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A freeform shape optimization of complex structures
represented by arbitrary polygonal or polyhedral meshes

Jie Shen∗,† and David Yoon
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SUMMARY

In this paper we propose a new scheme for freeform shape optimization on arbitrary polygonal or
polyhedral meshes. The approach consists of three main steps: (1) surface partitioning of polygonal
meshes into different patches; (2) a new freeform perturbation scheme of using the Cox–de Boor basis
function over arbitrary polygonal meshes, which supports multi-resolution shape optimization and does
not require CAD information; (3) freeform shape optimization of arbitrary polygonal or polyhedral
meshes. Numerical experiments indicate the effectiveness of the proposed approach. Copyright � 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

A considerable amount of work in the area of shape optimization of structures has been
conducted in the past. From the perspective of geometric representation, these approaches can
be generally categorized as either CAD-based [1–7] or mesh-based [8–13]. For a more detailed
classification, readers may refer to Reference [14], which contains an excellent review on
different shape parameterization techniques. From the perspective of analyses, the applications
of boundary element method (BEM) [15–17] and meshless or meshfree method [18–20] signify
recent advances in the field of shape optimization. The advantages of using the BEM include
the simplification in mesh preparation and higher accuracy within the solution domain, while a
main benefit with the meshless method is to provide a treatable solution in the cases of large
deformation and non-linear problems.

Even though many finite element and boundary element meshes are generated from their
corresponding CAD models, in practice analysts may face situations in which only polygonal
or polyhedral meshes are available without knowing any information about their underlying
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geometry in CAD formats. These situations [21] include (1) meshes are generated by digital
sensing systems such as laser scanning equipment used in reverse engineering; (2) meshes are
resulted from the simulation results of computational mechanics such as topology optimization
[22], etc. If the meshes contain some surface noises, we assume that a certain surface smoothing
algorithm has been applied to these meshes [23].

If polygonal or polyhedral mesh representation is used, we will face a problem of maintaining
the smoothness of the original finite element mesh. It is a well-known fact that a shape
optimization tends to cause zigzag surfaces if each finite element node is used as a design
variable [24]. Even though multi-point constraints and dynamic adjustment of design variable
bounds can be used to enforce the smoothness, the total number of design variables are
directly linked to the number of mesh nodes, which could be very large in some circumstances,
leading to a high computational cost and a difficult optimization problem [14, 25]. In addition,
although B-spline representation can help in maintaining the smoothness of surfaces during
a shape optimization, automatic conversion from complex polygon or polyhedral meshes with
sharp edges to B-spline patches is a challenging problem to solve. We will face the following
challenges along the line of using the B-spline representation. First of all, complex topology of
the shape causes more troubles to the B-spline representation. If we use regular spline patches
(i.e. each control vertex has valence 4), the Euler characteristic for a planar graph indicates
that such meshes can only be constructed if the overall topology is of the type of infinite
plane, infinite cylinder, or the torus. Any other shape like a sphere cannot be built from a
quadrilateral control mesh with the valence of all vertices being 4. Furthermore, enforcing higher
order continuity at extraordinary vertices is difficult and significantly increases the complexity
of the representation. If trimmed NURBS representation is used, how to find and maintain all
trimmed boundary curves is not an easy task, especially when some non-closed feature edges
exist. Another weakness of the B-spline and trimmed NURBS representation is the need for a
mapping between the control mesh and finite element mesh, which causes extra bookkeeping
effort and computation.

Consequently, the authors raise a question about if we can design a perturbation scheme for
polygonal or polyhedral meshes, which preserves the smoothness of original surfaces without
using a B-spline surface representation. If we do not make any assumption on an input finite
element mesh, another harder question is whether we can handle an arbitrary polygonal or
polyhedral mesh with a uniformly distributed perturbation that is similar to B-spline deformation
with a uniform parameterization. Parameterization means a process to establish a 2D parametric
domain for a 3D polygonal surface mesh.

In this paper, we present a new scheme for freeform shape optimization on polygonal or
polyhedral meshes. In the case of polyhedral meshes, a polygonal surface mesh needs to be
extracted as a preprocessing step. The basic idea of our approach is to partition the entire
surface of a structure into a finite number of surface patches w.r.t. the geometric characteristics
of surface discontinuity, leading to geometric homogeneity and easy shape manipulation of
each partitioned patch. Then we design a new freeform perturbation scheme that uses the
Cox–de Boor basis function to achieve the smoothness constraints on polygonal surface meshes
during the freeform shape optimization process. According to the best of our knowledge, we
make the following claims about main contributions of this paper:

(1) A new freeform perturbation scheme that allows a direct freeform shape optimization
over arbitrary polygonal or polyhedral meshes with a guaranteed C2 continuity, i.e.
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the continuity of second derivatives of a surface function, within each surface patch
during the freeform shape optimization. It frees the burden of constructing a B-spline or
NURBS representation for a complex polygonal or polyhedral mesh, and therefore avoids
the corresponding limitations mentioned in the third paragraph of this section. It also
removes the bottleneck in shape optimization processes of complex mesh models, i.e.
data preparation for the B-spline representation, meshing and their coordination, which
normally take hours or even weeks for a complex model. With a complex system such
as an airplane, the meshing process alone may take several months to complete [26, 27].

(2) A new approach to the freeform shape optimization, which can handle the existence of
surface discontinuity elegantly by using our surface partitioning scheme. It contains an
automated scheme for generating a control mesh of knot image, in which the density
of knot image is completely independent upon the density of the original polygonal or
polyhedral mesh, and can be easily controlled in a multi-resolution manner to achieve a
broad range of deformation patterns from local to global perturbations within the scope
of each surface patch. Note that the knot image refers to the image of knot in a mapping
from a parametric space to an object space.

