "1) = Lt(t2; u1) =Ld(d1; "2)

= A(u1; u2) −!2M (u1; u2) + B("1; u2) + B("2; u1) − C("1; "2)

= B("2; u1; ) − C("1; "2) (25)

Note that in the dynamic case, under the harmonic excitation, the deformation in the direction
of −t2, where the phase angle is !#, is identical to the deformation in the direction of t2,
where the phase angle is !# + (. Therefore, the maximization of the absolute value of the
mean transduction |L2(u1; "1)| must be considered instead.

However, if only the maximization of the mean transduction is considered, the optimum
solution obtained for this function may be a structure with very small stiMness. Therefore, a
structural function must be de<ned to provide suQcient stiMness between Tt2 and Td1 , which
is obtained by minimizing the mean compliance between Tt2 and Td1 . This also guarantees a
large generative force, and also that the transducer will resist to reaction forces generated by
some body that the transducer is trying to hold or move. The mean compliance is calculated
considering a static load case described in case 2 of Figure 12 where the electrode surface
Td1 is electrically grounded. Therefore, the mean compliance is given by the expression [21]

L3(u3; "3) =
∫

Tt2

t3 · u3 dT

= A(u3; u3) + 2B("3; u3) − C("3; "3) (26)

= A(u3; u3) + B("3; u3) (27)

since d3 = 0. By changing the mean compliance value we can control the generative force.
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To combine both optimization problems, the following objective function is proposed:

F =w ln(|L2(u1; "1)|) − (1 − w) ln(L3(u3; "3)) 06w61 (28)

where w is a weight coeQcient. This objective function allows us to control the contributions
of the mean transduction (25) and the mean compliance (27) in the design. Therefore, the
optimization problem is stated as

Maximize F
a; b; and �
subject to t3 =−t2 (Tt3 = Tt2)

A(u1; v1)−!2M (u1; v1) + B("1; v1) = 0
B(’1; u1)−C("1; ’1) =Ld(d1; ’1) for u1; "1 ∈Va and ∀v1;∀’1 ∈Va
A(u2; v2)−!2M (u2; v2) + B("2; v2) =Lt(t2; v2)
B(’2; u2)−C("2; ’2) = 0 for u2; "2 ∈Va and ∀v2;∀’2 ∈Va
A(u3; v3) + B("3; v3) =Lt(t3; v3)
B(’3; u3)−C("3; ’3) = 0 for u3; "3 ∈Vb and ∀v3;∀’3 ∈Vb

06a6asup¡1
06b6bsup¡1

Z(a; b) =
∫
S

(1−ab) dS−ZS60

where Va = {v= vi Vei ; ’ : vi; ’∈H 1(S) with v= 0 on Tu and ’= 0 on T"; i = 1 or 3} and
Vb = {v= vi Vei ; ’ : vi; ’∈H 1(S) with v= 0 on Tu, and ’= 0 on T" and Td1 ; i = 1 or 3}. S is
the design domain S excluding the piezoceramic, Z is the volume of this design domain, and
ZS is an upper-bound volume constraint that controls the maximum amount of material used
to build the coupling structure. The other constraints are the equilibrium equations.

The above optimization problem was de<ned in a continuous form, however since the
domain is discretized in N <nite elements, the above de<nitions must be substituted by their
equivalent discretized ones using FEM (including the equilibrium equations). In addition, the
variables a; b, and � which theoretically are a continuous functions, become sets of continuous
design variables an; bn, and �n de<ned for the n <nite element subdomain in the numerical
problem. The upper-bounds asup = 0:995 and bsup = 0:995 speci<ed for a and b, respectively, are
necessary to avoid numerical problems such as singularity of the stiMness matrix in the <nite
element formulation. Numerically, regions with an = bn = 0:995 have practically no structural
signi<cance and can be considered void regions.

4.3. Numerical implementation of 2extential acutators

A >ow chart of the optimization algorithm describing the steps involved is shown in Figure 13.
The software was implemented in FORTRAN language.

Due to the large number of design variables the optimization problem is solved using
sequential linear programming (SLP). SLP consists of the sequential solution of approximate
linear subproblems that can be de<ned by writing a Taylor series expansion of the objective
and constraint functions around the current design points an and bn in each iteration step
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Figure 13. Flow chart of the optimization procedure.

(�n is calculated after the optimization step). The linearization of the problem (Taylor series) in
each iteration requires the sensitivities (gradients) of the objective function (F) and constraints
in relation to design variables an and bn [21]. These gradients depend on the gradients of the
elastic properties in relation to a and b which can be calculated by building a table with
values of homogenized elastic properties obtained for combinations of discrete values of a
and b.

In each iteration, moving limits are de<ned for the design variables. Typically during one
iteration, the design variables will be allowed to change by 10 per cent of their original
values. After optimization, a new set of design variables an and bn is obtained and updated
in the design domain. �n is obtained by considering the local principal stress directions in
each <nite element after each optimization step [22]. The iteration steps continue until the
convergence is achieved for the objective function value. The linear programming subproblem
in each iteration of the SLP is solved using the package DSPLP from the SLATEC library
[23].

Uniform values of an and bn are used as an initial guess in the static case. In the dynamic
case, the solution of the static case is used as the initial guess. By using an uniform initial
guess for the values of the design variables, although the solution obtained is optimized, it is
not physically appropriate due to an excessive amount of grey scale (intermediate densities).
This happens because the higher values of mean transduction prevents from the lower values
of mean compliance.

4.4. Example

Two-dimensional topologies of >extensional transducers will be shown to illustrate the method.
Actuator applications are considered. Figures 14(a) and 14(b) describe the design domain used
to generate the results below. The domain consists of piezoceramic that remains unchanged
during the optimization and a domain S of brass (elastic material) where the optimization
is conducted. Electrical degrees of freedom are considered only in the certain domain. The
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Figure 14. Design domain considered.

