We present a patient with microcephaly, jejunal atresia, aberrant right tracheobronchial tree, mild left blepharoptosis and corectopia (irregular pupil), and XY sex reversal. This combination of malformations, similar to intestinal atresia—ocular anomalies—microcephaly syndrome is unique in its association with sex reversal.

INTRODUCTION

Sex reversal, characterized by a genetic sex that does not correspond to the phenotypic sex, is a compelling abnormality of human development. Both male to female reversal in XY individuals and female to male reversal in XX individuals occurs [McElreavey and Fellous, 1999; Vaiman and Pailhoux, 2000]. Sex reversal is often recognized in females who fail to undergo normal pubertal development and in children who are being evaluated for other malformations. Several mechanisms of sex reversal are known although the basis for isolated XY sex reversal is found in only 15% of patients [McElreavy et al., 1992].

Congenital microcephaly is defined as a birth head circumference of two or more standard deviations (SD) below the mean [Dobyns, 2002]. In patients with primary microcephaly (microcephaly in the absence of other anomalies), at least six genetic loci have been mapped over the past several years [Jackson et al., 1998; Jamieson et al., 1999; Roberts et al., 1999; Shrimpton et al., 1999; Jamieson et al., 2000; Moynihan et al., 2000; Pattison et al., 2000; Shrimpton et al., 2000].

Atresia of the small bowel presents in the neonatal period with bilious vomiting and abdominal distention, with distended loops of bowel seen on plain films. Simple intestinal atresias are generally thought to result from intrauterine vascular insults. Little has been written on the genetics of intestinal atresias. However, the syndrome of apple-peel jejunal atresia, microcephaly, and ocular anomalies (MIM#243605) has been reported in at least four patients [Stromme et al., 1993; Slee and Goldblatt, 1996; Stromme and Andersen, 1997; Celli et al., 2000].

We present a patient with microcephaly, jejunal atresia, aberrant right bronchus, mild left blepharoptosis and corectopia (irregular pupil), and XY sex reversal. This combination of malformations, similar to intestinal atresia—ocular anomalies and microcephaly syndrome is unique in its association with sex reversal.
MATERIALS AND METHODS

Patient Material

These studies were approved by the Institutional Review Board at each institution. After informed consent, a venous blood sample was obtained from the patient for lymphocyte immortalization and for genomic DNA preparation and analysis. Genomic DNA was prepared by standard methods.

SRY and SOX9 Sequencing

SRY was sequenced using the following primers:

- SRY-5' (amplifying the 5'-region of SRY),
- forward: gtt gag ggc gaa atg caag,
- reverse: aca tag gca ggc tca ctt ctgg.
- SRY-3' (amplifying the 3'-region of SRY),
- forward: cgc att cat cgt gtc tcg,
- reverse: agc tgg tgc tcc att ctt gag.

SOX9 was sequenced according to Kwok et al. [1995].

WNT4 Gene Dosage

Fluorescent in situ hybridization was performed on the patient’s lymphocytes using a P1 clone containing the entire human WNT4 gene, described in Jordan et al. [2001].

Androgen Receptor (AR) Deletion Analysis

PCR primers corresponding to the sequence tagged sites (STSs) DXS7498, AR (exon 4) and AR 3'-UTR [Schueler et al., 2000] were used to amplify genomic DNA from the patient using standard PCR conditions. All STSs were on the X chromosome in the region of the AR, allowing a deletion to be easily detected in an XY individual. Genomic DNA from an unrelated, normal male was used as a positive control.

Array-Comparative Genomic Hybridization (Array-CGH)

Patient genomic DNA (test-DNA) and reference genomic DNA (a sample with no known chromosomal abnormality) were digested, labeled, and hybridized to human bacterial artificial chromosome (BAC) array 3 megabase (MB) (Spectral Genomics™, Houston, TX) containing 1,003 non-overlapping BAC and PAC clones spotted in duplicate. These microarrays provide an average of 3 MB resolution for detection of chromosomal imbalances throughout the genome. Hybridization methods and microarray analysis were performed as described [Gunn et al., 2003].

