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NSNS

The study of plasma fluctuations in crossed electric
and magnetic fields 1s an outgrowth of a previous investigation
of "Electrical lMeans of Producing High Velocity Wind." This
earlier research was concerned with various mechanisms by
which electrical and magnetic forces could be used to produce
directed momentum in a low density ionized gas. Summary Report
#1 (Electrical Wind Phenomena; November, 1952) describes several
types of electrical wind generators, bu% emphasizes the wind
generated by a dlscharge transverse to a strong magnetic field.

A quantitative study of wind effects requires means of
determining the temperature and velocity of a high temperature
ionized gas. Suitable techniques for measuring the electrical
properties of the plasma are also essential. Therefore, a
substantial part of this research program has been concerned
with the evaluation of existing methods of instrumentation and
in devising new techniques.

Most of the experimental difficulties encountered in
measuring the plasma properties are caused by the violent
electrical fluctuations. These fluctuations are several orders
of magnitude larger than those in conventional discharges and
they completely mask the data usually obtainable by probe
measurements. Such electrical fluctuations are an outstanding
feature of this type of discharge, and so little information
has been published on this subjec% that a thorough study seemed
warranted. Accordingly, an investigation of the noise
fluctuations was undertaken in January, 1953. The present
report summarizes that activity.
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ABSTRACT

This study is an investigation of the electrical fluc-
tuations associated with a gas discharge in a magnetic field,
The study is both theoretical and experimental. The theory
is divided into two parts: a study of the ion fluctuations
and a study of the electron fluctuations. The theory on
ion fluctuations is a natural generalization of the work
by Tonks and Langmuir; it extends their work to include the
presence of a magnetic field, ion drift, and ion collisions.

A dispersion relation is derlved, and such quantities in the
solution as the velocity and path of the ions, the electric
field, and the space-charge densities are studied. It is
shown that: (1) the plane waves in the plasma are polarized
in the direction of propagation, (2) the ion orbit in velocity
space is an ellipse, (3) the fluctuations introduce a mobility,
and (4) there is no electric field associated with waves at
the ion cyclotron frequency.

The theoretical study of electronic disturbances is not
as extensively treated as the ionic disturbances since the
former has been more completely covered in the literature.
However, the low-frequency waves propagating normally to the
magnetic field are studied in some detail. It is shown that
these waves can grow as they propagate, that they tend to
propagate in the direction of electron drift, and that their
velocity of propagation approximates the velocity of electron
drift. These arguments are in agreement with the experiments.

The experimental studies were undertaken in an especially
designed diode. Probes were introduced into the plasma region
of the glow discharge in this diode, and the fluctuating elec-
trical signals on the probes were s%udied. The parameters that
were varied included the type of gas, pressure in the discharge,
magnetic field, power input, type of probe, and probe location.
The power Spec%rum of the fiuctuations was studied over a broad
frequency range, and the correlation between the fluctuations
on neighboring probes in the discharge was investigated. The
power spectrum shows a high level continuous amplitude over
the entire frequency range studied (0.5 to 4,000 megacycles
per second in some cases). A careful study of discharges in
hydrogen and helium near the ion cyclotron frequency showed a
sharp dip in the spectrum at that frequency. The amplitude
of the power spectrum increases at all frequencies with a
decrease in pressure; the low-frequency amplitude increases
with an increase in magnetic field.

The experimental data taken to correlate the fluctuations
on two neighboring probes show that the fluctuations on the
"downstream" probe are delayed in time with respvect to the
"upstream" probe. This delay 1s determined by cross-correlating
the fluctuations on the two probes. The velocity and
direction of propagation for the low-frequency fluctuations
are determined in this waye. The results show that the direc-
tion of propagation is approximately that of the electron
drift, and the velocity of propagation is somevwiat less than
the Lorentz drift velocity.

viii



HISTORICAL NOTE

Electrical fluctuations in a gas discharge tube were first
reported in 1863,l but little progress was made in the investigation
of these fluctuations until twenty-five years ago when the
classic article of Tonks and Langnuir was published.2' This
article set the pattern both theoretically and experimentally
for most of the work that followed. The experimental work
of Tonks and Langmuir was a probe study in which the probe
was a part of a parallel resonant circuit. The frequencies
of oscillations in the plasma could be determined by varying
the resonant frequency of the circuit and detecting the
voltage across the circuit terminalse. Tonks and Langmuir
observed a set of discrete frequencies using this technique,

- some of which they identified with electron vibrations in
the plasma, others with ion vibrations in accordance with

their theories.

Theoretically the Tonkse~Langmuir point of view was this:
imagine the frequency scale divided up into "low frequencies"
and "high frequenciesj" the oscillations in the low-frequency
range are caused by ion vibrations and the electrons are
sufficiently mobile so that they are in thermal equilibrium with
the electric potential estdblished by such vibrationse. The
high-frequency oscillations are attributed to electron
vibrations, the ions being relatively so heavy that they

1see Reference 57. The references are found in Appendix 1.

2Reference 59,



remain immobile.