Table I. Material properties of PZT5.

cE
11 (1010 N=m2) 12.1 e13 (C=m2) −5:4

cE
12 (1010 N=m2) 7.54 e33 (C=m2) 15.8

cE
13 (1010 N=m2) 7.52 e15 (C=m2) 12.3

cE
33 (1010 N=m2) 11.1 	S

11=	0 1650
cE

44 (1010 N=m2) 2.30 	S
33=	0 1700

cE
66 (1010 N=m2) 2.10 � (kg=m3) 5000.0

domain has 800 elements (40 × 20 mesh). Both domains have two symmetry axes, therefore,
only one-quarter of the domain is considered. The corresponding mechanical and electrical
boundary conditions are described in the same <gure. Two-dimensional elements under plane
strain assumption are used in the <nite element analysis.

The piezoelectric material properties used in the simulations are described in Table I.
Young’s modulus, Poisson’s ratio, and density of brass are equal to 106 GPa; 0:3 and

8550:0 kg=m3, respectively.
To obtain the static solution in all examples below, the total volume constraint of the

material Zs was considered to be 30 per cent of the volume of the whole domain S without
piezoceramic (domain S), and the initial values of the microscopic design variables an and
bn were 0.9, and that of �n was 0.0 for all elements. In all cases, the amount of electrical
charge applied to the piezoceramic electrode is 4 �C=m2. Any value can be applied since the
analysis problem is linear.

When the optimization process is complete, the result is a material distribution over the
mesh with some intermediate values of density (‘grey scale’) that represents the presence of
perforated (composite) or intermediate material. The interpretation of the results was done
through a simple threshold of the topology optimization image obtained.

4.4.1. Example 1. This example illustrates the design of a novel type of >extensional actu-
ator. The initial design domain and load condition considered for this design are shown in
Figure 14(b).

In this case, the actuator must deform along the direction speci<ed at point B in the
direction speci<ed by the dummy load when the electrical charges d1 are applied to the
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Figure 15. (a) Topology optimization result; (b) corresponding interpreted
image; (c) FEM deformed image.

Figure 16. (a) Static solution (w = 0:7) and corresponding interpreted image; (b) <nal topology for
!= 15 kHz and corresponding interpreted image; (c) same for != 25 kHz.

piezoceramic electrode Td1 (see Figure 14(b)). The mean transduction between regions Td1

and B is maximized while the mean compliance is minimized at point B where the actuator
is supposed to have contact with a body. A static operation is considered, therefore != 0.
The weight coeQcient w was considered equal to 0.5.

The coupling structure shown in Figure 15(a) was obtained using the proposed method (the
<gure must be re>ected to both symmetry axes). Figures 15(b) and 15(c) show, respectively,
the image of the entire actuator, and the corresponding deformed con<guration obtained using
FEM.

4.4.2. Example 2. Figures 16(b) and 16(c) show the actuator topologies obtained by spec-
ifying excitation frequencies equal to 15 and 25 kHz, respectively, and corresponding image
interpretations (the <gures must be re>ected to both symmetry axes). In this example, the op-
timization problem is de<ned as the maximization of the de>ection at point A in the direction
speci<ed by the dummy load when periodically oscillating electrical charges d1 are applied
to the piezoceramic at electrode Td1 (see Figure 14(b)) in a speci<ed frequency !. The mean
compliance at point A is to be minimized since the actuator is supposed to have contact with
a body at point A.

In both cases, the initial con<guration used was the optimal con<guration for the static
case for the following problem: maximization of the de>ection at point A in the direction of
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Table II. Weighting coeQcient w, volume constraint ZS , and lowest
eigenfrequency of the results shown in the <gures.

Figure ! (kHz) w ZS (%) Lowest eigenfrequency (kHz)

16(a) 0 0.7 30 30.7
16(b) 15 0.7 30 15.1
16(c) 25 0.9 30 24.9

Figure 17. (a) Final actuator image; (b) corresponding <rst eigenmode obtained using FEM.

the dummy load when electrical charges d1 are applied to the piezoceramic at electrode Td1

(see Figure 14(b)), while the mean compliance at point A is to be minimized. The coeQcient
w was considered equal to 0.7 and != 0 Hz. The coupling structure obtained for this static
problem is shown in Figure 16(a) (the <gure must be re>ected to both symmetry axis).

The coeQcient w, the total volume constraint of the material Zs, the speci<ed frequency
!, and the lowest eigenfrequency obtained for the <nal topology are described in Table II
for these examples.

Therefore, it is noted in this example that the dynamic eMect aMects the topology con<g-
uration, and must be considered in the design phase, especially in the high-frequency case
(Figure 16).

Figures 17(a) and 17(b) show the image of the actuator obtained by re>ecting Figure 16(b)
to both symmetry axes, and the corresponding <rst eigenmode obtained using FEM considering
one-quarter symmetry.

The presence of a small amount of grey scale in the <nal topologies suggests that some
<lter must be applied in a further implementation. The elimination of the grey scale due to
the interpretation process will result in a small diMerence between the resonance frequencies
of the topology result and the intepreted image. This problem could be solved by applying a
parametric or shape optimization to the interpreted image.

5. DESIGN OF ELASTIC AND THERMOELASTIC MATERIALS

The objective of material design is to generate composite materials with prescribed or im-
proved properties that cannot be found in the usual materials. This can be achieved by mod-
ifying the microstructure of the composite materials. The current approaches for composite
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Figure 18. (a) Problem formulation: distribution of three materials in the unit cell domain: (b) dis-
cretization by FEM and schematic representation of the mixing rule at the element level.

material design have been con<ned to a speci<c subclass of con<gurations. The designer
of laminates composites, for example, are limited by this pre-determined <bre-matrix lay-
out [24; 25]. Material designs are carried out by choosing among these parameters, namely,
<bre ratio, lamina thickness, ply orientations and stacking sequences. In a more general non-
parametric design methods, however, the designer is not bound by a pre-determined class of
design layout at the onset. By using topology optimization, a systematic and wide approach
for designing these materials can be provided. Therefore, a richer class of material properties
can be achieved, and new kinds of composite materials can be generated rather than the usual
<bre-reinforced or laminate types. The methodology based on structural topology optimization
techniques to <nd the topology of material microstructure, in particular, has been employed
to design material with speci<c mechanical, piezoelectric and thermal conductivity proper-
ties [26–29]. These new materials may have unusual properties such as negative Poisson’s
behaviour [30–32] and negative thermal expansion coeQcients [27].