CASE SUMMARY AND RESULTS

This female infant was conceived by non-consanguinous, normoecephalic parents. A prenatal ultrasound showed an abdominal bubble consistent with a possible intestinal atresia and poor head growth. An amniocentesis was not performed. The pregnancy was complicated by premature labor at 27 weeks and was treated with bed rest. There was progression of labor at 32 weeks gestation, and the patient was born by spontaneous vaginal delivery. The birth weight was 1.58 kg. The pediatric genetics service was consulted secondary to jejunal atresia and microcephaly. At that time, her weight was 1.58 kg (50%). Her length was 43 cm (50–75%), and her head circumference was 25 cm (greater than –3 SD). Her head was oxycephalic, with a flat occiput. Anterior and posterior fontanels were open. Her facial features and the remainder of the physical examination were normal. A slightly prominent clitoris was noted, although it was within the normal range for a 32-week infant. A blood karyotype at the 550-band level revealed 46,XY. Endocrinologic evaluation revealed testosterone and dihydrotestosterone (DHT) levels of 51 and 12 ng/dl, respectively, at age 17 days. Repeat levels at age 22 days revealed increasing levels of testosterone (133 ng/dl) and DHT (31 ng/dl), reflective of the normal pattern seen in male infants during the first few months of life. Androstenedione (114 ng/dl), cortisol (14 μg/dl), dehydroepiandrosterone (DHEA) (337 ng/dl), 17-OH pregnenolone (426 ng/dl), and 17-OH progesterone (65 ng/dl) were all within normal limits at age 17 days. Jejunal atresia was repaired in the neonatal period by excision of the atretic segment and end-to-end anastomosis. Pathology showed histologic changes consistent with a jejunal web. An abdominal ultrasound failed to visualize a uterus, ovaries, or testes; a small fluid-filled mass was noted in the retrovesicular area. A voiding cystourethrogram showed a normal female urethra and a blind vaginal pouch. A pelvic MRI showed a fluid-filled cyst, which was thought to be a müllerian remnant, and a primitive gonad was visualized on the left side. Kidneys were normal.

The patient was again evaluated at the age of 7 months (corrected gestational age of 5 months). At that time, she was rolling from back to stomach, sitting unassisted for a few seconds, transferring objects, smiling, laughing, and cooing. She remained microcephalic with a head circumference of 36.2 cm (greater than –4 SD). Her physical examination showed oxycephaly and a flat occiput. Her anterior fontanelle was open. She had left ptosis and a small capillary hemangioma near the right eyebrow. Genital exam showed moderate clitoromegaly. No gonads were palpated. The remainder of the examination was normal. She was also evaluated at 7 months of age by a pediatric ophthalmologist for possible ptosis and was diagnosed with mild left blepharoptosis and left corectopia (irregularity of the pupil), both of which were not visually medically significant. A head CT with bone windows showed open cranial sutures, persistently open Sylvian fissures, foreshortened frontal lobes, and a simplified gyral pattern consisting of abnormally shallow sulci with reduced number of gyri. The corpus callosum, brainstem, and cerebellum appeared normal. A prometaphase blood karyotype at the 750–850 band level was normal. A 7-dehydrocholesterol level was normal.

Psychometric testing at the prematurity-corrected age of 13 months using the Bayley scales of infant development revealed a mental development index of...
82 and a psychomotor development index of 70, both measures within the mildly delayed range.

At age 18 months, she underwent bilateral gonadectomy. Intraoperatively, gonads were identified at the internal ring of the inguinal canal bilaterally; there was no evidence of a uterus or other Müllerian structures. Histological examination revealed normal-appearing testis; there was no evidence of ovarian tissue or fallopian tube structures.

Between ages 18 and 30 months, she was hospitalized three times for pneumonia requiring IV antibiotics. A work-up for gastroesophageal reflux disease, including a standard barium contrast-enhanced upper GI series and pH probe, was normal. A bronchoscopy subsequently revealed aberrant right bronchial anatomy, in which the tracheobronchus to the right-upper lobe was shown to arise above the carina.

