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INTRODUCTION

First, let me express the honor I feel at being chosen
this year’s recipient of the Colonel Harlan D. Sanders
Award of the March of Dimes Birth Defects Founda-
tion. Looking at the list of past recipients, I would have
to say that it has quickly become one of the most dis-
tinguished awards in the field of medical genetics, and
I am delighted to be this year’s awardee. The notifica-
tion of the award carried with it the statement that it
was customary in the acceptance talk to make some
brief reference to the accomplishments for which the
recipient was being recognized. But knowing that I was
to be introduced by John Opitz, I found myself in some-
thing of a quandary. John is so thorough and so ency-
clopedic when the history of human genetics and its
players are the subject, that I feared he would not leave
me a great deal of running room for my own little talk.
I might say, John has just lived up to my every expec-
tation. But you know what, I think I have outfoxed
John. I've chosen to talk briefly about some very recent
developments, some unpublished, which illustrate not
only how serendipity enters into our research lives but
as well the unexpected twists and turns in the pursuit
of a scientific problem.

Actually, although most of the developments I will
discuss are quite recent, the initial step in these devel-
opments was taken in 1969. At that time, I was in my
Amerindian phase, concerned with a largish multidis-
ciplinary study on the American Indian. This involved
numerous trips into the tropical rain forests of Central
and northern South America, to work among some of
the least acculturated of the surviving Amerindian
tribes. Each of our expeditions had a slightly different
agenda. For the expedition of 1969, Arthur Bloom, then
the cytogeneticist of our department, agreed to do cy-
togenetic studies if we would collect the proper blood
samples. As you all know, roughly one percent of the
cultured lymphocytes of members of industrialized
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populations exhibit gross chromosomal damage. It was
our expectation that these clean-living Amerindians,
far from the pollutants that characterize our society,
would be found to exhibit a much lower frequency of
chromosomal damage.

For the subjects of our cytogenetic study, we chose
the Yanomama, then one of the more isolated and least
acculturated of all the tribes of South America. But
because there were already some contacts with this
tribe, especially about its periphery, we chose to do our
sampling in their heartland, the Parima Mountain
Range, on the boundary between Venezuela and Brazil.
This was possible because in one part of the range the
tropical rain forest gives way to an undulating piece of
savannah on which a small plane, careful to avoid the
termite mounds, can land. The commitment of the very
skilled pilots of the Mission Aviation Fellowship in-
cluded servicing a very small Unevangelized Tribes
Mission in that area, and Paul Johnson, the pilot for
the Upper Orinoco region, agreed to try to put us down
near a cluster of Yanomama villages. Since I'm talking
to you today, he was obviously successful, and the team
spent a busy 10 days on location collecting, among
other activities, the blood samples for cytogenetic stud-
ies.

THE DISCOVERY OF “ROGUE CELLS”

To our surprise, back in the laboratory, 23 among a
total of 4,969 cells scored showed a picture of extreme
cytogenetic damage [Bloom et al., 1970]. We later
termed these abnormal cells “rogue cells,” now arbi-
trarily defined as cells containing five or more ex-
change-type aberrations for which precise karyotypic
identification of the origin of the aberrant chromo-
somes was usually impossible [Awa and Neel, 1986].
No such cells were observed among 2,575 cultured lym-
phocytes from a second tribe studied at the same time,
the Piaroa [Bloom et al., 1970]. In 1970, we attempted
to repeat this observation in two additional Yanomama
villages, with limited success (two rogue cells among
5,654 cells scored) [Bloom et al., 1973]. Accordingly, in
1971, we returned to one of the two Yanomama villages
studied earlier. This time, only one among 4,917 cells
scored was a rogue cell [Bloom et al., 1973]. I can as-
sure you that at this point, there was considerable
skepticism among our colleagues concerning the valid-



ity of our observation. However, within the next decade
similar cells were reported in cytogenetic studies of se-
lected populations in England, Japan, and the former
Soviet Union [Awa and Neel, 1986; Bochkov and
Katosova, 1994; Fox et al., 1984; Lazutka, 1996; Neel et
al., 1992; Salomaa et al., 1997; Scheid et al., 1993;
Sevan’kaev et al., 1993; Tawn et al., 1985; Verschaeve
et al., 1993] albeit, with one exception [Neel et al.,
1992], never with a frequency approaching the original
observation.