The rest of this paper is organized as follows. In Section 2, our surface partitioning scheme is
shortly introduced, and in Section 3 a new freeform perturbation scheme for surface patches in
an arbitrary polygonal or polyhedral mesh is described. Next in Section 4, a shape optimization
problem is defined. Numerical experiments are presented in Section 5, followed by concluding
remarks in Section 6.

2. SURFACE PARTITIONING OF POLYGONAL MESHES

Surface partitioning of unstructured meshes is important to many problems in engineering and
science. In the area of parallel computing, researchers have developed various approaches to
partition a surface mesh into a number of subregions each of which is assigned to different
processors [28–36]. The main objective in this area is to generate equally sized subregions with
minimized boundaries. In the area of computational geometry and computer gaming, people
focused on convex solid decomposition of polyhedra [37–41] or convex surface decomposition
of polygonal meshes [42, 43]. The key idea of the approaches is to break an entire model into a
number of convex entities such that collision detection, tolerance verification, motion planning,
etc. can be easily conducted. Furthermore, in the area of computer vision, some studies have
been carried out on the ridge detection [44, 45] and surface classification [46–48].

We have proposed a new surface partitioning scheme that is specifically designed for shape
optimization [49]. The main idea of our approach is to partition polygonal meshes w.r.t.
geometric characteristics: geometric discontinuity. Here, the geometric continuity of a surface
means the continuity of its tangent vector and curvature for G1 and G2, respectively. Higher-
order geometric continuity Gi (i > 2) of a surface means that there exists a reparameterization
that can transform the surface to Ci continuity. The reparameterization refers to a parameter
transformation by using a strictly monotonic, differential function. Among all these geomet-
ric discontinuities such as G1, G2, . . . , Gn, only the first two are practically useful, i.e. any
Gi (i > 2) discontinuity has an insignificant influence on the shape of the surface if G1 and
G2 continuities are guaranteed. Since G2 discontinuity ⊃ G1 discontinuity in a sense that
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some G2 discontinuities do not imply G1 discontinuity, the entire task can be divided into two
main steps in a sequential manner: (1) surface partitioning by G1 discontinuity and (2) surface
partitioning by G2 discontinuity.

The G1 partitioning can be easily implemented by calculating the change in surface normal
between adjacent elements, while G2 partitioning is based an accurate computation method for
discrete nodal curvatures [49]. G2 partitioning is mainly used for separating fillets from other
geometric entities. If an input mesh consists of polyhedra, we need first to extract a surface
mesh from this domain mesh, and then to conduct the partitioning introduced in this section
on the surface mesh.

3. A NEW FREEFORM PERTURBATION SCHEME FOR SURFACE PATCHES

There was a considerable amount of research on the freeform deformation modelling in the
area of computer graphics, which inspired the corresponding applications in area of shape
optimization. The first group of studies was carried out around Bezier spline, B-spline, NURBS,
and their variants [50–52]. With B-spline and NURBS representations, deformation of a surface
due to the movement of its control points is guaranteed to be continuous. The applications
of these geometric representations in shape optimization have been reported in References
[24, 53–58]. The second group of research was conducted on the basis of the concept of
freeform deformation (FFD) [59–61], which is essentially an implementation of Bezier solid
or B-spline solid as a bounding space. The smooth deformation of this spline bounding space
leads to a smooth deformation of the embedded surface or domain meshes by following the
interpolation rule of the spline solid. Some researchers applied the FFD in shape optimization
[27, 62–64]. Furthermore, physics-based modelling was incorporated into the above two groups
of approaches lead to a so-called constraint-based deformation [65–67].

Since we focus on the direct shape optimization on polygonal or polyhedral meshes without
any underlying geometric information, explicit B-spline representation is not suited. Even though
the FFD technique can be used as a perturbation scheme for shape optimization, it was usually
used as a means for nonlinear global deformations such as twisting and shearing [27]. With the
FFD, it is difficult, if not impossible, to specify a local perturbation exactly over a certain surface
patch with an irregular boundary in terms of both direction and scope. Various approaches in
constraint-based deformation focused merely on simulating the deformation as an interactive
elastic deformation process with or without a volume preservation constraint, while the objective
of our approach is to determine an optimal shape configuration in terms of structure stiffness
or other meaningful engineering criteria without attention on a realistic deformation process
that is useful for interactive modelling or animation.

The basic idea of our new freeform perturbation scheme is to use a cubic Cox–de Boor
basis function [51] as a perturbation pattern for each shape design variable. Theoretically, there
are many smooth functions such as Gaussian distribution function, which can be used as a
perturbation pattern to ensure the surface smoothness during a shape optimization process.
However, one unique benefit of using the Cox–de Boor basis function is its partition of unity
(i.e. the sum of all non-zero basis functions is 1 at any point in the parametric domain), which
leads to several salient properties such as strong convex hull property. The strong convex hull
property means that a surface is contained in the convex hull of its control polygonal mesh,
i.e. a mesh that consists of all the de Boor control points [68]. Compared to the Bezier basis
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function, i.e. Bernstein polynomials, the advantage of using the Cox–de Boor basis function
lies in the fact that the Cox–de Boor basis function supports local control of shape, which is a
desirable property for shape optimization. In addition, an arbitrary movement of control points
of a Bezier spline cannot even guarantee its G1 continuity.