Upon evaluation at age 39 months, she had severe allergies to many foods, including nuts, fish, and eggs, among others. Developmentally, she was able to move up and down stairs using one leg at a time. She could run, throw, or kick a ball and climb a ladder on the playground. She could feed herself, drink from a cup, place pegs in holes, and thread a necklace. She was easily distracted and had difficulty with two-command sequencing. She could speak in short sentences and ask questions. She was described as very sociable, particularly with adults she does not know. Her height was 86.5 cm (<5%), weight 10.2 kg (<5%), and head circumference was 41.2 cm (>5 SD) (Fig. 1). On ophthalmology exam at this age she had a normal right anterior segment. The left eye had sectoral iris stromal hypoplasia associated with a peripheral anterior synchia, and there was a focal area of stromal edema in the cornea adjacent to the limbus, overlying the peripheral anterior synchia. MRI of the head at this age (Fig. 2) revealed no ventricular hydrocephalus, and findings were consistent with the prior CT scan.

Prior to our discovery of normal testicular tissue at surgery, we initiated studies to identify the presumed disrupted step in the sexual determination or differentiation pathways. No mutations were found in the SRY or SOX9 genes, and the WNT4 gene was not duplicated as assessed by fluorescence in situ hybridization. After discovery of normal testis tissue, we hypothesized that a deletion or rearrangement involving the AR gene might explain her phenotype. PCR analysis using short tandem repeat markers from Xq revealed that the region of the X chromosome containing and flanking the AR gene was not deleted. Finally, as a test of the results of our standard chromosome analyses, we carried out a comparison of gene dosage using array comparative genomic hybridization. Array-CGH analysis of the patient’s DNA to BAC microarrays did not reveal any alteration across the genome using an array with a resolution of approximately one BAC/PAC clone every 3 MB (data not shown).

DISCUSSION

This report describes a patient with XY sex reversal in addition to jejunal atresia, aberrant tracheobronchial tree, microcephaly, and psychomotor development in the mildly delayed range. This patient has normal female external genitalia with the exception of mild clitoromegaly, a blind vaginal pouch, no Müllerian structures, and testicular gonadal histology.

The absence of Müllerian structures points to normal function of steroidogenic factor-1, Müllerian inhibiting substance (MIS) and the MIS-receptor [Warne and Zajac, 1998]. The presence of testicular tissue and normal testosterone and DHT level places the defect in the sexual differentiation pathway possibly downstream of the AR [Warne and Zajac, 1998]. It is not surprising that SRY and SOX9 sequences were normal given the presence of testicular tissue and the unique phenotype. Deletions and duplications of other portions of the human genome have been found to be associated with 46,XY sex reversal [Bennett et al., 1993; Wilkie et al., 1993; Bardon et al., 1994; Wicaksono et al., 1996; McDonald et al., 1997; Jordan et al., 2001]. Chromosome 1p32 or Xp21.3 duplication, and 9p24 or 10q26 deletions associated with sex reversal are typically large
...abnormally short frontal lobes and simplified gyral pattern. While several coactivators of AR have been possibly in a downstream target gene or a coactivator the defect in our patient is downstream of the AR, exclude this possibility. An intriguing possibility is that allele. Evaluation of 5-alpha reductase activity could be explained by a deletion of one allele containing the 5-alpha reductase type II gene disrupting additional genes in combination with a point mutation on the other allele. Evaluation of 5-alpha reductase activity could exclude this possibility. An intriguing possibility is that the defect in our patient is downstream of the AR, possibly in a downstream target gene or a coactivator of AR. While several coactivators of AR have been described [Heinlein and Chang, 2002], very few downstream target genes of AR have been identified [Nitsche and Hiort, 2000]. At least six genetic loci for primary autosomal recessive microcephaly have been mapped within the past few years [Jackson et al., 1998; Jamieson et al., 1999; Roberts et al., 1999; Shrimpton et al., 1999; Jamieson et al., 2000; Moynihan et al., 2000; Pattison et al., 2000; Shrimpton et al., 2000]. An additional locus for congenital microcephaly and 2-ketoglutaric aciduria in Amish children was recently mapped by Kelley et al. [2002]. Our patient’s MRI findings are consistent with microcephaly with simplified gyral pattern, the phenotype described previously in a series of children with severe primary congenital microcephaly [Barkovich et al., 1998]. In addition, our patient had only mild developmental delays, similar to Group 1 in that study [Barkovich et al., 1998]. Whether this phenotype corresponds to that of the children in which the mapping studies were performed remains to be determined. Nevertheless, we have not excluded the possibility that our patient has a contiguous gene defect that encompasses one of these previously mapped loci.