In this section, a method based on topology optimization combined with homogenization
method for designing elastic or thermoelastic microstructures with prescribed elastic or ther-
moelastic properties is described. The optimization problem is formulated as to minimize this
norm of the diMerence between the current and the speci<ed material properties. The method
is general and the only limitations for the material is imposed by the physics law which can be
stated as the eMective properties bounds [33; 34]. A general homogenization method applied
to thermoelasticity was implemented using the <nite element method, to calculate the eMec-
tive properties of the composite. This homogenization has no limitations regarding volume
fraction or shape of the composite constituents, and is based upon assumptions of periodicity
of the microstructure and the separation of the microstructure scale from the component scale
through an asymptotic expansion.

5.1. Problem formulation

The objective is to design a microstructure with speci<ed thermoelastic properties by dis-
tributing two or three material phases within the unit cell domain as shown in Figure 18(a).
In other words, we design the topology of materials microstructures so that the designed
material yields prescribed thermoelastic properties. The problem is formulated to minimize
the norm of the diMerence between the speci<ed and homogenized material properties. The
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homogenized material properties are obtained by conducting the homogenization analysis based
on the topology of the base cell. Detailed derivations for the homogenization equations and
the numerical implementation will be presented in Section 5.3. By minimizing this norm with
some appropriate constraints, one should be able to <nd the material microstructures with ther-
moelastic properties close to the speci<ed ones if the speci<ed targets fall within physically
obtainable bounds. The optimization problem can be stated as:

Minimize F(x)
the diMerence between the speci<ed and homogenized properties

Variables x= [x1; x2; : : : ; xn; : : : ; xNDV]
material distribution of two or three phases within the base cell

subject to volume fraction constraints on the constituent phases bounds on the design
variables lower bounds constraint on the stiMness
geometry symmetry preference on the material distribution

5.1.1. Objective functions. The objective function is the L2 norm of the diMerence between
the speci<ed and homogenized components of the thermoelastic tensors. Mathematically, it
can be written as

F =
∑
I∈S

(
C(∗)

I − CH
I

)2

where C(∗)
I and CH

I are the components of the speci<ed and homogenized thermoelastic tensors,
respectively, and S is the set of speci<ed component indexes. It may be necessary to append
appropriate scaling factors to the objective functions where diMerent sets of thermoelastic
properties are calculated. For example, when both components of the elasticity and thermal
expansion tensors are speci<ed such scaling is necessary since these two sets of properties
are of diMerent order.

5.1.2. Design variables and material distribution. Following the idea of structural topology
optimization procedure, the topology optimization of material microstructures is transformed
into the material distribution problem in which the constituent phases and the void are opti-
mally distributed. In the discretized design domain of the base cell, the base cell is discretized
by an FEM mesh. Therefore, the material distribution becomes assigning constituent phases 1,
2 and, void to each <nite element. Each element assumes constant material properties of either
phase 1, 2, or void. Furthermore, this problem is relaxed by allowing the material properties
of each element to vary smoothly from one constituent to another. As a result, the eMective
property of each element is a mixture of the three constituent phases [35].

The design variables are selected to parameterize the material local properties between the
constituent phases with a simple mixture assumption. For three-phase material design, two
parameters, me and de, are selected as the design variables for element e to form the mixture
rule. Local elasticity tensor C(e) and thermal stress tensor �(e) are:

C(e)(me; de) = (de)p
[
meC(1) + (1 −me)C(2)]

�(e)(me; de) = (de)p
[
me�(1) + (1 −me)�(2)]
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where C(1) and C(2) are elastic tensors of phases 1 and 2; �(1) and �(2) are thermal stress
tensors of phases 1 and 2. The element mixing coeQcient, me ∈ [0; 1], represents the mixing
ratio between the two solid phases within an element. When me = 0 the properties assume the
value of the <rst material, while me = 0 recovers the properties of the second material. The
element density, de ∈ [dmin; 1], denotes void element when de =dmin, where dmin is a small
number to avoid singularity of the stiMness matrix in the <nite element calculation. Schemat-
ically, this material model corresponds to a combination of two Voigt models concatenated
in parallel as shown in Figure 18(b) where phase 0 is much weaker than phases 1 and 2 to
simulate the void phase.

This local material mixing assumption can be regarded as a direct extension of the classical
SIMP material model which parameterizes between one solid phase and void. The power, p,
is a penalty factor to discourage the intermediate density in the <nal solution. It has been
shown [6] that for an isotropic material with Poisson’s ration v= 1

3 , this penalty factor must
satisfy p¿ 3 to stay within the Hashin–Shtrikman bounds [33], thus making it physically
realizable.

5.1.3. Constraints on volume fraction. The volume fraction of the three constituent phases,
V (1); V (2) and V (0), at the discretized domain can be found as

V (1) =
1
|Y |

NE∑
e=1

de(me)|Y e|; V (2) =
1
|Y |

NE∑
e=1

de(1 −me)|Y e|; V (0) = 1 − V (1) − V (2)

where |Y | and |Y e| are the measure of the base cell and element e, respectively. For the
problem when one wants to specify the volume fraction constraints on the constituent phases,
it can be bounded by the lower (V (1)

min ; V
(2)

min) and upper bounds (V (1)
max; V

(2)
max) of the component

phases.

5.1.4. Constraints on sti4ness. The microstructures with unusual thermal expansion properties
are achieved by reducing the stiMness of the composite material in some direction. The bounds
on the eMective thermal expansion proposed by Gibiansky and Torquato [34] predict that ma-
terials with negative thermal expansion or very high expansion are inherently weak. Therefore,
lower bound constraints on the eMective stiMness are speci<ed to avoid microstructures with-
out signi<cant stiMness. Written in the notation commonly used in optimization literature,
the stiMness constraint can be denoted as (gmin)i6 gi(CH) for each speci<ed stiMness. The
most eMective stiMness constraint is the shear modulus, (C1212)min6 g(CH) =CH

1212, since it
only involves one stiMness coeQcient. For a more general case, one might want to constrain
both the horizontal and vertical stiMness coeQcients, namely (C1111)min6 g(CH) =CH

1111 and
(C2222)min6 g(CH) =CH

2222.