The ith Cox–de Boor basis function of degree p, Ni,p(u), can be defined recursively
by [51]

Ni,0(u)=
{

1 if ui � u < ui+1

0 otherwise
(1a)

Ni,p(u)= u− ui

ui+p − ui

Ni,p−1(u)+ ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u) (1b)

where ui’s are called knot values in a parameter space. In order to facilitate a freeform
perturbation scheme that uses the above function, p is set to be 3 since this guarantees C2

continuity and the degree is not too high such that the corresponding computation is not costly.
The multiplicity of all knots is also confined to be 1 and the boundary type as open-ended,
because the geometric discontinuity has been handled by the surface partitioning in Section 1.
One implicit assumption of this paper is that we follow the essentials in the parametric model
representation of surfaces. By the notations used in [68], a parametric model can be represented
by a function F : P → �, where P and � refer to a parameter space and an object space,
respectively. The object space means an affine space in which the input polygonal or polyhedral
mesh is described.

Equation (1) is for one-dimensional cases. To extend it to two-dimensional surface cases,
we need to calculate another similar basis function, Nj,p(v), for the second coordinate in the
parameter space. The product of Ni,p(u)Nj,p(v) is the overall basis function for two-dimensional
cases, and it still maintains the partition of unity in the parametric domain.

In order to perform a freeform perturbation on a surface patch of an arbitrary input mesh, we
propose two following principles, which can be considered as our contributions to the freeform
perturbation, even though we cannot prove that they are the only effective guidelines for this
issue.

Principle 1: we should try to achieve a uniform distribution of images of knots over an
arbitrary mesh, when the knots in a parameter space are mapped to this surface mesh in an
object space.

Principle 2: assume that the degree of a B-spline surface, m×m, is 3× 3. Given two sim-
ple knot sequences 〈uk+1, uk+2, . . . , uk+2m−1〉, 〈vl+1, vl+2, . . . , vl+2m−1〉 and its corresponding
control point di,j , one of the best way to perturb the control point is to move in the surface
normal direction at the image point of knot, (uk+m, vl+m), on the surface mesh.

Even though the concepts of knots and control points of B-spline surfaces are used in these
two principles, as you will see in the later part of this paper, our approach does not really rely
upon the B-spline representation. In Principle 1, we consider the image of knot (uk, vl) as the
range of the function F(uk, vl). The basic rational for Principle 1 is that if we can achieve a
uniform distribution of images of all knots (uk, vl) in the object space, i.e. over the polygonal
surface patch, each control point will have an influence on the shape of an approximate equally
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sized local region. This is a desirable property for shape optimization of surface patches with
homogeneity of curvatures. A critical reader may argue about the need for adaptively sized
areas of different local control regions over a general surface. Our answer to this criticism is
that since our surface partitioning algorithm decomposes a general surface into different patches
with homogeneity of curvatures, the adaptively sized areas becomes more or less unnecessary
on each partitioned patch in our overall approach to shape optimization. The benefit of using
equally sized areas is that we can easily reduce the total number of shape design variables by
adjusting the size of each area. This is a crucial property for an efficient shape optimization
in engineering practices. Such kind of pseudo ‘multi-resolution’ effect will be elaborated in
example 3 of Section 5.

The Principle 2 is based upon a fact that a surface normal flow is a perturbation that causes
the least amount of local distortion on a smooth surface patch. If we consider a special case,
a planar surface patch, a perturbation along the direction of surface normal is the only way
that does not produce any possible interference between perturbations of two adjacent nodes
located at a very short distance away from each other.

On the basis of the above two principles, we need to design a scheme that generates a uniform
distribution of images of knots in the object space. This scheme leads to a situation in which
each control point di,j , which corresponds to two knot sequences 〈uk+1, uk+2, . . . , uk+2m−1〉
and 〈vl+1, vl+2, . . . , vl+2m−1〉, will control a certain portion of vertices on the input mesh with
an arbitrary distribution of its vertices. In our shape optimization approach, each control point
corresponds to a shape design variable. With each control point di,j , a local coordinate system
can be established in the parameter space with (uk+m, vl+m) as its origin. We normalize it in
such a way that the distance between two adjacent knots is always 1. In this local coordinate
system, the mathematical formula for the basis function, Ni,3(u)Nj,3(v), is given by

Ni,3(u)Nj,3(v) =




1
36 (3u3 − 6u2 + 4)(3v3 − 6v2 + 4), 0 � u < 1, 0 � v < 1

1
36 (u2 − 4u+ 4)(v2 − 4v + 4), 1 � u � 2, 1 � v � 2

0, u > 2, v > 2

(2)

where u and v refer to the absolute values of co-ordinates of vertices on the arbitrary input
mesh in the local parametric co-ordinate system.

One main advantage of our approach over the conventional B-spline approach [24] is that
there is no need to construct B-spline or NURBS surface patches and to co-ordinate them with
the polygonal mesh. Only the calculation for locating knot images is required as described in
the following subsection.

3.1. Calculation for locating all knots in the parameter space

Since the input mesh can be any arbitrary one, it is not an easy task to generate a set of
uniformly distributed images of knots over the input mesh, even though it is still relatively
easier than the task of constructing a real B-spline surface. Our overall procedure is as follows:

Algorithm 1: location of all knots

(1) Project a surface patch onto a planar surface
(2) Overlay the projected surface patch with a regular parametric grid mesh
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(3) Smooth the overlaid grid mesh on the basis of length distortion of the projected surface
patch

(4) Group vertices of the smoothed parametric grid mesh to form a set of knots

The purpose of step 1 in Algorithm 1 is to establish a mapping from the 3D object space to
a 2D parameter space. Many approaches have been proposed for the projection of polygonal
meshes from 3D to 2D. Eck et al. [69] used harmonic maps to generate a 2D projection of a
3D polygonal mesh. The method produces a reasonably good quality of mapping in terms of
minimizing a geometric distortion metric. However, one limitation is that the boundary of the
2D mesh needs to be convex. Floater [70] provided a provable solution of generating a 2D
projection by using convex combination. It guaranteed the validity of the approach when the
boundary of the 2D mesh is predefined and convex. Marcum and Gaiter [71] used a novel finite
element approach to conduct a global mapping and calculate a 2D projected mesh without a
proof of its validity. In the community of computer graphics, related studies in texture mapping
[72, 73] suffer similar limitations as mentioned above.