Children with ARX mutations have X-linked lissencephaly, agenesis of the corpus callosum, enlarged ventricles, and ambiguous genitalia (XLAG) [Dobyns et al., 1999; Bienvenu et al., 2002; Kitamura et al., 2002; Stromme et al., 2002] The cortex is thick, the head circumference is usually normal or mildly small, and all patients have severe seizures. All ARX null mutations have a very severe XLAG phenotype. Children with other mutations have a heterogeneous brain phenotype with mental retardation, severe seizures (most often infantile spasms), and dystonia. None have jejunal atresia or aberrant tracheobronchial anatomy. Thus, despite the compelling combination of simplified gyral pattern and sex reversal of our patient, it is unlikely that ARX is abnormal in our patient. Indeed, a gross deletion of the ARX locus in our patient was ruled out by successful ARX-specific PCR (data not shown).

There are few syndromes that incorporate jejunal atresia. Two syndromes deserve discussion. Feingold syndrome (MIM#164280) incorporates tracheoesophageal fistula, microcephaly and small palpebral fissures, duodenal atresia, and digital anomalies [Feingold, 1975; Innis et al., 1999; references therein]. It has been mapped to 2p23-p24 [Celi et al., 2000]. Although Feingold syndrome does not involve the jejunum, the proximal intestinal, cranial, and tracheoesophageal triad is compelling in light of the anomalies in our patient. Our patient did not have digital anomalies, which makes Feingold syndrome less likely.

Reports describing only four patients with apple-peel jejunal atresia, severe microcephaly, and ocular anomalies (MIM#243605) may represent a closer phenotypic overlap with our patient. This syndrome is associated with a normal karyotype and variable mental function [Stromme et al., 1993; Slee and Goldblatt, 1996; Stromme and Andersen, 1997; Bellini et al., 2002]. Stromme et al. [1993] reported two sisters with the condition. In the older sister, ocular anomalies of the right eye included microphthalmia and microcornea.
with corneal clouding without a clear corneoscleral limbus, a shallow anterior chamber, epicantus, eso-
tropia, and an irregular, dilated pupil. The left eye was
normal. The younger affected sister had, in the left eye
at 2 weeks of age, a corneal opacity that extended from
the sclera into the upper nasal quadrant of the cornea.
She also had epicanthal folds bilaterally. CT scan was
reported normal in both girls. In the sporadic, male child
reported by Slee and Goldblatt (1996), head CT scans at
8 weeks and 9 months of age revealed normal brain
architecture, but the patient developed hydrocephalus
by 9 months. His ocular abnormalities were bilateral
and primarily affected the anterior chamber. Problems
identified included marked, diffuse corneal clouding
and vascularization, particularly peripherally, a very rudi-
mentary right eye, and no apparent anterior chamber
of the left eye. The left eye also had a peripheral de-
scent temocoele and buphthalmos with a corneal diam-
eter of 13.5 mm. The case reported by Bellini et al.
(2002) had bilateral corneal leukoma, more prominent
in the left eye and fundoscopy was not possible due to
the corneal clouding. MRI of the brain showed micro-
ccephaly, normal myelination, and no malformation of
the brain or ocular system. CT scan in the latter case
showed no calcifications. No report of this syndrome
identified abnormal tracheobronchial anatomy or sex
reversal. However, the combination of jejunal atresia,
microcephaly, and ocular defects in our patient is quite
suggestive, even though she did not have leukoma nor
apple-pearl variety jejunal atresia. The fact that only four
patients have been described with this condition, two of
which are sporadic and all of which have unrelated
parents, suggests that the inheritance pattern is not clear.
If our patient has this latter syndrome, then sex
reversal may represent an expansion of the potential
phenotype. However, the two boys reported so far had
no indication of sexual ambiguity [Slee and Goldblatt,
1996; Bellini et al., 2002].