This argument of Tonks and Langmuir led them to a set
of differential equations for the high-frequency disturbances
and a set of differential equations for low-frequency
disturbances, The dependgnt variables in these equations
included the density of charged particles, the electric
potential, the particle velocity, etc.; the independent
variables in their study were time and displacement (in one
dimension), The authors, assuming that the oscillations
were small, linearized the differential equations and looked
for solutions in which the dependent variables had the form

be i(wt-B2)

where b, w, and [3 are constants; t is time and z represents
the displacement, The differential equations in this type

of problem are homoganeOus;and the existence of solutions in
this form requires that the frequency w and the propagation

constant B be related by an equation

BfB(w)

called the dispersion relation, The goal of Tonks and
Langmuir, and most other theoretical investigators, was to
obtain this function for certain assumed conditions, and by
examining it, interpret and predict experimental results.
Tonks and Langmuir obtained two dispersion relations for
the electron vibrations, the one applying when the electron

direction of vibration and the direction of propagation are



collinear (longitudinal propagation), the other appropriate

when the electrons vibrate normally tothe propagating direction
(transverse propagation). They derived a single dispersion
relation for the ions corresponding to longitudinal prcpagation.
These theoretical studies of Tonks and Langmulr were of

limited generality; they allowed for no magnetic fileld; ﬁhey
neglected particle drift velocity, collisions between particles,
and the temperature of the vibrating particles.

Parallel with the work of Tonks and Langmuir, and others
such as J. Jo Thcmson,l who were investigating the electrical
fluctﬁations in gas-discharge tubes, there developed an
interest in the propagation properties of the ionosphere.

The theoretical work on this subject by Hartree, Appleton
and Builder, von Lassen, and others was largely a derivation
of the dispersion relation for the medium.? The assumptions
involved were just those applied by Tonks and Langmuir to
their electron vibrations except that the derivation was
generalized to account for collisions and the presence of a

magnetic field,

In 1945 Cobine and Gallagher published an impressive
experimental study on electrical fluctuations in hot-cathode
 ares.s Tﬁeir work was an investigation of the power spectrum

of the fluctuations, i.e. the distribution of the fluctuating

IReference 57.
2References 1, 2, 30, and 62,

3Reference 16 and References 17 and 18,
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power with frequency. This study covered a frequency range
from twenty«five cycles per second to nine megacycles per
second, pressures from one hundredth to two millimeters of
mercury, and magnetic field strengths from zero to nine hundred
gauss. They explained the continuous power spectrum they
observed on the basis of the Tonks-Langmuir ion theory. For
low magnetic fields they also noted a resonance that could

not be identified with the plasma and apparently belonged to

ions oscillating in a potential minimum at the cathode.1

Bailey submitted a generalized theory on electron
vibrations in 1948,2 This theory was a derivation of a still
more general‘dispersion relation which included the influence
of a drift velocity for the electrons, Perhaps more important
than the generalized theory was Bailey's interpretation of
the dispersion relation. Before Bailey it was assumed that
the frequency components in the fluctuations were those pre-
scribed by the dispersion relation for real values of the
propagation constant. Bailey asserted that the frequency
components in the fluctuations were precisely those that
increased in amplitude as the fluctuations propagated in the
medium; consequently he examined the dispersion relation for
those real frequencies which determined a complex propagation

constant with a positive imaginary part. On this basis he

j:'].‘he recognition and identification of this oscillation
is apparently due to Ballantine, Reference 10O.

®Reference 4 and also References 54 64 7, and 8.



determined that there were three frequency bands in which

-electron fluctuations would occur.

These comments on the fluctuation studies are brief;
they omit the important work of Bohm and Gross who introduced
electron temperature into the longitudinal electron dispersion
relation and made other important contributions; they omit
the work of Wehner who has developed a plasﬁa electron
oscillator tube and the important related work in electron
beam tubes. 4he intention of this historical note is to
leave these impressions: (a) the theoretical studies on the
electrical fluctuations are usually a derivation of a dispersion
relation for the medium; (b) the experimental studles are
largely an examination of the distribution of noise power
with frequency; and (e¢) neither the argument of Bailey which
identifies the continuous electrical noise spectrum with
amplified electronic disturbances nor the argument of Coblne
who credited the frequencies of this spectrum below nine
megacycles to unamplified ion vibrations has been proven

experimentally.



OUTLINE OF THE STUDY

ov——

The various electrical fluctuations of an ionized gas
have usually been explained in one of four ways depending
on the motion of the charged particles responsible for the
fluctuations. They are identified (1) with plasma ion
oscillations, (2) with plasma electron oscillations, (3)
with ions vibrating in a potential minimum at thé cathode,
and (4) with the thermal motion. of chargéd particles. The
first three of these categories represent the organized motion
of large groups of charged particles displaced from their
equilibrium. For those frequencies where such group
fluctuations are present the thermal spectrum is obscured, but

1 Indeed

thermal noise has been observed in gas discharges.
Knol has shown that the thermal noise spectrum can be used

to measure the electron temperature in the plasma.

The high-intensity plasma fluctuations are of principal
interest in the present study.. These fluctuations are
usually ascribed to either plasma ion or plasma electron
osclllations. They always seem to be present in gas~discharge
tubes, playing an important role in the scattering, diffusion,
and ionization processes of the gas. Plasma fluctuations
reach especially high intensity in a static magnetic fileld,
and the experimental work of this paper concerns these

fluctuations in the presente of a strong magnetic field.

lReferences 36 and 44,
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In this study little attention is given to the source of
energy responsible for the plasma disturbances although it
is speculated that cathode sputtering probably initiates
the fluctuations.