5.2. Optimization procedure

The mathematical programming method of SLP was used in the numerical implementation
of the optimization problem. The algorithm replaced the original optimization problem by a
sequence of linear programming problems [36]. In each optimization iteration, the objective
function and constraints are replaced by linear approximations obtained form the Taylor series
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expansion about current design point x〈k〉 = {m〈k〉; d〈k〉}. The linear programming subproblem
is posed to <nd optimal design change \x from the current design point:

Minimize F
(
x〈k〉

)
+

NDV∑
n=1

(\xn)
(

@F
@xn

)∣∣∣∣
x〈k〉

Variables \x=x〈k+1〉 − x〈k〉

subject to gmin
i − gi

(
x〈k〉

)
6

NDV∑
n=1

(\xn)
(

@g
@xn

)∣∣∣∣
x〈k〉

V (m)
min − V (m)

(
x〈k〉

)
6

NDV∑
n=1

(\xn)
(
@V (m)

@xn

)∣∣∣∣
x〈k〉

6 V (m)
max − V (m)

(
x〈k〉

)
(\xn)min 6 \xn 6 (\xn)max

The last set of constraints are move limits, with (\xn)max and (\xn)min being the upper and
lower bounds, on the allowable change in the design variable change \xn. The move limit
bounds are important since the optimization iteration may never converge without a proper
choice of move limits. Typically, during one iteration, the design variables will be allowed
to change by 5–15 per cent of their original values.

After optimization of the subproblem, a new set of design variables, x〈k+1〉 =x〈k〉 + \x,
is obtained and updated in the unit cell. As a result, the unit cell has a new topology with
eMective properties closer to the speci<ed targets. A new homogenization calculation is con-
ducted and the convergence is veri<ed by comparing the value of the objective function with
the value in the previous iterations. The iteration proceeds until convergence in the objective
function.

The linearization of the problem (Taylor series) in each iteration requires the gradients
(sensitivities) of the objective function and constraints relative to the design variables. The
correctness of the sensitivity analysis is of pivotal importance in solving the gradient-based
optimization problems, such as SLP and optimization criteria (OC) methods. The sensitivities
of the homogenized coeQcient are derived in the appendix. The derivation is based on the
procedure of adjoint sensitivity analysis [37; 38]. The sensitivities can be obtained from the
results of the homogenization calculation and no additional adjoint problem is required for
the gradient calculation.

The equations for the homogenization and its numerical solution will be presented next in
details. The linear programming subproblem in each iteration of the SLP is solved using the
package DSPLP from the SLATEC library [23].

The problem is inherently non-unique. For diMerent starting points, we do get diMerent unit
cells, or at least the many de<nitions of periodicity for the same unit cell. DiMerent mesh
sizes may imply diMerent resulting topologies.

Two numerical problems usually associated with the topology optimization, namely the
checkerboard and mesh-dependency, are addressed by standard procedures widely adopted in
the literature [39]. Checkerboards are patterns of alternating solid and void elements usually
found in topology optimization results and are caused by inaccurate numerical modelling of
low-order <nite elements [40; 41]. The mesh-dependency is a non-covergent phenomenon in
which the greater the re<nement of the <nite element discretization, the more complicated the
layout pattern. The <lter algorithm based on image processing techniques is used to average
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out the density of each element with its immediate neighbours. By using a <xed-size <lter,
one can obtain a mesh-independent topology which is less prone to a checkerboard pattern
even if for a re<ned mesh model [10].

5.3. Homogenization formulation derivation

The standard homogenization is a method to compute average constitutive parameters of a
complex material. The homogenization method can be used for periodic materials, which are
composed of a periodic repetition of a base cell. The size of the microstructure is assumed
to be small compared to the size of the component. The derivation of the homogenization
equation has been widely treated in literature. The reader is referred to Sanchez-Palencia [42]
the reference therein for the theoretical development and Guedes and Kikuchi [43] for the
numerical implementation.

Considering the standard homogenization procedure, the unit cell is de<ned as Y = [0; Y1]×
[0; Y2] × [0; Y3] and the material functions cijkl, and �ij are considered to be Y -periodic func-
tions:

cU(x) = c(x; y); RU(x) = R(x; y)

cU(x; y) = c(x; y + Y ); RU(x; y) = R(x; y + Y )
(29)

and y=x=U where U¿0 is a small-valued parameter which represents the ratio between the
micro-scale and macro-scale.

Expanding the displacement <eld uU asymptotically, we get

uU = u0(x) + Uu1(x; y) (30)

where the <rst-order variation terms, u1, are Y -periodic and belongs to the space H 1
per(Y; R

3):

H 1
per(Y ) = {v∈H 1(Y )|v takes equal values on opposite sides of Y }

H 1
per(Y; R

3) = {v= (vi)|vi ∈H 1
per(Y ); i = 1; 2; 3}

space. The strain <eld in the unit cell is written as

duUi
dxj

=
@u0i(x)
@xj

+ U@u1i(x; y)
@xj

+
@u1i(x; y)

@yj
(31)

As the parameter U→ 0, the strain UU <eld admits the following decomposition:

U(uU) =E + Uy(u1(x; y)); E= Ux(u0) (32)

where U is the mechanical strain and

(	x)ij(·) =
1
2

(
@(·)i
@xj

+
@(·)j
@xi

)
(	y)ij(·) =

1
2

(
@(·)i
@yj

+
@(·)j
@yi

)

It is noted that the small <rst-order variation u1 contributes to a zero-order eMect on the strain
UU. Physically, this decomposition denotes that the local strain <eld U(uU) can be regarded
as the superposition of the overall strain E and the local >uctuation Uy(u1). For a particular