In this paper we use the angle-based flattening (ABF) method proposed by Sheffer and
Sturler [74]. The advantage of using this method include (1) it can handle arbitrary manifold
surfaces with large curvature gradients and (2) the boundary of the 2D mesh is not required
to be predefined or convex. Even though the ABF was originally designed only for manifold
surfaces, it can be still used for non-manifold input meshes if it is used in conjunction with
our surface partitioning scheme that breaks a non-manifold surface into a number of manifold
surface patches.

The basic concept of the ABF method is to convert a projection problem into a constrained
optimization that is in turn transformed to an unconstrained optimization by using Lagrangian
multipliers as follows:

Minimize F(�)+
P∑

i=1
�(2)
i g

(2)
i (�)+

Mint∑
k=1

�(3)
k g

(3)
k (�)+

Mint∑
k=1

�(4)
k g

(4)
k (�) (3)

where

F(�)=
P∑

i=1

3∑
j=1

(
�j
i

�j
i

− 1

)2

g
(2)
i (�)=

3∑
j=1

�j
i − � = 0

g
(3)
k (�)=∑

i

�j (k)
i − 2� = 0

g
(4)
k (�)=

∏
i sin

(
�j (k)+1
i

)
∏

i sin
(
�j (k)−1
i

) − 1 = 0

in which, �j
i , i = 1, . . . , P , j = 1, 2, 3, are angles of the 2D projected mesh. �j

i is the

optimal angle for �j
i in the 2D projected mesh, and is calculated by scaling the original mesh
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Table I. Algorithm 1.1 for parameterization of a surface patch.

(1) Create a bounding box for the 2D projected mesh
(2) Create a uniform overlaid grid mesh inside the bounding box
(3) Laplacian smoothing of the overlaid grid mesh

(3.1) For each edge, e = (na, nb), of the grid mesh, compute its desired length:

l(e) = S(na)+ S(nb)

2

(3.2) Adjust the edge lengths by using Laplacian smoothing on the basis of the
sizing function

(3.2.1) For each interior node, N ,

N̂ =
∑

e=(N,N ′)(1/l(e))N ′∑
e=(N,N ′)(1/l(e))

N ← N̂

(3.2.2) repeat (3.2.1) while max(‖N̂ −N‖2) > tolerance

(3.3) Go back to (3.1) until the length, l(e), or the vertex locations no longer change

angles in 3D proportionally such that the sum of �j
i at each vertex in the 2D mesh equals 2�.

g
(2)
i , g

(3)
k and g

(4)
k are constraints on angles in each triangle, angles at each vertex, and

length consistency of edges contingent to each vertex, respectively. �(2)
i , �(3)

k and �(4)
k are the

corresponding Lagrangian multipliers. Equation (3) can be solved by the Newtonian method in
conjunction with a trust region search strategy. For further details, refer to Reference [74].

The basic objective of Steps 2 and 3 in Algorithm 1 is to construct a 2D parameterization
that minimizes both angular and linear distortions in a projection from a 3D input mesh to
a 2D mesh. This in turn guarantees a uniform distribution of images of knots in the object
space. One algorithm proposed by Sheffer and Sturler [75] is used in this paper. The main
idea of this algorithm is to overlay a uniform grid mesh on top of the projected 2D mesh
as an initial parameterization, and then to apply a Laplacian smoothing on this uniform grid
mesh to reduce the linear distortion caused by the projection to the 2D mesh in using the ABF
algorithm. Consequently, in Step 4 the vertices on the smoothed grid mesh can be grouped to
form a set of knots that have a uniform distribution of their images over the surface patch of
the input mesh. Note that this set of knots represent a parameterization with which Equation
(2) is ready to be applied.

A modified version of the Laplacian smoothing algorithm in Reference [75] is given in
Table I.

In Step 1 of Algorithm 1.1, the size of the bounding box should be larger than the 2D
projected mesh such that at least two extra layers of knots, i.e. vertices of the overlaid grid
mesh in Step 2, are created beyond the boundary of the 2D projected mesh. In this paper, we
let the size of the bounding box be 2.8 and 4.0 times as large as the 2D projected mesh when
n � 4 and n � 3, respectively. Here, n is related to the mesh density defined in Step 2.
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Table II. Algorithm 1.2 for generation of a set of knots.

(1) Initialize the knot set to a null set
(2) Loop over each vertex of the smoothed grid mesh obtained from Algorithm 1.1

(2.1) Get the co-ordinate of the current grid vertex
(2.2) Test if the current grid vertex in one element of the 2D projected surface patch

obtained from Step 1 in Algorithm 1
(2.3) if yes, add the current grid vertex to the knot set

(3) Expand the boundary of the knot set one layer outward by using the node–node con-
nectivity information of the smoothed grid mesh. All the new grid vertices encountered
in this expansion are added into the knot set.

(4) Repeat Step 3 once to add another layer of knots to the knot set

The default mesh density in the direction y is 2n = 25 = 32 in Step 2, while the density in
direction x is the multiplication of 2n and a scaling factor that is dependent upon the ratio of
dimension x to dimension y in the 2D projected mesh. Users have a control over the value of
n to achieve a kind of multiresolution shape optimization. For the details, refer to example 3
in Section 5.

In Step 3.1, na and nb refer to two end vertices of the edge. S( ) is a sizing function. For
each edge, e = (na, nb), S(e) = ‖e2D‖2/‖e3D‖2, in which e2D and e3D refer to the edge e in
the projected 2D mesh and the 3D input mesh, respectively. For each vertex, na , S(na) is the
average of S(e) over all edges that are contingent to na .