Chapters I and II are theoretical invedigations of
ion\and electron oscillations. These investigations are
developed assuming an idealized plasma with smooth properties
so that the discrete nature of the charged particles can be
ignored. Chapter I is a generalization of the Tonks-Langmuir
theory on ion fluctuations. Their work is extended to include
the inflgence of a magnetic field, a drift velocity for the
ions, and ion collisions. A dispersion relation is derilved,
and using the dispersion relation in the differential equations
such quantities as the ion and electron space-charge densifies,
the electric field, and the particle motion are derived and

studied.

Chapter II represents a similar study for the electrons.
A general "stream" theory due to Gabor is presented. It is
shown that many familiar electron dispersion relations can
be derived from this theory. A derivation of the dispersion
- relation for transverse propagation which includes the
electron temperaturé is givens The velocity and gain of low-

frequency propagation normal to the magnetic field are studied.

Chapter III is an experimental study of the power spectrum.
of the fluctuating potential. Data are presented for a frequency

range from half a megacycle to three thousand megacycles per second.



Various pressures, gases, and magnetic flelds are considered.
Data for two kinds of probes, various locations of the probes,
and different power levels are given. In Chapter IV the group
velocity and gain for low-frequency noise fluctuations are
investigated experimentally. The dependence of this group

velocity on power, magnetic field, and pressure is shown.

Chapter V presents a comparison between the theoretical
and the experimental work. The work of other investigators
is brought in at this point and an attempt is made to explain
the fluctuations.



Chapter I
A IHEORY OF ION FLUCTUATIONS

The theory presented in thls section is a natural
generalization of the work of Tonks and Langmuir.l An
extension of their theory is made by including the influences
of a magnetic field, drift velocity in the ion stream, and
ion collisions. The generalization is carried through
without the burden of any additional assumptions not already
present in the Tonks-Langmuir argument, Since the equations
and their graphical representation become very unwieldy,
much of the theory presented is limited to considering the
influence of the magnetic field, neglecting ion drift and

ion collisions.

1.1 The genergl differential equations

The following equations are taken from electromagnetic
field theory:2

the electric divergence relation,

V.E=€Lo (Np = Ng) : (1.1)

where E 1is the electric field strength, e the fundamental

charge, ¢, the free-space dielectric constant, and N, and N,

the density of ions and electrons, respectively,

lReference 99.

2Symbols are defined where they are first introduced in
the report. In addition, a list of symbols is given in Appendix
2. The MKS system of units is used throughout this paper.

9
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continuity for the ions,
oN

S V. (N = 0; (1.2)
where ¥, is the velocity of the ions, and

the Lorentz force law for an ion,

e .A+A’ - _ d?p J—

where mp, is the ion mass,'ﬁg the magnetic flux density, and
v a damping constant approximately equal to the ion

collision frequency.

In addition to these equations, the hypothesis is added
that any fluctuations in the gas are sufficiently slow that
the electrons remain in thermal equilibrium, and therefore

satisfy the Maxwell-Boltzmann law for spatial distribution,

,Ne = A exp (—i%—) , (1.4)

where A is a constant, @ is 'the electric potential, T is the
electron temperature, and k is the Boltzmann constént. The

addition of the familiar approximation

E:-Vd (1.5)

- to the system of equations above expresses the mathematical

problem in terms of nine equations in nine variables.

1,2 The perturbation form of the differential equations

This general system of equations is far too complicated

for a general solution, but treating the disturbances that
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are responsible for the electrical fluctuations as small

changes in such a solution provides a linear system of
differential equations that is more tractabléo Thus the
procedure is to examine the perturbation equations corresponding
to relations (1.1-1.5), Denoting the undisturbed variables

by the subscript zero, the perturbed variables can be

written:
¢ -E-E,,
np= Np-No,
ne = Ne-No (1.6)

_ = e

w = ’U'p"’lfpo 9

and ¢ = P-D,.
In writing these expressions it has already been assumed
that the undisturbed electron and ion densities are equal constants,
corresponding to a plasma. It will also be assumed here
that ion drift in the unperturbed solution and ion collisions
can be neglected, (A more general derivation and discussion
which does not neglect these factors is given in Appendix 3.)
With these assumptions the perturbation equations for (l.l-

1.5) can be written:

Vi "'_eeT (np—ne) ’ (1.7)
on -

il AL (1.8)
o (-V+IxE) = S (19)
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This last equation is not yet in a linear form. If the
perturbed potential energy is small compared with the thermal
electron energy, then the exponential of this expression can
be approximated by the first two terms of its power serles,

and

) eNqu

ne = kT (4 (1010)

Equations (1.7-1.10) represent the perturbation form of
the equations (l.1-1l.5). They can be combined to obtain a
linear differential equation in the velocity uw, as will now
be described. The electron density can be eliminated using

(1.7) and (1.10),

24 _ e eNy ¢
Vi =— €5 (np ~ TRT ) (1.11)
Differentiating this partially with respect to time and

substituting 9np_ from (1.8) into the result gives
ot ?

2 (74) = 25 (770 S 22), Q.2

Taking the gradient of this expression and substituting V¢
from equation (1.9) gives

2 2
2| 0w du —*]_“’pmp[azﬁ - m -‘}
v [hi ov Y] T AT L oee ot e
— V(V’E), (1.13)
. eT,
where wg = w9 the cyclotron frequency vector, and

w, * e?Ng s the plasma ion radian frequency.
60 mp



13

1e3 The dispersion relation for a set of solutions

The differential equation (1.13) is certainly not
simple, but since the noise spectrum is of particular interest,
is is natural to investigate the frequency structure of
solutions to (1.13), that is, to seek a set of solutions

with the form,

o[y o iwtmBe) (oe-pz) | Hux=B2)] Laa)
u = u,e ?