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 52:23–62



50 B.-C. CHEN, E. C. N. SILVA AND N. KIKUCHI

case when the material is homogeneous, the local >uctuation Uy(u1), which accounts for the
presence of heterogeneities, shall vanish and U(uU) =E. Additionally, due to periodicity of u1,
the average of the local deviation Uy(u1) within the unit cell vanishes and the averages of the
local strain UU equals the macroscopic strain E:

〈Uy(u1)〉= 0; 〈U(uU)〉=E; 〈f〉=
1
|Y |
∫
Y
f dY

where the angle bracket 〈·〉 denotes the average of a physical quantity of the unit cell.
The eMective material properties can be determined by solving the local problem. Under a

uniform temperature rise \T , the constitutive law for each constituent phase, the equilibrium
equations, and the periodicity boundary conditions for the local problem are:

�(x; y) = c(x; y) : (E + Uy(u1(x; y))) − R(x; y)\T ∀y∈Y
∇ · �(x; y) = 0;
u1 ∈H 1

per(Y; R
3); � · n opposite on opposite sides of @Y

This problem admits a solution u1 which is unique up to an additive constant vector corre-
sponding to a rigid-body translation in the periodic displacement <eld. On the other hand,
the local strain variation Uy(u1) and the stress <eld � are uniquely de<ned. The variational
formulation for the local problem can be seated as

〈Uy(v) : c : Uy(u1)〉= − 〈Uy(v) : c : E〉 + 〈Uy(v) : R〉\T ∀v∈H 1
per(Y; R

3)

The local problem can be regarded as loaded by the overall strain E and the thermal loading
R. Due to the linear nature of this problem, the problem can be split into the two subproblems,
loaded by the elastic strain E and thermal loads R, respectively. The elastic E strain can be
further decomposed into a linear combination of its elementary strain states:

E=EpqII
pq; IIpq

ij = 1
2 (�ip�jq + �iq�jp)

Therefore, the microscopic equations are obtained as

〈Uy(v) : c : Uy(�pq)〉= 〈Uy(v) : c : IIpq〉 ∀v∈H 1
per(Y; R

3) (33)

and

〈Uy(v) : c : Uy(�)〉= 〈Uy(v) : R〉 ∀v∈H 1
per(Y; R

3) (34)

where the characteristic displacement �pq are the solutions of the local problem when
E= − IIpq and \T = 0, whereas the characteristic displacement � is the result of free me-
chanical macroscopic strain, E= 0, and the unit temperature rise, \T = 1. As a result, the
overall strain becomes

U(uU) =Epq(II
pq − Uy(�pq)) + Uy(�)\T

Once the local problem equations (33), (34) are solved, the homogenized stiQness cH and
the homogenized thermal stress tensor RH are determined through the relationship:

cH : E− RH\T = 〈�〉= 〈c : U(uU) − R\T 〉
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Figure 19. Three load cases: (a) subject to II 11; (b) subject to II 22; (c) subject to II 12.

therefore, it yields

cH
ijpq = 〈cijkh(IIpq

kh − (Uy)kh(�pq))〉 (35)

�H
ij = 〈�ij − (Uy)ij(�)〉 (36)

Alternatively, the symmetric form for the homogenized tensors can be obtained from
Equations (33), (34) and Equations (35), (36):

cH
ijkl = 〈(IIij − 	y(�ij)) : c : (IIkl − 	y(�kl))〉 (37)

�H
ij = 〈(IIij − 	y(�ij)) : c : (Q− 	y(�))〉 (38)

and the eMective thermal strain is

�H
ij = (cH

ijkl)
−1�H

kl

5.3.1. Numerical implementation of homogenization. The homogenization method requires
the solution of the local problem equations (33), (34) for the characteristic displacement �pq

and � subject to unit independent macroscopic strain IIpq and unit temperature rise \T = 1.
In two-dimensional space, for example, the microscopic characteristic displacements �11; �22

and �12 are the solution <elds of the corresponding macroscopic unit strain II11; II22 and II12,
namely two tensile strains and one shear strain, as shown in Figure 19.

The solution of the local problem equations (33), (34) are solved by applying the <nite
element method. The unit cell is discretized by NE <nite elements, that is

Y =
NE⋃
n=1

Se

where Se is the domain of each element. Hexagonal elements with eight-node brick elements
were used for the 3D case, and four-node incompatible elements were used for the 2D case.
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Trilinear and bilinear interpolation functions were considered for displacements in the 3D and
2D case, respectively. Therefore, the characteristic functions previously de<ned are expressed
in each element as a function of the shape functions (NI):

8pq
i

∼= NI8
pq
iI ;  i

∼= NI iI ; I = 1;NN (39)

where NN is the number of nodes per <nite element. A similar relation hold for the virtual
displacement v. Replacing the approximation in Equation (33) yields [43]

NE∑
e=1

∫
Se

cijkh
@NI

@yh
8pq
kI

@NJ

@yj
viJ dSe =

NE∑
e=1

∫
Se

cijpq
@NJ

@yj
viJ dSe (40)

and <nally the following matrix equations for each independent load case pq

K�pq = fpq (41)

where the global stiMness matrix is the assembly of all the element individual matrices and
the global force vectors are the assembly of all the element individual force vectors

K=
NE∑
e=1

Ke fpq =
NE∑
e=1

f e(pq) (42)

The element matrices and force vectors are expressed as [43]

Ke
iIjJ =

∫
Se

cikjh
@NI

@yh

@NJ

@yk
dSe; fe(pq)

iI =
∫

Se

cijpq
@NI

@yj
dSe (43)

When calculating the thermal expansion characteristic function  , we solve an additional
problem

K
= f th (44)

where K is the same as in the elastic case, and the global force vector for the thermal
expansion case is an assemblage of the elements individual vectors

f th =
NE∑
e=1

f e(th); fe(th)
iI =

∫
Se

�ij
@NI

@yj
dSe (45)