Figure 1 illustrates the process of calculating the location of knots for freeform perturbation.
The three-sphere data model in this figure was generously provided by Dr Sheffer at Technion.
Note that the input mesh contains three surface patches that are projected together onto a
plane to show the capability of the ABF algorithm [75]. The tiny dots over the input mesh
in Figure 1(e) represents the images of knots, which have a one-to-one relationship with the
knots, i.e. vertices of the smoothed grid mesh in the parameter space.

In Step 4 of Algorithm 1, the procedures to generate a set of knots in the parameter space
are given in Table II.

Note that a bounding box technique is used to speed up the computation in Step 2.2,
which is similar to the bounding volume technique used commonly in the area of collision
detection. The reason for us to conduct Steps 3 and 4 is due to the fact that we use the cubic
B-spline basis function as a perturbation function such that the radius of an influence zone of
each control point is two knots away from the current reference knot in the parameter space,
as indicated in Equation (2). Since Step 2 catches all the knots that are located within the
boundary of the 2D projected surface patch obtained from Step 1 in Algorithm 1, a two-layer
outward expansion will ensure that the knot set contains all the knots that cover a just-enough
knot domain which supports all the control points that have an active influence on the shape
of the current surface patch. For details, see the proof of Proposition 3 in Section 3.2.

3.2. Freeform perturbation scheme

For each surface patch obtained after applying the surface partitioning in Section 2, if it is
chosen as a patch for freeform shape optimization, procedures of our freeform perturbation
scheme are applied as given in Table III.
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Figure 1. Generation of images of knots over a complex surface of three balls in the object space:
(a) input mesh; (b) 2D projected mesh; (c) uniform grid mesh; (d) smoothed grid mesh; and (e) input

mesh with the images of a set of knots represented by small dots.
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Table III. Algorithm 2 for freeform perturbation.

(1) sort all elements of the 2D projected surface patch on the basis of the location of their
bounding boxes

(2) calculate the nodal surface normal of all vertices on the current surface patch in the
object space

(3) loop over each knot in the knot set, which is determined by Algorithm 1.2, over the
current surface patch

(3.1) find out which element of the current surface patch contains this knot in the
parameter space

(3.2) calculate the nodal surface normal at the image of the current knot in the object
space

(3.3) find out all nearby nodes on the patch w.r.t. the image of the current knot
(3.4) calculate the perturbation of all nearby nodes on the patch w.r.t. the image of the

current knot in the object space
(3.5) all non-zero perturbations in a local neighbourhood of the current knot form a

perturbation vector that corresponds to a shape design variable to be used in a
shape optimization.

A typical reference for Step 1 in Table III is the position of the left lower corner in one
coordinate direction. In Step 2, the nodal surface normal at a vertex on the current surface
patch is an average of surface normal of all surrounding elements on the patch. Since all the
elements of the current surface patch are already sorted in the parameter space in Step 1, it is
relatively easy to complete Step 3.1. If the knot is outside the boundary of the current surface
patch, then find out the nearest element on the current surface patch. In Step 3.2, the normal
is calculated by a linear interpolation (for triangular elements) or bi-linear interpolation (for
quadrilateral elements) of the nodal surface normal at all vertices of the corresponding element
determined in Step 3.1.

We need to find a local neighbourhood for the current knot in Step 3.3, as shown in Figure 2.
Since degree 3 and multiplicity 1 are used in this paper, the influence zone of a control point
is a region centered at the current knot, and is four knots wide in both u and v directions
in the parameter space. Any vertex of the 2D projected surface patch, which is located inside
this influence zone, is considered to be in the neighbourhood of the current knot. Breath-first
search is used to find out these nodes starting from the element determined in Step 3.1.

In Step 3.4, a bi-linear interpolation w.r.t. elements in the smoothed grid mesh is used to
determine the (u, v) values of each nearby vertex of the projected patch. These two values
represent relative parametric co-ordinates with respect to the current knot in directions u and v,
respectively. The perturbation of each nearby vertex on the patch is calculated by multiplying
the nodal surface normal of the image of the current knot in the object space with the B-spline
basis function in Equation (2) in the parameter space.

Note that in Step 3.4 we use the nodal surface normal at the image of the current knot to
determine the perturbation for all nearby vertices on the surface patch. This treatment exactly
follows the spirit of B-spline deformation, as indicated in Equation (4). An alternative treatment
is that nodal surface normal at each nearby vertex is multiplied by the B-spline basis function.
In our opinion, the second treatment may work well with an interactive shape modeling system,
but not in a shape optimization in which we do not want any mixture of perturbation directions
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Figure 2. Local neighbourhood of the current knot in the parameter space.

within a single shape design variable so as to help an optimizer in searching an optimal solution
in a design space.

Our freeform perturbation scheme is supported by the following propositions:

Proposition 1
With an open-ended B-spline surface that contains only simple knots, for any perturbation of
a vertex of its control net (control point), we can find a corresponding perturbation of surface
vertices of this B-spline surface. In addition, this corresponding perturbation follows the pattern
defined by the basis function of the control point.

Proof
The details of this proof can be found in Reference [21]. The key point of this proof is that
we can prove

D(u, v) = C(u, v)+Ni,pNj,qw (4)

where D(u, v) and C(u, v) represent the perturbed and original surfaces, respectively. u and
v are two parameters associated with this surface. Ni,p and Nj,q are B-spline basis functions
in directions u and v, respectively. Both p and q are set to 3 in this paper. w refers to a
perturbation vector applied at control point Pi,j . �
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Figure 3. Two-layer expansion of knot sequence at the boundary of 2D projected mesh. Ni,j

represents a Cox–de Boor basis function.