, lee uaze

where u,4 u,, and uzare constants. Thus, we are looking
for solutions of equation (1.13) in the form of waves
propagated in the z-direction with a frequency w and a
propagation constant B. Without loss of generality the
component of the c¢cyclotron frequency vector in the x -

direction can be taken equal to zero. Then,
ﬁc = (0, wgsin 8, w, cos 8)» (1.15%)

where 8 1s  the angle between the direction of propagation

and the direction of the magnetic field,

Now substituting from (1.14) and (1.15) into (1.13)

gives,

wimp [ .

(,32+ o > w2u|+“"(u2wc cos 8- ugw; sin 6 ):l -0 (1.16a)

2

Wy Mo\, .

(BZ+. iTp) w %;quwwccos9J==O, and (1.16D)

2 cupzmp M 5 2 he
(B ¥ = ) w U.3+ qu_lwc sinQ] "Cl)p B LL3=O. (10160)
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Equations (1.16) are three linear, homogeneous equations in
the three unknowns, u,, u,, and uze Therefore a solution
exists if and only if the determinant of the coefficients

vanishes. Thus,

2 . .
w wacc059 —wacsine
. 2
- Lwwg cos O w 0 =0

lww, sin 8 0 wf-w?
where »
2 _ wp

(UO = —a) zm
4P P (1.17)

BT

has been introduced to simplify the notation. Expanding the

determinant gives

(wz—wcz 00529) (wz—w()z)—wlzwcz sin®0 =0, (1.18a)

and solving this expression which is quadratic in the

square of the frequency leads to

2 2 2 2\2
+
W= jﬂgg_ﬁb_ i\//zjﬂLgﬁi—> - 0t wleos? 0 - (1.18Db)

A graphical representation of these two dispersion relations
is given in Figures l.l1 and 1.2, The two solutions for
frequency complement each other: the one solution applies
when the frequency exceeds the ecyclotron frequency, the
other being appropriate when the frequency is less than the

cyclotron frequency.
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Certain observations on the equations given in (1.18)

are especially worthy of note,

Qe

be

Ce

d.

f.

ge

we =0 o If the magnetic field vanishes, then the
frequency_ reduces to that given by Tonks and
Langmuir,

2
w = wWe = 2 0 (1917)
|+wp Mp
ot A ]
B kT

This funetion is plotted in Figure 1,3.

No=0, If the density of charged particles
approaches zero, the frequency is given by the
ecyclotron resonant frequency.

If the direction of propagation is parallel to the
By, field, there are two solutions, w=w, and w=w. .
The ion motion for the first of these is entirely
in the direction of the magnetic field (longitudinal
propagation) and consequently independent of the
magnetic field, In the second case the ion motion
is transverse to the field.

If the propagation is normal to the magnetic field,

2 2 2
w =wo+wc °

For all possible real propagation constants there is
a greatest frequency given by,

2
W max * wp2+w02 ) (1.19)

The frequency as a function of w, and w, is symmetric
in w, and w;, iee.,

w(wg, we ) = w(we, wy) .

In Figure l.l the asymptotes are given by

w_
—w'c—- cos 9,
in Figure 1.2 by
.wz' W2
z = sin29+ 02
We W,

;Reference 59.
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1.4 The solutions of the perturbed egquations
l.4.1 The ion velocity

It was pointed out in the last section that the
differential equation in the velocity (1.13) can be

satisfied by
. i (wt-Bz)
_LI = [u'| 9 uz 9 u'3] e (1014)

with u,y u,y and u; constant if and only if the dispersion
relation (1.18) is satisfied. Using this dispersion relation
the ion velocity, the ion trajectory, electron and ion densities,
electric field, and so on can be determined. We proceed

first to the velocity components given by equation (1.16).

From (1l.1l6c),

2 2
o w, -w
=t w w, sin § Us »
ww sin@
or, w, =i c (1.20)

u
,wz—w:cosae 3
by using the dispersion relation (1.18) to eliminate woz.
From (loléb)’

Lw 8
Wpr —2" w, . (1.21)

Since the equations (1.16) are linear and homogeneous the
components u, 4 u,, and uzare only determined to a constant factor
d which may depend on the frequency and other parameters

such as the magnetic field, The role of 4 in the physical

problem is one of scaling the solution which is arbitrary up



20

1

to a constant. With the choice

2 2 2
w —Q)c cos 9
U.3= 2 . d
w, sin8

all other components are determined. From (1.20)

and putting this in (1,21) one obtains

U= -d cos 6.

Thus,
N . 2 2 2 lwt-
3= {a,@-d ~d cos B, Md]ed BZ). (1.22)
We sin 8
For simplicity of notation we now write w|=‘%h y leceyo is

normalized with respect to w. , and also let

§= wt—,BZ . (1023)

Apart from a phase change common to all the components,

the velocity u can be expressed merely as its real part,and

2 2
u,:I:u_x, Uy, uz}[—dw,sing, - dcos fcos L, Qs%:gés_ﬁd cos } (1.242)

In this form the components of the ion velocity are given in
terms of the variable { , and in the velocity space with u,

u, o andu, as coordinates

u,=—dawsin§,

. wy=-dcos 0 cos (1.24Db)
an

1It should be intultively clear that if one has a
solution with certain velocity components, electric field
components, a potential, etc., that doubling these velocity
components, field components and the potential, etc. also
gives a soiution. This free&om in the solution is carried
mathematically in the factor de.
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parametrically define a curve. Indeed this curve is an

ellipse with center at the origin, for Bt constant, and

Uz
U 2 u 2
X y -
(45) (g ) <1

A sketch for such a curve is given in Figure l.4.