LINKING ROGUE CELLS TO THE JC VIRUS

We have returned to the problem of the nature and
cause of these cells in a serious way in the past half-
dozen years. Because the simian polyoma virus 40
(SV40) had been shown to produce similar cytogenetic
damage in cultured human fibroblasts [Nichols et al.,
1985; Ray and Kraemer, 1993; Ray et al., 1990, 1992;
Stewart and Bacchetti, 1991], the possible role in this
phenomenon of two well-known human polyoma vi-
ruses, the JC virus (JCV) and the BK virus (BKV), was
investigated [Neel et al., 1996]. In a collaboration with
Drs. Eugene Major and Thomas Glover, it was demon-
strated that antibody titers against these two viruses
were significantly elevated in persons in whom rogue
cells were detected, the anti-JCV titers more so than
the anti-BKV titers. Furthermore, inoculation of cul-
tured human fetal brain cells with JCV produced chro-
mosomal damage in the early post-inoculation cell di-
visions similar to that produced by SV40 in the early
divisions of inoculated cultured human fibroblasts.
(JCV has been demonstrated to be the agent respon-
sible for the progressive multi-focal leucoencephalopa-
thy of the acquired immunodeficiency syndrome
(AIDS), and cultured human fetal brain cells were em-
ployed in this study because this preparation is cur-
rently the substrate of choice in the culture of JCV.) On
the basis of these observations, we hypothesize that a
newly acquired infection with JCV (or, less likely,
BKYV) or a flare-up of an existing infection, was at least
one cause of the appearance of rogue cells in the pe-
ripheral circulation [Neel et al., 1996]. (Throughout the
rest of this presentation, whenever I postulate effects
for JCV, those effects, for all that is known, usually
might equally well be characteristic of BKV.)

ROGUE CELLS AND “SIMPLE”
CHROMOSOME DAMAGE

The typical rogue cell is chromosomally so complexly
damaged that it could not be expected to complete a
successful mitotic cell division very often. Most rogue
cells must be essentially dead-end cells. However, from
the first we have been interested in the possibility that
“simple” chromosome damage was also elevated in the
lymphocytes of persons exhibiting rogue cells. Such
simple damage consists of stable translocations and in-
versions, and unstable multicentric chromosomes, free
fragments, centric and acentric rings, and double min-
utes, and when observed usually involves only one or
two chromosomes per cell. There are extensive reports
of such simple stable chromosomal rearrangements re-
sulting in clones that play a significant role in onco-
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genesis [reviews in Heim and Mitelman, 1995; Rowley,
1996; Sandberg, 1990]. In our own past studies, the
evidence that an elevation of this baseline might be
characteristic of persons exhibiting rogue cells has
been somewhat erratic. Thus, in the original Yano-
mama study, 4.10 + 0.28% of all non-rogue cells scored
(200 in 4,875 cells) showed simple damage of the types
enumerated, whereas in follow-up studies in one of the
same villages 2 years later, when the frequency of
rogue cells had fallen to 0.01% (one in 9,849 cells), the
corresponding percentage was 1.30 + 0.13% (128 in
9,849 cells) [Bloom et al., 1970, 1973]. Although this
difference is highly significant (x> = 117.62, P (one-
tailed) <0.0001), the validity of the comparison is di-
minished by the 2-year interval between the observa-
tions. Among the eight persons exhibiting rogue cells in
a Ukrainian village, the frequency of simple damage
was 1.52 = 0.30% (24 among, 1,580 cells scored),
whereas in the 16 persons not found to exhibit rogue
cells, the corresponding figure was 1.03 + 0.18% (33 of
3,200 cells scored) (x2 = 2.14, P (one-tailed) = 0.095)
[Neel et al., 1992]. Most recently, with the collabora-
tion of Dr. A.A. Awa, we have re-examined the data
from a study on Japanese residing in Hiroshima, whose
original objective was to determine the cytogenetic ef-
fects of the atomic bombs [Awa et al., 1971, 1978, 1987].
Among a total of 1,835 persons examined, there were
45 exhibiting one or more rogue cells. A total of 179,599
cells was scored for simple chromosomal damage. In
the exposed and the control populations, there was an
absolute increase of approximately 1.5% in the fre-
quency of simple chromosomal damage in those per-
sons exhibiting rogue cells when compared with the
frequencies observed in those not exhibiting rogue
cells, a statistically quite significant difference [Neel,
1998].