Proposition 2
If vertices of a surface patch are perturbed on a pattern that follows the basis function of the
corresponding control vertex, the smoothness of the original surface patch is well maintained.

Proof
First assume that the original surface patch is C2 continuous. According to Equation (4), the
surface patch obtained after applying our freeform perturbation scheme, D(u, v), is still C2

continuous, because both p and q are set to 3, and multiplicity of every knot is 1 in this
paper. If the original surface patch is Cm continuous (m > 2), D(u, v) is C2 continuous,
which is normally sufficient for the smoothness requirement of most engineering applications.
We therefore say the smoothness is well preserved in this case. In the cases of m < 2,
the smoothness of the original surface patch is exactly maintained. Overall, our freeform
perturbation scheme well maintains the smoothness of the original surface patch. �

Proposition 3
If vertices of a surface patch are perturbed on a pattern that follows the basis function of
the corresponding control vertex, the partition of unity is valid with respect to the sum of all
perturbations at the interior of the surface patch.

Proof
Note that in this paper we focus on cubic uniform B-spline surfaces with simple knots for
each surface patch. Even though the dimension of the smoothed grid mesh (Algorithm 1.1) is
limited, the knot sequence, which corresponds to this grid mesh, can be imagined as infinite
and as being cut off at the boundary defined by the knot set determined by Algorithm 1.2,
as shown in Figure 3. Under these restrictions, for an arbitrary quadrilateral region on the
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parametric grid mesh, {(u, v)|us � u < us+1, vt � v < vt+1}, we can write

i∑
k=i−3

j∑
l=j−3

Nk,3(u)Nl,3(v)=
i∑

k=i−3

j∑
l=j−3

[
u− uk

uk+3 − uk

Nk,2(u)+ uk+3+1 − u

uk+3+1 − uk+1
Nk+1,2(u)

]

×
[

v − vl

vl+3 − vl

Nl,2(v)+ vl+3+1 − v

vl+3+1 − vl+1
Nl+1,2(v)

]
(5)

Since Ni−3,2(u) = Ni+1,2(u) = Nj−3,2(v) = Nj+1,2(v) = 0, Equation (5) can be rewritten as

i∑
k=i−3

j∑
l=j−3

Nk,3(u)Nl,3(v)

=
i∑

k=i−3+1

j∑
l=j−3+1

[
u− uk

uk+3 − uk

+ uk+3 − u

uk+3 − uk

]
Nk,2(u)

[
v − vl

vl+3 − vl

+ vl+3 − v

vl+3 − vl

]
Nl,2(v)

=
i∑

k=i−2

j∑
l=j−2

Nk,2(u)Nl,2(v) (6)

By repeating the above procedures, we can finally get

i∑
k=i−3

j∑
l=j−3

Nk,3(u)Nl,3(v) =
i∑

k=i−1

j∑
l=j−1

Nk,1(u)Nl,1(v) =
i∑

k=i

j∑
l=j

Nk,0(u)Nl,0(v) = 1

Similarly, even at (ub, vb) that corresponds to the boundary of the 2D projected mesh in
Figure 3, the partition of unity should hold by summing the contributions from all active
control points. �

The partition of unity leads to several salient properties such as convex hull. With these
three propositions, we can perturb the finite element surface nodes in a pattern of the Cox–de
Boor basis function without a need for B-spline representation. This is the main advantage of
our approach.

Since we introduce a two-layer outward expansion of knot sequence or corresponding control
points, the partition of unity still holds at the boundary nodes of surface patches. Therefore,
there is no need for a special treatment and the basis function in Equation (2) is still used.
We rely on the shape optimization process to find a suitable perturbation magnitude for the
perturbation at the boundary.

In order to avoid a possible mesh distortion due to the perturbation of surface nodes on
each patch, the domain nodes close to these surface nodes can be proportionally perturbed.
The image of each knot in the object space has a spherical influence zone with an adjustable
radius that is an input from users, and inside the zone the perturbation becomes effective with
a magnitude that linearly decreases with the distance between the domain node and the image
of the knot. This is a simple scheme that alleviates but cannot eliminate the mesh distortion in
the domain. To guarantee no distortion of the domain mesh, more sophisticated schemes are
needed. The studies by Farhat et al. shed a light in this direction [76, 77]. From the perspective
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of shape optimization, a major disadvantage of using the FEM is a possible severe distortion
of the domain mesh, compared to the BEM or meshless method. A complete solution to the
mesh distortion problem in shape optimizations and general finite element analyses is a future
research topic.

If we need to conduct freeform shape optimization on two adjacent surface patches that
share a sharp edge boundary, no special geometric constraint is imposed in our approach. The
final shape at the boundary is totally dependent upon the result of an optimizer to be used.
Whether or not any geometric constraint is needed is a topic of future work.

4. FREEFORM SHAPE OPTIMIZATION

The freeform shape optimization in this paper is expressed by

minimize f (y) = 1

2
u(y)TK(y)u(y) = 1

2

∫
�

�(y)T�(y) d� = 1

2
u(y)TF (7a)

subject to g(y)− gu � 0 (7b)

yL � y � yu (7c)

where the objective function f (y) is a compliance, i.e. strain energy over a design domain �. If
there are multiple load cases, a weighted compliance is used on the basis of linear combination
of compliance in each load case with a specific weighting factor. u and K are displacement
vector and stiffness matrix, respectively. � and � are strain and stress tensors, respectively.
� refers to the domain occupied by the structure. g(y) represents constraint functions that are
structural responses such as nodal displacements and volume of the structure. Right super-
scripts L and u in Equations (7b) and (7c) refer to lower and upper bounds, respectively. The
perturbation vector approach is used in this paper such that the components of design variable
vector y are related to structure shape by the following formula:

x = x0 +
m∑

i=1
Piyi (8)

where x0 and x refers to the geometric configure of the structure before and after the shape
optimization, respectively, Pi and yi are ith perturbation vector and ith design variable,
respectively. Pi is defined by the basis function in Equation (2) and the nodal surface normal
at the image of each knot. m denotes the number of design variables in vector y.