Since this curve of velocity is an ellipse, it is
evident that both the velocity and the position of the ion
are in the plane of this ellipse, and there is merit in
choosing a new set of axes in that plane to study the particle
behavior. It is clear from Figure 1.4 that u, can be retained
as a coordinate since it is parallel to an axis of the ellipse.

The choice of a new axis Uy 1 as shown in the figure with

- - Yy =1 cosze—(.«)2
= tan —= = tan ! (1.29)
F Uy <cos 0 sinf )
reduces the description of the velocity orbit to the ellipse
2 . 2
W\, (s N (1.26)
dw, d cos 6 '

Equation (1.26) is one type of solution for the motion
of the particle in velocity space. It is also possible to
express the velocity componentStxxanduy-as functions of time,

but these solutions are clumsy and of lesser interest.,
1l.4,2 The lon path

We now turn to the problem of solving the system of
equations (1.24b) to determine the path of the ion. These

equations can be rewritten:
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Uy= 3)1(; = —asin b,
uyE:—: =—bcos L, (1.24¢)

where £=wt-Bz . (1.23)

-a, =b, and c are mei'ely new symbols for the constant

coefficients, From (1.23)
d
_d_tg— = w-B —3-12:_— = w-fB¢ cos L, (1.27)

and dividing this into u, in (1.24c¢) gives

- CLsmc

dx -
dl w-Bc¢ cos L
Integrating this expression and choosing

x=0 for [ = I, one obtains

g
- _ . a sin pdp
X = -2 -
== cos p
z ¢ (1.28)
=— -2 fn <I—ggcos )-,
Bc
solving this for cos [ gives
oy
cos = l'é'oT ( |- ) . (1.29)

Now from (2,24¢)
dy=bcos§_béos§ .

dx asin§ —io.«/l—coszc

and substitution into this from (1.29) for cos [ gives

< > . (1.30)
+

Warsme

dx ~ a,Bc
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The integration of this expression gives the ion path, for
'as argued in the last section the particle motion is in the
x-y' plane and

y=y sinp (1.31)
where p is a constant given by (1.25). Thus choosing y'=0

where x=0 one obtains
X

Be |
(CL ts_)ine)y-= + <|-e_Tp>dpz (1.32a)
o «Az—<l—e _é‘iﬁp>
Be

with 9o . (1033)

Under a change of variables this integral can be written in

| several different forms including:

(Beme)yoe [ Lo

b 0 *//9{(I-e—p)z

and < ._fii >
sin—| I_%g :

< w SLI’I P > yl: + :in ‘d R (10320)
g sinp

o

In this last form the integration can be carried out (see
Dwight, 436.,01), but the expression is so awkward that it
is more convenient to use an integral form directly in studying
the particle path. From (1.22b) it is clear that the
Bcsinp ) ,
b

normalized y' variable ( y' as a function of the

normalized x variable (l%i-)x depends only on the single
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parameter g. Figure 1.5 shows some solutions for the ion
path obtained by solving (1.32b) graphically. The apparent
similarity between these curves and the trochoidal orbits

that arise for isolated charged particles in crossed electric
and magnetic fields should not be taken too seriously, for
these orbits are not cycloidal, nor is there a static electric
field in this case; also the drift velocity for an ion here

1s not normal to the magnetic field, and the frequency in

this motion is the frequency of the wave, not the cyclotron

frequencyg'

le4,3 The electric field

The perturbed velocities corresponding to a glven
frequency and choice of propagation direction are now known
(equation(l.24b)); consequently the electric field can be
obtained using equation (1.9). Expressing (1.9) as three

scalar equations gives
ou

n—f;gx z dtx — uy cos 9+uzwc sin0,
ou
e y
= +
mp fy dt wac COSB, (1.33)
ou
e _ z ,

Now substituting the velocity components from (1.24b) into

these equations gives

D ———

lFigure 1.5 shows that the fluctuations provide a mobility
in the direction y'.
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E’c_"‘z- €x= —dwfcos§+ d cos8 cos £+ (w,z—cosze) dcos =0,

aﬁ €y =d w,cos@sin g—dw|cosasin g: O, and

2 2
wcr:p £, =—w|ﬂ'ﬁ—6—— d sin § + d wsin B sin L

- Qw, (—w.z-i- cosze+ sinze) sin g

sin@

(1.34)

'=s_::\% (I—w,z)sing .

Thus, the components of the electric field normal to the
direction of propagation vanish. The component of the

electric field in the direction of propagation is given by
(1.34).

l,4.4 The ion and electron densities

Integration of the electric field (1.34) gives the
perturbed potential

- —duy -wf cos
wcmep P = Bsin8 (I w') C, (1.35)

and then equation (1.10) provides the corresponding electron

density at once,

eN, P N m,dw 2 ‘
ne = koT = - kOTBpsine (I-wl )cosl_; . (1036)

The ion density can similarly be obtained from (1.8) since
the velocity is known.

n,Bd

w sin 9

(1.37)
(wf=cos? )cos L .

np‘-'
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Now it should be clear from the general approach given
to the problem of lon osclllations that the electrons in
seeking their thermal equilibrium tend to diminish the
amplitude of the ion oseillations, and it is informative to
inquire how successful they are in this role of damping the

ion disturbances. We take as a measure of this damping the

quantity (I— :; ) since the perturbed potential will
vanish when this expression does, Use of (1.36) and (1.37)

gives

(l' ne>='— mpwz (iof) )
np kTBz ( COSae—wr-) (1038)

but solving the dilspersion relation (1.,18a) for woz leads to

e 0 (1—w?)