Two observations by other groups are important in
this respect. From the various studies of Tawn and
associates on English persons [Tawn, 1987; Tawn and
Binks, 1989; Tawn et al., 1985], one can conclude that
in the control individuals in their series, the frequency
of cells with asymmetrical exchange-type aberrations
(i.e., dicentrics and centric rings) was 12 in 1,141 non-
rogue cells in individuals in whom rogue cells were
observed (three persons), but 25 in 16,550 in individu-
als in whom rogue cells were not observed (114 per-
sons) (x2 = 41.4,d.f. = 1, P <0.001). Lazutka [1996], in
a study of chromosome aberrations in persons residing
in Lithuania who had been involved in the Chernobyl
clean-up operation, plus suitable controls, found that
for the total sample, the frequency of simple damage
(dicentrics, rings, translocations, inversions, and chro-
matid breaks) was 3.57 + 0.39% in the 31 persons ex-
hibiting rogue cells but 3.40 + 0.16% in the 179 persons
in whom rogue cells were not observed, the difference
clearly non-significant but in the same direction as in
the other studies. The relatively high frequency of cells
with damage in both groups reflects the radiation ex-
posures sustained by the clean-up workers. Consider-
ing the consistency of the finding, and its magnitude in
some populations, we conclude that simple chromosom-
al damage is increased in the non-rogue cells of persons
exhibiting rogue cells. In this connection, I note that
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the so-called big T antigen produced by JCV has high
homology with the big T antigen of SV40, and the latter
is well known to function as a helicase [reviewed in
Fanning and Knippers, 1992]. Thus, there is an estab-
lished basis for the postulated clastogenic effects of
JCV.

THE FREQUENCY AND GEOGRAPHY OF JCV
AND BKV INFECTION

Numerous studies have shown that in urbanized, in-
dustrialized populations, significant hemagglutination
antibody titers to JCV and BKV (titers =1/40) are ob-
served in some 80% of all adults [reviewed in Walker
and Frisque, 1986]. In contrast, in isolated and unac-
culturated populations, as of Amerindians, the fre-
quency of seropositives is much lower, in some tribes
being zero [Brown et al., 1975; Candeias et al., 1977].
Among the Yanomama, in whom we first detected
rogue cells, the frequency of positives was 29.5% in a
sample of Indians with an estimated average age of
about 20 years, whereas in a sample of young, urban
Japanese, average age 23.9 + 4.5 years, the frequency
of positives was 62.0%. The frequency of positive re-
sponders appears lower in the least acculturated South
American Indians as compared with the most accultur-
ated (E.O. Major and J.V. Neel, unpublished manu-
script), and it may be that the relatively high frequency
of rogue cells encountered in the Yanomama reflects
the impact of viral activity on a relatively virgin popu-
lation.