After solving for the characteristic displacements, the eMective properties can be obtained using
Equations (35) and (36). Assuming that the base cell is discretized by NE <nite elements,
the eMective properties can be calculated through the expression [44]:

cH
ijpq =

1
|Y |

NE∑
e=1

∫
Se

cijkh(II
pq
kh − (Uy)kh(8pq)) dSe (46)

or employing the symmetric form the homogenized coeQcient using Equations (37) and (38)
as a sum of element mutual energies Qe

I [27]:

cH
ijpq =

NE∑
e=1

Qe
I (47)
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where

Qe
I =

1
|Y e|

∫
Se

(
II ijrs − (Uy)rs(8ij)

)
: crspq :

(
II klpq − (Uy)pq(8kl)

)
dSe (48)

and |Y e| is the measure of element e; I is the compact one-dimensional index equivalent to
the four-free indices ijkl, ranging over the NI independent elastic coeQcients (6 for 2D or 21
for 3D). Similarly, we can de<ne the thermal stress coeQcients as a sum of element mutual
energies:

�H
kl =

NE∑
e=1

Be
I (49)

where

Be
I =

1
|Y e|

∫
Se

(II ijpq − (Uy)pq(8ij))cpqrs(�rs − (Uy)rs(W)) dSe; e= 1; : : : ;NE; I = 1; : : : ;NTH

(50)

where I now spans the NTH independent thermal expansion coeQcients (3 for 2D and 6
for 3D).

The four-node bilinear and four-node Taylor non-conforming elements [45] were imple-
mented for 2D problems, and the eight-node trilinear and the eight-node Taylor non-conforming
elements [45] were implemented for 3D problems [44].

5.4. Numerical example of material microstructure design

5.4.1. Negative Poisson’s ratio material. In this example, a two-phase (solid and void) mi-
crostructure is designed with a speci<ed negative Poisson’s ratio. The component phases are
isotropic. The <rst phase of the base material has Young’s modulus C(1) = 0:91 (GPa) and
Poisson’s ratio v(1) = 0:3 whereas the second phase is much weaker, C(2) = 0:91× 10−4 (GPa)
and v(2) = 0:3, to simulate the void phase. Under the plane stress assumption, the components
of the elastic tensor of the base material are C(1)

1111 =C(1)
2222 = 1:0; C(1)

1122 = 0:3 and C(1)
1212 = 0:35.

It should not be a serious concern for designing with this kind of ‘normalized’ base mate-
rial since for the linear elastic material with the same Poisson’s ratio, the eMective material
properties obtained for the real material simply diMer by a scale factor.

The speci<ed material properties are, C∗
1111 =C∗

2222 = 0:4 (GPa), C(∗)
1122=C

(∗)
1111 =− 0:5 under the

volume ratio constraint V (1) = 30 per cent. The vertical symmetry of the density distribution
is enforced. The optimization problem formulation can be stated as

min[CH
1111 − C∗

1111]
2 + [CH

2222 − C∗
2222]

2 + [CH
1122 − C∗

1122]
2

X= [d1; d; : : : ; dNE]

subject to 0:36V (1)60:3

0:0¡dmin6de61:0; e= 1; : : : ;NE

vertical symmetry
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Figure 20. Negative Poisson’s ratio material microstructures with vertical density symmetry.

The base cell is discretized by a 40× 40 mesh. The layout of the microstructure unit cell and
the composite materials composed of a 3× 3 array of the base cells are shown in Figure 20.
The black region denotes the solid phase and the white region is void. It is noted this layout
is actually an inverted structure and is very similar to the result obtained by Larsen et al.
[27]. The <nal achieved properties are found to be

CH = 0:04




1:0 −0:496 0
−0:496 0:995 0

0 0 0:315


 (GPa)

5.4.2. Negative thermal stress material. In next two examples, we will demonstrate the de-
sign of a three-phase microstructure with ‘normalized’ materials. The <rst and second phases
have the same rigidity and Poisson’s ratio, C(1) =C(2) = 0:91(GPa), v(1) = v(2) = 0:3 but diMer-
ent thermal expansion coeQcients, �(1) = 1:0 (�m=◦C) and �(2) = 10:0 (�m=◦C). The void phase
is simulated with a weak material which is insigni<cant in its rigidity compared with the two
bulk phases. The objective is to construct microstructures with the speci<ed thermal stress ten-
sor, �∗

11 =�∗
22 =−1:0 (kPa=◦C), under the volume fraction constraints 0:206V (1)60:25 and

0:206V (2)60:25. The lower bound constraint on the shear stiMness is imposed to ensure
suQcient rigidity of the resulting microstructure. The problem formulation can be stated as

min[�H
11 − �∗

11]
2 + [�H

22 − �∗
22]

2

X= [d1; m1; d2; m2; : : : dNE; mNE]

subject to

0:206V (1)60:25; 0:206V (2)60:25

0:056CH
1212

0:0 ¡ dmin6de61:0; 0:06me61:0

vertical symmetry

The model is discretized by a 30× 30 mesh. The resulting microstructure is shown in
Figure 21 with the achieved properties, �∗

11 =−1:003 and �∗
22 =−1:031 (kPa=◦C).
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Figure 21. Negative thermal stress material microstructure with vertical density symmetry.

Figure 22. Horizontal high expansion microstructures with horizontal and vertical symmetries.

5.4.3. High thermal expansion material. In this example, we will demonstrate the design
of a three-phase microstructure with high thermal expansion properties in the horizontal di-
rection. The target material property is �∗11 = 20:0 (�m=◦C). Under the volume fraction con-
straints 0:156V (1)60:20 and 0:156V (2)60:20. The lower bound constraints on the stiMness,
0:056CH

1111 and 0:056CH
2222, are imposed. Both horizontal and vertical symmetries on the

distribution pattern are speci<ed.
The <nal layout of the unit cell of the microstructure is shown in Figure 22 with the

achieved properties, �H
11 = 19:6 (�m=◦C). The fact that the composite material expands more

than the constituent phases results from the deformation pattern of the bi-material composite
arch structure as can be seen from the <gure. The higher expansion phase is located inside this
curved structure. When heated, the inside strip expands more than the outside low expansion
strip and causes the overall structure to bend outward thus resulting in high expansion in the
horizontal direction.