Note that Equation (7) defines only one category of shape optimization problems. Our
freeform perturbation scheme is not tightly tied to this category. More accurately speaking,
design parameterization and selection of design criteria are independent. Therefore, the technique
introduced in this paper should be also suited in some other problems such as minimization
of frequency response, uniform stress or minimization of stress. Since our approach is surface-
oriented, it is naturally compatible with the BEM and can be easily implemented with the
meshfree or meshless analysis method.
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In this paper, the freeform shape optimization is carried out by using the optimizers available
in OptiStructTM [1], a dual method and a primal feasible directions method that are both based
on the convex linearization of the design space.

5. NUMERICAL EXPERIMENTS

The proposed approach was implemented in VC++ and tested on a Pentium III HP PC. The
surface partitioning algorithm in Section 2 has a time complexity O(n log n), where n =
max(Ne, Nv), Ne and Nv are the numbers of elements and vertices in a mesh M , respectively
[78]. The time complexity for Algorithm 1.1 is O(s2t), where s is the width of the overlaid
grid mesh and t is the iteration number of Laplacian smoothing that is dependent upon the
geometric complexity of each surface patch. Algorithm 1.2 is basically a traversal over the
smoothed grid mesh such that it takes O(s2) time. However, in order to test if each grid vertex
is in one element of the 2D projected surface patch, we need to use a quick sort routine to
sort the 2D projected surface patch on the basis of the bounding box position of each element,
which takes O(Ne log Ne) time. In Algorithm 2, Step 1 takes O(Ne log Ne) time and in the
worst case Step 3 takes O(s2Ne), while the time cost of Step 2 is negligible.

Four practical examples are used to demonstrate the effectiveness of the proposed approach
in the freeform shape optimization of different structures represented by arbitrary polygonal
meshes. Our first example is a control arm that is a typical structure encountered in the structure
design of automobiles, as shown in Figure 4(a). It contains one constant-cross-section beam
(at the rear) and two tapered beams (along the sides). The non-design elements are shown
in dark grey colour and the design elements are in light grey with the total number of hexa
elements = 1730.

Figure 4(b) illustrates the surface partitioning results after removing all non-design elements.
Among all 38 partitioned patches, users have an option to choose certain number of patches for
a freeform shape optimization. We do not want to automate this step, because it will provide
tremendous flexibility to try out different combinations of shape design variables.

In our test, four partitioned surface patches were chosen, each of which corresponded to
a side of the two tapered beams. Figures 4(c) and 4(d) demonstrate a chosen patch and
the image of its corresponding knot set, respectively. The perturbation vectors of all shape
design variables are generated automatically by the proposed approach. The optimized shape
as two smooth I-shaped beams is shown in Figure 4(e). Note that only surface elements are
displayed in Figure 4(e) with the volume elements being omitted. With the external loading and
material volume fixed, the weighted compliance of the entire structure is reduced from 9.7e4
to 8.0e4, which is 17.5% reduction. If we do not use our freeform perturbation scheme and
use the conventional scheme of perturbing each FE node as independent shape design variable,
only 12% reduction in the weighted compliance can be achieved with the same magnitude of
perturbation and external loading. However, this performance improvement is priced at a higher
computation time (4.45 min), compared to 1.35 min in the conventional scheme. Note that both
time costs are measured only in the shape optimization without including the CPU time spent
in surface partitioning (0.12 min) and parameterization (0.075 min) by using our approach.

Even though the conventional approach of perturbing each finite element node has been aban-
doned for over 20 years [24, 79], we use it as a reference to indicate how far the optimization
result can be improved by using our approach, and to show the difference in the smoothness of
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Figure 4. Freeform shape optimization of a control arm (w.c. = 9.7e4 → 8.0e4): (a) original FE
model; (b) surface partitioning; (c) one patch for freeform optimization; (d) images of the knot set;

and (e) optimized shape (I-beam).
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Figure 5. Freeform shape optimization of a simple beam: (a) FE model; (b) optimized cross-section
by our approach; and (c) optimized cross-section by the conventional approach.

resulting surfaces. With complex mesh models, the bottleneck of a shape optimization process
is frequently due to a huge amount of preparation time for B-spline representation, meshing,
remeshing, and coordinating between B-spline and mesh. It is not uncommon for the prepro-
cessing time to take days or weeks to complete, sometime even a year with a complex system
such as an airplane [26, 27]. One main benefit of our approach over the B-spline approach
is that the preprocessing time for a single mesh model can be reduced to the magnitude of
minutes instead of hours or days.

Figure 5(a) shows our second test example, a finite element model of a beam with a total
number of hexa elements = 1000 [21]. Even though this is a very simple example, it does
provide an excellent illustration about the optimized shape as a smooth cross-section. We
choose its two side faces as surface patches for freeform shape optimization. Our approach
is compared with the conventional approach of perturbing each single finite element node, as
illustrated in Figures 5(b) and 5(c). With the same magnitude of perturbation, the objective
function is optimized 7.6% (= (119 − 110)/119) more by using our approach, compared to
the conventional one. However, the conventional scheme takes only 0.65 min to finish, while
our approach needs 3.1 min in the freeform shape optimization alone without counting the
CPU time used in surface partitioning (0.024 min) and parameterization (0.042 min). The
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Figure 6. A curved beam: (a) original FE model; and (b) surface partitioning.

optimized shape produced by our approach tends to be smoother than that generated by the
conventional one, which supports the statement that our approach well maintains the smoothness
of the original surface patches. Unlike the B-spline approach, our approach does not need the
B-spline surface representation as a precondition that may not easily be satisfied in some
engineering applications.