EPIDEMIOLOGY AND LIFE HISTORY OF JCV

The epidemiology of JCV is still very poorly under-
stood. On the basis of the sequencing of a 610-bp se-
quence from the VT-intergenic regions of the virus,
JCV can be subdivided into nine major subtypes and
many more minor types [Sugimoto et al., 1997]. Com-
paring these types in parents and children, Kitamura
et al. [1994] and Kunitake et al. [1995] conclude that in
Japan, viral transmission is from parent to child in
approximately half of the infections, the other half of
the infections usually originating outside the nuclear
family. From the failure to detect the JCV subtypes
that comprise the majority of infection in Americans in
Okinawans born during the occupation of Okinawa by
U.S. troops, Kato et al. [1997] conclude that JCV “is
rarely transmitted between human populations.” (I
would modify “rarely” to “not easily,” since the condi-
tions on Okinawa were certainly not those character-
izing an integrated population.) The symptomatology,
if any, that accompanies the acquisition of seropositiv-
ity is unknown.

There is evidence that the type of JCV one contracts
in youth tends to persist throughout life [Kunitake et
al., 1995]. There is also reason to believe that a latent
infection may periodically, throughout life, become ac-
tive, much as is the case for the herpes virus. For in-
stance, we have observed in Japanese subjects rogue
cells with equal frequencies in a group of adults and
their children [Neel, 1998], and anti-JCV titers were

quite similar in the older and younger subjects studied
in Japan [Neel et al., 1996].

TISSUE DISTRIBUTION OF THE VIRUSES

Systematic studies of the tissue distribution of the
viruses are only now being undertaken. Up to the
present time, the presence of the virus in at least four
cell/tissue/organ systems seems to have been estab-
lished. First, the human cell best known for its sensi-
tivity to JCV infection is the oligodendrocyte, viral ac-
tivity in which results in the progressive multifocal
leukoencephalopathy (PML) encountered in the immu-
nosuppressed, especially those with AIDS. In such pa-
tients, viral DNA can also be demonstrated in bone
marrow, liver, spleen, and lung [Grinnel et al., 1983].
Recently, Rencic et al. [1996] have described the pres-
ence of JCV DNA in an oligoastrocytoma from an im-
munocompetent person. Second, the presence of viral
DNA in the circulating lymphocytes of AIDS patients
with PML and in HIV-positive persons without AIDS is
well established, and JCV DNA has been demonstrated
by the polymerase chain reaction (PCR) techniques in a
small fraction of the lymphocytes of apparently normal
persons as well as in hematopoietic stem cells [Torna-
tore et al., 1992]. It is presumably some fraction of this
small fraction of the lymphocytes in which activation of
the virus results in the rogue cells we have described.
Third, Coleman et al. [1980] first detected viral DNA in
the urine of some 2% of pregnant English women, this
finding presumably reflecting the mild immunosup-
pression that occurs in pregnancy. However, in Japan,
with a similar frequency of JCV seropositives, virus
was even more frequently detected in the urine of non-
immunosuppressed individuals, the fraction JC-
positive increasing from five in 38 (13.2%) in the 0 to 29
age group to 20 in 44 (45.5%) in the age interval 60 to
89 [Kitamura et al., 1990]. JC sequences were subse-
quently recovered from the normal renal medulla of
40.6% (13/32) of individuals undergoing surgery for re-
nal cancer [Tominaga et al., 1992]. Whether the virus is
normally resident in renal cellular tissue, or whether
its presence in urine and renal medulla is the result of
contamination of the kidney by virus-bearing lympho-
cytoid cells, is not yet clear. Fourth and finally, Dr.
Richard Boland’s group has recently reported the pres-
ence of JCV DNA in normal and abnormal colon cells
[Laghi et al., 1996]. DNA was isolated from 37 resected
colon cancers and matched normal tissues and exam-
ined for the presence of three JCV T antigen sequences
by the PCR technique. Sequences were found in 73% of
normal samples and 97% of colon cancers. That this
viral presence is not (always) due to transitory cells of
the lymphocytoid line is strongly suggested by the fact
that viral fragments were detected in five of ten colon
cancer xenografts. A systematic study of the presence
of JCV DNA in other tissues is clearly in order.