Yo " (oost0-wr) (1.39)

Substitution for the right member of this expression which
appears in (1.38) gives

2
ne mp(UO
_—— )z - « Replaci
(1 ,,p) -5 eplacing
auo2 by its value which is given in (1.17), one obtains
| = ne , |— mp wpz
( "p) kTB* wp my
I+ 3
or kTR
|—Ne \ - ! . Y
( Np ) ) 2 i z °
I+wp mp wp (104‘0)
kT B2

This is a1 interesting expression. Note first of all that it
1s independent of the magnetic field and of the direction of
propagation with respect to the magnetic field. Thus
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although the electron and ion perturbed densities depend on
these quantities, their ratio does not. Also, the electron
and ion densities are in phase and the ion density must exceed
that of the electrons, Assuming that the other factors on

the right in (1.,40) do not change, then an increase in
electron temperature T requires a decrease in the ratio of
electron to ion density. This might be anticipated since

the potential peaks and potential troughs established by

the ions cannot so readily capture and reject higher energy

electrons.,
l.4 The energy densities

This study of a set of particular solutions for the
perturbed differential equations concludes with observations
on the time average ion kinetic energy per unit volume and
the average electric energy per unit volume., From the
expressions for these quantities comes an important feature
of the spectral density that has its parallel in the experimental
data.

The electric energy density is given by

€. = € madw \2
_ Q 2 _ 0 pHt _ 2\2 2 /
Ve T 2 &= e ( esinfd ) (I' w') sin” §,

using equation (1l.34). The kinetic energy per unit volume

for the lons 1is

- . 2 2 2
W= 5 My NoU = 5 m Noﬁk +u -+uz)

M y

2
2 2
= 5 MpNg d° l:wlzsinzg + cos 0 cos 2§ + C‘Q‘Lse) coszl,']

|
sinzg



30

where the velocity relations of (1.24b) have been used.

Taking the time average of these two expressions gives

_— € m.dw 2 2\2
wo = —° P |- d
E 4 ( e sinf ) ( wl) » an (1.41)
W = 1 2] 2 29 (a)z—cosze)2 :
m= 3" Mp Nod |w +cos G+ —L——sinze ’ | (Le42)

The ratio of these two quantities is worth studying since it
is independent of the scaling factor 4 and gives a measure of
the distribution of energy between the kinetlic and electrié

forms., We have

w_ €,m 21 -w?)?
0)= e . 9 . w (1-w)
R(w ) Wi e2No sinze((‘q|2+cos'°'9)+(w|2--cosze)2
w? 2 2,2
= —C_ . w (1= ) . (1.43)

wp? sin“0(w: + c0529)+(w|2—c0529)2

This function is plotted in Figure 1.6 with 6 as a parameter.
The discontinuity in the curves 1s imposed by the dispersion
relation which excludes certain frequencies for a given
direction of propagation (see Figure l.1). An interesting
property of these curves is that they go to zero at the
cyclotron frequency indicating that the electric energy

densit s zero at the ion cyelotron freguency for 1

directions of propagation.
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Chapter II

A THEORY OF ELECTRON FLUCTUATIONS

The theory develoned in Chapter I was a study of ion
fluctuations in a plasma. The electrons were taken into
account by assuriing that they had sufficient mobility to be
in thermal equilibrium with the electric potential established
by the fluctuations. This chapter examines the electron
fluctuations, and although the restriction is not imposed in
the early sections of the general theory, the influence of the
ions will later be disposed by assuming that they are evenly
distributed in the plasma and move with a constant velocity.
This is tantamount to assuming that the ions were not there.
in the first place from the theoretical point of view, Taking
a little liberty, the following statement 1s a consequence:
investigators working with electron fluctuations in gas«discharge
tubes, those studying ionospheric propagations, those
investigating solar radiation, and those individuals examining
propagation in electron=-beam tubes are essentially solving
the same mathematical problem. Perhaps it is not surprising
that the first three of these groups are studying the same
mathematical model, for in all cases propagation in a plasma
is involved. The mathematics for electron plasma propagations
is the same as that of electron beam propagations since the
plasma lons are usually ignored under one assumption or
another in examining electronic disturbances in a plasma. The
idea is that the ions are relatively so hecavy that their motion

is not altered by rapid fluctuations of the electrons,

32
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The theory of this chapter proceeds in a manner similar
to that of Chapter I; a general system of differential
equations is introduced, a perturbation form is given for
these equations, and a set of component solutions for these
perturbed equations is studied. This work is not carried
out as completely as that of Chapter I since the theory on
the electronic disturbances has been more thoroughly investigated
in the literature., Those subjects already in the literature
are developed only if they are pertinent in explaining the
experimental studies of Chapters III and IV in addition the
low-frequency propagations normal to the magnetic field are
studied in some detail, and a derivation is given for the
dispersion relation of transverse propagation which includes

the influence of electron temperature,

201 g set of self-consistent equations for electrically
charged sireams

A set of differential equations are developed in this

section for the "stream" vectors of interacting electrically

charged streams.