5.4.4. Negative thermal strain microstructure composed of real materials. In this exam-
ple, we will design a negative thermal expansion material microstructure composed of real
materials. Chromium is selected as the <rst phase and Nickel as the second phase with
properties C(1) = 290 (GPa), v(1) = 0:3, �(1) = 4:9 (�m=K) and C(2) = 200 (GPa), v(2) = 0:3,
�(2) = 13:4 (�m=K). It should be noted that chromium and nickel are admissible to each other
so one can expect to have good bonding at the bi-material interface. The objective is to con-
struct a microstructure with the speci<ed thermal strain components, �∗11 = �∗22 =−4:0 (�m=K),
under the volume fraction constraints, 0:206V (1)60:25; 0:206V (2)60:25, and the lower
bound constraint on the shear stiMness.
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Figure 23. Negative thermal strain material microstructure with horizontal and vertical symmetries. The
black colour denotes chromium and gray color is nickel.

The problem formulation can be stated as

min[�H
11 − �∗11]

2 + [�H
22 − �∗22]

2

X= [d1; m1; d2; m2; : : : dN E; mN E]
subject to

0:206V (1)60:25; 0:206V (2)60:25

0:056CH
1212

0:0¡dmin6de61:0; 0:06me61:0
vertical and horizontal symmetry

This model was initially discretized by a 30× 30 mesh with a uniform density distribution. A
rudimentary layout was obtained with �H

11 = −3:2; �∗22 = −4:8 (�m=K). Then each element was
further divided into four elements with identical material properties to form a re<ned model
with a 60× 60 mesh. The optimization process is then continued with this re<ned model. The
<nal layout of the material microstructure is shown in Figure 23. The resulting properties are
closer to the speci<ed target as

�H =

[
−3:993 0

0 −4:027

]
(�m=K)

Using the strategy of starting with a rough model and using a rudimentary layout as the
starting topology in the re<ned model, a considerable amount of computing time is saved. As
a result, one can adjust the discretization re<nement depending on the accuracy demand and
the available computing resources. It is interesting to note this microstructure is very similar
to the result obtained by Torquato and Sigmund [27] while the base cell is shifted by half of
the cell in the horizontal direction.

In order to visualize the shrinkage eMect of the designed microstructure, a veri<cation
simulation for the structure made of an array of 3× 3 microstructures was conducted using
the commercial package MSC=NASTRAN. The structure is subject to a unit temperature rise
under the free expansion condition. The deformation of the repeated structure is shown in
Figure 24. As can be seen from the <gure, the bi-material deformation eMect of chromium
and nickel contributes to the overall shrinkage of the material. This microstructure is made
of several connecting bi-material arches. Each arch is composed of two curved strips in
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Figure 24. Deformation of 3× 3 array of negative thermal expansion microstructures.

which the higher expansion phase is located outside and lower expansion phase is situated
inside. Contrary to the bi-material arch structure for high expansion material in Figure 22,
this layout arrangement causes the cell to bend inward and thus contract. It is noted that this
curved bi-material arch has been used as the basic building block to construct temperature-
insensitivity structures [46] with application in space structures where structural distortion
caused by temperature >uctuation is a major concern.

5.4.4.1. Manufacturing and experiments. The design for the negative thermal expansion
microstructures were fabricated using direct metal deposition (DMD) techniques [47]. DMD
is a layer-based additive manufacturing process that uses a laser to melt powdered metals
and make deposits. The laser is used in conjunction with a CNC workstation. The object
is fabricated on top of a substrate material, which is attached to the CNC motion table.
The motion of the table provides the relative motion between the substrate and the laser
beam, allowing the geometry of the deposit tracks to be controlled through CNC code. The
CNC code for the negative thermal expansion microstructure is generated from a CAD=CAM
system which interprets the density distribution of the topology optimization result into a CAD
model. This interpretation is accomplished by the following steps: thresholding the densities,
removing isolated noise elements, and interpolating curves.

DMD has the capability of making intricate structures that would be otherwise impossible
to make using conventional manufacturing techniques, especially for multi-material designs.
Since it is an additive technique, changing composition is simply changing the composition
of the powder being sent to the laser work area, thus making DMD a good candidate for the
meso-scale manufacturing process for the designed microstructures.

The manufactured structure is tested to verify the results. The specimen is placed within a
three-zone furnace. The designed structure was tested in the horizontal direction at a heating
rate of 3:5 (K=min). The measured thermal expansion coeQcient, �22 =−3:9 (�m=K), is in
good agreement with the predicted design target (Figure 25).
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Figure 25. An array of 5× 5 negative thermal expansion microstructures built with direct metal deposi-
tion techniques. (Courtesy of Mr Eric Stiles and Dr Jyotirmoy Mazumder of the Center for Laser Aided

Intelligent Manufacturing at the University of Michigan.)

6. CONCLUSIONS

The application of topology optimization for designing pressure actuated compliant mecha-
nisms, >extensional transducers, and porous material microstructures with unusual thermoelas-
tic properties has been presented. By changing the layout of the sensors=actuators, novel types
of transducers for diMerent tasks can be designed. The examples in this paper span diMerent
physics domain. The >extensional transducer spans the electric and elastic <elds via piezoce-
ramics. The compliant mechanism actuated by hydrostatic pressure serves as a starting point
to design more intricate device involving solid and >uid interaction. The material microstruc-
ture with unusual thermal expansion coeQcients can be regarded as a thermal actuator in a
miniature scale. These examples demonstrate that the topology optimization problem involving
multiple physics domain is a viable direction for future research, in particular, for sensor and
actuator design where various performance goals are imposed for diMerent applications.

APPENDIX A: SENSITIVITY ANALYSIS OF THE HOMOGENIZED COEFFICIENTS

The sensitivities used in the microstructure design optimization are derived in this appendix.
This derivation is based on the adjoint sensitivity analysis applied on the homogenization
coeQcients, Equations (35), (36), which are determined from the characteristic displacement
<elds obtained from the homogenization equations (33), (34). The derivation procedure starts
with a non-symmetric form of the homogenization coeQcients formula and ends up with a
symmetric form for the gradient of the homogenization coeQcients.