JCV AND ONCOGENESIS

So now in concluding let me try to weave these ob-
servations, together with those of several other inves-



tigators, into a consistent hypothesis. What I have to
say is highly influenced by the extensive studies on
SV40, whose DNA structure is highly homologous to
that of JCV and BKV. I suggest that JCV (and perhaps
BKYV) may be important players in human oncogenesis.
This possibility was raised shortly after the two viruses
were discovered, largely on the basis of the homology
of the virus with SV40, but has not been pursued
vigorously in recent years [references in Walker and
Frisque, 1986]. These recent data on cytogenetic effects
force a reconsideration of that hypothesis. I postulate
that in many tissues of the body—the exact tissue dis-
tribution yet to be established—the presence of the vi-
rus is sporadically associated with the generation of
both simple and complex chromosomal damage. So far
as is known, this damage is at random. The damage is
a low-frequency event, but given episodic activity of the
virus in the millions of cells of an infected tissue, there
will during an individual’s lifetime be thousands and
thousands of damaged cells in any tissue. Many of the
cells with simple damage, and most rogue cells, will
undoubtedly be quickly lost. However, it just requires
one translocation of the correct type to play a role in a
clonal malignancy. The argument is that JCV (and pos-
sibly BKV) are the “machines” that drive some (consid-
erable?) fraction of the chromosomal damage that char-
acterizes so many malignancies. If we may argue by
analogy with the clastogenic effects of ionizing radia-
tion, the lag period between the initial chromosomal
insult and the diagnosis of a malignancy may require
some 20 to 30 years [Schull and Weiss, 1992]. This long
lag period, coupled with the probability of periodic viral
activity, presents serious problems in establishing epi-
demiological relationships.

Thus far this presentation has emphasized the clas-
togenic possibilities of infection with the human poly-
oma viruses, presumably primarily through helicase
activity on the part of the large T antigen, as docu-
mented for the large T antigen produced by SV40 [re-
viewed in Shah, 1996; Walker and Frisque, 1986].
However, the T antigen of SV40 has also been shown to
complex with no less than seven proteins in host hu-
man cells, including two proteins playing key roles in
oncogenesis, namely, p53 and the pRb family of pro-
teins [reviewed in Fanning and Knippers, 1992]. The
highly homologous T antigen of BKV has also been
shown to react with both p53 and the pRb family of
proteins as well as several other cellular proteins [ref-
erences in Dyson et al., 1990; Harris et al., 1996]. Al-
though studies of JCV T antigen have not been as nu-
merous, recent experiments are demonstrating in the
JCV T antigen functional domains similar to those in
BKV T antigen (and SV40 T antigen) [references in
Major et al., 1992; Swenson et al., 1996]. Because of the
key role of p53 and the pRb family of proteins in onco-
genesis in general [reviewed in Vogelstein and Kinzler,
1998], it seems to be assumed this complexing might
play a role in oncogenesis. However, to be effective in
oncogenesis, these complexes would seem to have so to
tie up those key proteins that, in effect, functional nulls
are created, that have to be recreated each cell genera-
tion. While this possibility cannot be denied, I put my
primary money on the clastogenic potential of this vi-
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rus, since the critical translocation, deletion, or dupli-
cation need happen only once and then is indefinitely
propagated.

In closing, I thank you again for the honor, and the
accompanying opportunity to tell this little story about
how one unexpected observation can lead to another
and still another, a surprising and exhilarating se-
quence of events, until finally one has a full-blown hy-
pothesis. Let me be very careful—I did not claim to
have found the cancer virus, but only one possible
player in the complex of events that constitute onco-
genesis. I also want to recognize how difficult it will be
to establish this hypothesis in a way that will satisfy
Koch’s postulates but suggest that the techniques of
molecular genetics have much to offer in the future.
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