The third test example is a curved beam in Figure 6(a) as a base model with the total
number of elements = 1603. The left end of this beam is constrained, while the right end is
subject to some pressure loads. The surface partitioning of this mesh is shown in Figure 6(b).
Note that two ends of the original model are not shown in Figure 6(b), because they are
non-design elements as a connecting part.

Figures 7 illustrates a side face of this beam and the images of knots associated with this
face with different knot densities, which can be easily controlled by a user input integer n in
Step 2 of Algorithm 1.1, because the knot density is proportional to 2n. The optimized shape
at different knot densities is shown in Figure 8, which indicates that we can achieve a kind
of multiresolution shape optimization by controlling the users’ input integer n. Note that the
‘multiresolution’ herein does not mean a multigrid method for partial differential equations,
and instead stands for a multiresolution shape perturbation that ranges from global to local
deformation.

Table IV shows the results of the multiresolution freeform shape optimization of the curved
beam. Column 2 represents the number of shape design variables associated to a side face of
the beam, while column 3 refers to the CPU time for the freeform shape optimization. The
runtimes for surface partitioning and parameterization are 0.034 min and 0.064 min, respec-
tively. From this table, it is interesting to note that with this beam model, low resolution shape
optimization (n = 3) is less computationally expensive and provides a poorly optimized value
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Figure 7. Multiresolution knot distribution of a side face of the beam in Figure 6 with the density of
knots being proportional to 2n in the parameter space.

Table IV. Multiresolution freeform shape optimization of a curved beam.

No. of shape design CPU time Initial weighted Optimized weighted
n variables (min) compliance compliance

3 22 0.78 241 218
4 79 0.88 241 214
5 156 0.95 241 214
6 384 1.2 241 214

of the objective function (i.e. weighted compliance), while high resolution shape optimization
(n = 4, 5, 6) takes longer computational time but produces a better optimization in terms of
the objective function. However, if we make the distribution of knots over dense, our freeform
shape optimization scheme will be degenerated to the conventional scheme of perturbing each
individual finite element node independently, because the influence zone of each knot in the
parameter space is shrunk to contain only one finite element node or none. As indicated in
Example 2, the conventional scheme provides a poor result of shape optimization with unde-
sirable zigzag surfaces. Furthermore, there is no difference among the resolutions (n = 4, 5, 6)
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Figure 8. Multiresolution optimized shape of the beam in Figure 6.

in terms of the optimized weighted compliance, which suggests that there may exist an op-
timal resolution (n = 4 in this example) with which we can use a relatively low resolution
to achieve a reasonably good optimization of the objective function. How to determine this
optimal resolution for a freeform shape optimization is a subject of future work.

From Figure 8, it can be seen that low-resolution freeform shape optimization provides
a smooth global shape change, while high-resolution shape optimization leads to a smooth
local shape change. Since the density of knot images is entirely independent upon the vertex
density of the polygonal mesh, a wide range of deformation patterns from global to local
deformation can be easily achieved over each surface patch. This is another benefit of our
approach, compared to the B-spline approach.

Figure 9 gives the results of a complex structure with over 90 thousand elements. In Figure
9(a), the images of knots associated to a 3D curved surface patch is displayed in the object
space, while Figure 9(b) shows the optimized shape due to the freeform shape optimization on
this surface patch with a reduction in the weighted compliance from 7.5e4 to 6.9e4. The CPU
time for this freeform shape optimization alone is 40.6 min, while the runtimes for surface
partitioning and parameterization are 1.97 and 0.8 min, respectively.

In this paper, we mathematically prove that our freeform perturbation scheme preserves
the smoothness of original surface patches, but fail to prove why our scheme can achieve
better performance than the conventional one in terms of the optimized value of the objective
function. A possible explanation is due to the incapability of the optimization algorithm to find
the optimum or the non-convexity of the optimization problem.
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Figure 9. Freeform shape optimization of a curved connector (weighted compliance = 7.5e4→ 6.9e4):
(a) images of the knot set in the object space; and (b) optimized shape.

The topography method in OptistructTM [8] can be used as a way to perform freeform
shape optimization. However, the basic perturbation function is a piecewise C1 continuous line
segments, as shown in Figure 10. Overall, that method can guarantee only C0 continuity over
each surface patch, which is definitely not sufficient for some engineering problems. Without
the preservation of smoothness over each surface patch, a freeform shape optimization becomes
less meaningful in some cases.

We implement our algorithms in such a way that users have flexibility to decide which
surface patch, after the surface partitioning, is subject to freeform optimization.
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Figure 10. A basic perturbation function of topography method in OptiStructTM.

Constraints on the shape modifications are an important issue in engineering designs. In this
paper, only the surface smoothness is imposed in our freeform shape optimization scheme, which
may not be enough in many cases. In order to impose a regular set of design and manufacturing
constraints in a shape optimization process, the authors have completed a study on feature
recognition on finite element meshes [78], and the design and manufacture features will be
considered as meaningful engineering constraints in a so-called feature-based optimization. The
combination of freeform optimization with feature-based and parametric optimizations is under
the investigation.

6. CONCLUDING REMARKS

In this paper, we propose a new scheme for freeform shape optimization on arbitrary polygonal
meshes. Compared to the B-spline approach, one main advantage of our approach is to reduce
the preparation time for shape optimization to the magnitude of minutes instead of hours or
days. Another benefit is a wide range of perturbation patterns from global to local deformation in
a multi-resolution manner without a need for remeshing. In comparison with the conventional
method of perturbing each individual finite element node, our approach produces a better
optimization result at a price of higher computation cost.
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