Beginning with the Lorentz equation for the force on a

charged particle,2 one has

d
d

sl

|

VT + - & (E+¢ xB) (2.1)

)

+
3

1Tt should be remarked that except for minor changes the
general theory developed in the first two sections of this
chapter is due to Gabor, References 23 and 24,

: 2Symbols that have been previously introduced and defined
in the text are not defined again in the text. Appendix 2
gives a list of symbols,.
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and expanding the derivative givesl

Equation (2.2) can be written,
g+ 3+ (T V)F-ox T - E, (2.3)

where TJC = en? y the cyclotron frequency vectors This is

the approiariate form for the Lorentz equation in streé.m theory,
for if we imagine the medium to be made up of many interacting
streams of charged particles, each stream having particles of
the same mass, charge, and collision rate, then the left
member of equation (2.3) depends only on the particular

stream involved, whereas the right member is the field
contributed by all of the streams. To indicate thls, we write

for the r'th streanm,

(%—)r[v3+:'7'+(17-v)17-vx?5c]r -E, (2.4)

where it is understood that the r applies to all of the

components inside the bracket.

The next step is to express E in terms of a "stream
vector." Using the familiar relations of electromagnetic

field theory,
E:—V@—_E’ (205)

DA=—uyJ , (2.6)

1Because} of the complexity of the expressions in this
chapter, a dot is used to indicate partial differentiation
with respect to time.
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(2.7)

where A is the vector potential, J the current density, w,
the permeability of free space, and O 1s the D'Alembertian

2
OperatOI' ( vz"',u-o 60# )0 AlSO,

a E = -Evoﬁ -+ ,u.oj . (208)

Now if the current density and space charge density of the

r'th stream are denoted by J. and P, continuity implies that
V'—\Tr+lb=o. (2.9)

Therefore, an r'th stream vector S, can be defined by

-

jr = €g —gr, and Pr = —Gov ‘Sr (2010)

which is consistent with equation (2.9). Defining the total

stream vector by

S:=2 S, (2,11)

)

STREAMS

the electric field can now be expressed in terms of 3, using

(2.8) and (2.10).,

DE=—V(V'§)+}LOGO:§ ‘ (2.12)
L 9% \=
-—(VV c? o’ )S

Taking the D'Alembertianof equation (2.4) and substituting
from (2.,12) on the right side gives,

(), o[vo+d+ @ NFTxd, |, (2.13)

- (rv - & & )s
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Using (2.10), the stream velocities in this expression can be
Tr- —

written - 2
-

the problem of M interacting streams in terms of M vector

S
= —-1735— , SO that equations (2.13) express
r 1]

differential equation in the M stream vectors.

2.2 A perturbation form of the stream equations

We now turn to a perturbation form for the equations of

(2.13). Perturbing the streams gives,
S,=5  +4p,

—

Ir= ot O+ Ly , (2.14)

and pr=ppt e
where Zr, ir and n, represent the perturbation values, and the
superscript zero indicates the unperturbed value of the quantity.
From the definition of the stream vector given in equation
(2.10), the currents and space charges of (2,14) can be

written,

- 5 EXS
(/’r +604r

—_ o

Jr = Pr
and pr=pr’— €0 V-2r (2.15)

Using these forms the velocity in the r'th stream can be

approximated by,

- oO—~0 2
€
J Pr Uy TS “r ( !

—_ r

v —-—°
r pr Pro"SOV"}—;r

_ €° Ln)( 60 _.s)_
(] PR -— — .
vet+ 5% A ) (- pEvE,

+ %fg Zr)(|+ Pr% v~2r+ ) or (2.16)

=
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This value for the velocity of the r'th stream can be
substituted in the left member of equation (2.13), but before

making the substitution, it is convenient to calculate some
of the terms.

€ JATS —_— LN
v, /°r°° (Ar+ 7o . /s,r) . (2.17)

Notice that?® and poare taken equal to zero here, since it is

assumed that the undisturbed streams are steady.

Also,
(7 0)% - @2 0) B0+ (320) 8 (6 + B00-3. )]
+§—§,[(Z‘r+7}:v'2,)-v}?r: , (2.18)
and
ol zsm/::ms. (2,19)

Then putting these forms in equation (2,13) and using the
fact that the unperturbed basis streams satisfy the
differential equation leads to

(), 0{S (s 34547 95) + (300 g (5030 95)]

Vol (es sz)'v]?“, s (@ v« ), (2.20)
- (Vv %)A

Ihese are the fundamental perturbation equations of interacting
streams.

Imposing the assumption that each undisturbed stream has
a constant velocity 52° and a constant space charge density

p »° 4 equations (2.20) reduce to the form,

o0 {vé+ m7~°v-2+?+77°v»2‘+(27~°-v)(2‘+??°v.;2) (2,21)

— (8 +39.3) x T} -~ (vv--L 25)%
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where w,= (jLBi) is the characteristic frequency of the r*th
r

me,
stream, If there is only one stream then the characteristic
frequency is the more familiar plasma frequency of the stream,
and in this case we write w,=w, o Using (2.12), the

corresponding perturbed electric field can be written,

—_—

£ [vE+vP°VE+8 +7° VB4 (500) (24507.3)

(2.22)
(B4 FoVB)X T},

for any stream r. Consequently, the solution of (2.21) leads

at once to the value of the perturbed electric field, Simiiarly

such other quantities as the space-charge density and particle

motion are derivable once the stream veetor 1s known.