We hypothesize that the constellation of major
anomalies is related in its etiology and is suggestive of
either a microdeletion causing a disruption of several
genes, or disruption of a single gene that regulates
sexual differentiation, jejunal development, lung bron-
chial branching, ocular development, and brain growth.

ACKNOWLEDGMENTS

We thank the family for their patience and help in the
preparation of this manuscript.

REFERENCES

Bardoni B, Zanaria E, Guioli S, Floridia G, Worley KC, Tonini G, Ferrante E,
 locus at chromosome Xp21 is involved in male to female sex reversal.

Barkovich AJ, Ferriero DM, Barr RM, Gregson P, Dobyns WB, Truwit CL,

testinal atresia, ocular anomalies, and microcephaly syndrome: Brain

Bienvenu T, Poirier K, Fricourt G, Bahi N, Beaumont D, Fauchereau F,
Ben Jeema L, Zenni R, Vinet MC, Francis F, Couvert P, Gomot M,
Morraine C, van Bokhoven H, Kalscheuer V, Fritts S, Gezz O, Ohaksi K,
11:981–991.

Celli J, van Beusekom E, Hennemann RC, Gallardo ME, Smeets DF,
de Cordoba SR, Innes-JW, Frydman M, Keilig R, Kingston H, Tolmie J,
Govaerts LC, van Bokhoven H, Brunner HG. 2000. Familial syndromic

Dobyns WB. 2002. Primary microcephaly: New approaches for an old

X-linked lissencephaly with absent corpus callosum and ambiguous

Gunn SR, Mohammed M, Reveys ET, Viskochil DH, Palumbo JS, Johnson
Pais TL, Hale DE, Lancaster JL, Hardies LJ, Boespflug Tanguy O, Cady
JD, Leach RJ. 2003. Molecular characterization of a patient with central
nervous system dysmyelination and cryptic unbalanced translocation

Heinstein CA, Chang C. 2002. Androgen receptor (AR) coregulators:

dominant microcephaly with normal intelligence, short palpebral

Jackson AP, McHale DP, Campbell DA, Jafri H, Rashid Y, Mannan N,
Karban G, Corry P, Levene MI, Mueller RF, Markham AF, Lenj NJ,
Woods CG. 1998. Primary autosomal recessive microcephaly (MCPH1)

dominant microcephaly: Homozygosity mapping of MCPH4 to chromo-

Primary autosomal recessive microcephaly: MCPH5 maps to 1q25-2q2.

Jordan BK, Mohammed M, Ching ST, Delet E, Chen XN, Dewing P, Swain A,
and dosage-sensitive sex reversal in humans. Am J Hum Genet 68:
1102–1109.

Amish lethal microcephaly: A new metabolic disorder with severe
112:318–326.

Kitamura K, Yanazawa M, Sugiyama N, Miura H, Izzuka-Kogo A, Kusaka
Kashihara M, Yoshihia K, Ogata T, Fukuda T, Kondo I, Kato M, Dobyns
WB, Yokoyama M, Mororashi K. 2002. Mutation of ARX causes
abnormal development of forebrain and testes in mice and X-linked
lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–
369.

Kwok C, Weller PA, Guioli S, Foster JW, Mansour S, Zuffardi O, Punnett
HH, DominguSigirich MA, Brook JD, Young ID, et al. 1995. Mutations in
SOX9, the gene responsible for Campomelic dysplasia and autosomal

McDonald MT, Fleijter W, Sheldon S, Putzi MJ, Gorski JL. 1997. XY sex
reversal and gonadal dysgenesis due to 9p24 monosomy. Am J Hum

McElreavy K, Vilain E, Abbas N, Costa JM, Souleyreau N, Kucheria K,
reversal associated with a deletion 5 to the SRY "HMG box" in the testis-

Moynihan L, Jackson AP, Robert E, Karbani G, Lewis I, Corry P, Turner G,
autosomal recessive microcephaly maps to chromosome 9q34. Am J Hum

Horm Res 54:327–333.