A.1. Sensitivity of the homogenized elastic tensor

Without loss of generality, we will begin with deriving the sensitivity of the <rst component
of the homogenized elastic tensor, cH

1111. This component of the homogenized elastic coeQ-
cient, Equation (35), written in the notation commonly adopted in the structural optimization
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literature:

g=
∫
Y
g(b; U(�11)) dY = cH

1111 = 〈c11kh(II11
kh − 	kh(�11))〉 (A1)

where the function g is continuously diMerentiable with respect to its arguments, namely, the
design variable b and the ‘state variables’ of the characteristic equations �11 ∈H 1

per(Y; R
3) and

U(�11), which are determined by the ‘state equation’, Equation (33), written in the indicial
notation:

〈	ij(v)cijkh	kh(�11)〉= 〈	ij(v)cij11〉 ∀v∈H 1
per(Y; R

3) (A2)

Take <rst variation of G

�G =
∫
Y

[
9g
9b�b +

9g
9U �U

]
dY

= 〈�c11kh(II11
kh − 	kh(�11))〉 +

〈
c11kh

9(II11
kh − 	kh(�11))
9	pq(�11)

�	pq(�11)

〉

= 〈�c11kh(II11
kh − 	kh(�11))〉 − 〈c11pq�	pq(�11)〉 (A3)

The explicit term, (9g=9b) �b, depends on the change in the direction of design �b directly.
On the other hand, in the implicit part (9g=�U) �U, the dependency on design change �b needs
to go through the variation of the strain <eld �U(�11). It is noted since the periodicity boundary
conditions are not dependent on the design change, both the characteristic displacement <eld
�11 and its variation ��11 belong to the kinematic admissible space, namely, �11 ∈H 1

per and
��11 ∈H 1

per.
In order to evaluate the implicit part in terms of the design change �b explicitly without

going through the dependency relationship of �U, the procedure of adjoint sensitivity analysis
is employed [37; 38]. The adjoint equation corresponding to the pseudo-load term, 9g=9U, is

〈	ij(z)cijkh	kh([11)〉= 〈	ij(z) (c11ij)〉 ∀z∈H 1
per(Y; R

3) (A4)

Taking the <rst variation of the state equation, Equation (A2), one gets an equation involving
��11:

〈	ij(v)cijkh	kh(��11)〉= 〈	ij(v)�cij11〉 − 〈	ij(v)�cijkh	kh(�11)〉 ∀v∈H 1
per(Y; R

3) (A5)

Substitute ��11 for z in Equation (A4) and substitute [11 for v in Equation (A5) and using
the symmetry property, cijkh = ckhij , the implicit term becomes

〈	ij(��11) (c11ij)〉 = 〈	ij(��11)cijkh	kh([11)〉= 〈	ij(�[11)cijkh	kh(��11)〉
= 〈	ij([11)�cijkh(II11

kh − 	kh(�11))〉

Up to this point, the implicit term can be represented explicitly by the design change �cijkh.
Substitute this term back into Equation (A3)

�cH
1111 = 〈(II11

ij − 	ij([11))�cijkh(II11
kh − 	kh(�11))〉
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Furthermore, it is noted that the adjoint equation (A4) and the state equation (A2) are identical.
In other words, one may identify the solution of the adjoint equation, [11, with the solution
of the state equation, �11, and get a symmetry form for the sensitivity:

�cH
1111 = 〈(II11

ij − 	ij(�11))�cijkh(II11
kh − 	kh(�11))〉

One can generalize this result for each component of the homogenized elastic tensor,

�cH
pqrs = 〈(II rsij − 	ij(�rs))�cijkh(II

pq
kh − 	kh(�pq))〉

A.2. Sensitivity of the thermal stress tensor

Following the similar derivation procedure, the sensitivity analysis of the <rst component of
the homogenized thermal stress tensor, �H

11, starts from Equation (36):

G =
∫
Y
g(b; U(�)) dY =�H

11 = 〈�11 − c11kh	kh(�)〉 (A6)

and its variation:

��H
11 = 〈��11 − �c11kh	kh(�) − c11pq	pq(��)〉 (A7)

The corresponding adjoint equation is exactly identical to Equation (A4).
The state equation (34) and its <rst variation, in inidicial notation:

〈	ij(v) :cijkl : 	kl(�)〉 = 〈	ij(v) :�ij〉 ∀v∈H 1
per(Y; R

3)

〈	ij(v)cijkh	kh(��)〉 = 〈	ij(v)��ij〉 − 〈	ij(v)�cijkh	kh(�)〉 ∀v∈H 1
per(Y; R

3) (A8)

Substitute �� for z in Equation (A4) and substitute [11 for v in Equation (A8) the implicit
term becomes

〈	ij(��)c11ij〉 = 〈	ij([11)��ij〉 − 〈	ij([11)�cijkh	kh(�)〉
Substitute this term back into Equation (A7)

��H
11 = 〈(II11

ij − 	ij([11))��ij〉 − 〈(II11
ij − 	ij([11))�cijkh	kh(�)〉

= 〈(II11
ij − 	ij([11))�cijkh(�kh − 	kh(�))〉 + 〈(II11

ij − 	ij([11))cijkh��kh〉

This formula can be further simpli<ed by 	ij([11) = 	ij(�11),

��H
11 = 〈(II11

ij − 	ij(�11))�cijkh(�kh − 	kh(�))〉 + 〈(II11
ij − 	ij(�11))cijkh��kh〉

and the general form for each component of the homogenized thermal stress tensor,

��H
pq = 〈(II pqij − 	ij(�pq))�cijkh(�kh − 	kh(�))〉 + 〈(II pqij − 	ij(�pq))cijkh��kh〉
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A.3. Sensitivity of the thermal strain tensor

The sensitivity of the homogenized thermal strain tensor QH can be found by taking variation
of the relation, QH = (cH)−1 : RH, to get

�QH = (�cH)−1 : RH + (cH)−1 : �RH

= − (cH)−1 : (�cH) : QH + (cH)−1 : �RH
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