2,3 _The perturbation equations for particular solutions

Bquations (2.21) are a set of linear homogeneous differ-
ential equations in the perturbed stream vectors, and conse-
quently solutions can be sought corresponding to waves
propagated through the ionized gas. The resulting perturﬁation
relation is derived in this section. The argument and

procedure is much like that of Chapter I,

Assume the perturbation stream vectors of (2.21) are

given by,

(we-B,x-B, 1-B,2) (we-B3)

R =%, e , (2423)

| X}

whefe the components of Z. are complex quagntities, but do
not depend on the space coordinates or time., Likewise the

frequency w and the propagation constant [ are taken

constant,
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For this choice of stream vectors,
2 2 )_.s

oz, - —(B°-23 )2, ,

V‘Zr=_i8’zr’

I 2.,

Bre-w &, (2.24)

vE - wBz, ,
3*v)3, -~ (B)s., anavv-a:-B(B3) .
Substituting these values into equations (2.21) gives,
(02-c*8%) {(w=1v-7B) wi+ L wBx T,
+'(§'Z)[—z;°(—w+i.u+;’°-—,§ —i.??xZJc }

o [0t (B 2) 7] (2:2)

This vector equation is the general form of the perturbation
equations for the particular solutions of interest in this
study. However, it is often more useful to have these
equations in terms of scalar relations, For convenience and
- without loss of generality, the propagation is assumed in
the 2z ~direction and the magnetic field is taken in the y: -

plane. Thus,

-,é z (O, 0, B) and

—

We

, (2.26)
=(0,wc sin 9, We cos 8 )

where A is the angle between the propagation direction and

the direction of the magnetic field., Then the component

equations of (2.25) can be written,
(w-c*8 2){(w—tv-vg ,3) w4 + Lww, (Azcos Q—Assine)
+,8,43[vl°(—w+lv+v;,8)— i.wc(tr;cos B-V;sing)]}r

= wrzw%' H)
(wz-Cz,Bz){<w4 lv—tr;B)wAZ- Lww, 4cos 8
+B4, [1,;(_ wtivt v;B) +iw vfcos 9]}r

2 2
*w, wd, , and

(2.27a)

(2.27b)
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{(w -i v—v';,8>w43+ iww,4sin8
+,B%[v;(—w+ w +v§’B)- L vPw, sin 9]}r

2 (20270)
FWw. A5

The subscripts 1, 2, and 3 have been used here to denote

components in the x, y, and z directions respectively.

244 The role of temperature in the dispersion relation

The derivation of a dispersion relation for electron
fluctuation that embraces the role of temperature is a
difficult task. However, two special cases can be obtained
from the system of equations given in (2.25) which include
temperature; these are derived below, The first is a one-
dimensional approximate form due to Bohm and G-ross;1 the other

is the general case for transverse propagation.

2.4.1 A one-~dimensional model

The one-dimensional model of Bohm and Gross
will now be derived. Referring to equations (2.25), one
allows for perturbations and propagation only in the direction
of the magnetic field, and it is assumed that any velocities
~in the undisturbed streams are in that same direction. Then
neglecting collisions, equations (2.25) reduce to

{(w— v°,3)w4-—v°,3a(w—v°8 )}r z wrz,a ,

or .

{(w -°B) ?a}f w s .

1Reference 13.
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This can be written

. . Ol 4 (2.28)

" (w-e7B)"

There are as many linear homogeneous equations here as there

are unknowns, and therefore the determinant of the
coefficients must vanish if there is to be a solution,

Assuming M streams and using the notation

2

w
Q-r = or 2 , (2029)
(w - Ve :B )
this determinant is given by
a,-l a, a, a,
a, a;-l  a, a,
. =0,
a; @y ves ey oyt

Subtracting the first column from each of the succeedi’ng

columns gives a,-l | | |

0.2 -1 )

and adding each row to the first leads to
" 0O o . 0
2 ol " |

) M
Expanding, ) a;=1, or substituting from (2,29) for ai, one obtains

i=l



h2

2

L I (2.30)
2
PR )
Now wr = eomr where N, is the number of particles per unit

volume in the r'th stream, so that by defining a particle

density f(1nf) in coordinate and velocity space by
N, = f(1r°r )(v'r—vr_,) , (2.31)

- equation (2.30) can be written
e %) (e,

€Eg M i ((D"Vroﬁ)z

Formally passing to the limit, this sum becomes the integral,

(00)
?e;_f _fler) (”)2 O (2432)
° Zo (w'lB”')

This expression is the dispersion relation for the Bohm and

Gross model.1

An approximate solution of (2.32) will now be derived.

Assume that the phase velocity (ﬂ) is large compared to the

| B
particle velocities permitted by the distribution function
f (v)e Then the denominator of the integrand can be

approximated by

o L2 B2 2 ol

Putting this approximation in (2432) gives

“p° [|+2 £g5-+-3<{§>25;]=| . (2433)

wz

1Reference 13.
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where the bar over the quantity indicates the mean. In
particular if there is no average drift (#.p) and the
distribution of velocities is Maxwell-Boltzmann, then (2.33)

becomes

By the original assumption, the thermal term in this expression

is small compared to unity, and consequently the first two terms of

an approximation give,

szT
2 2
w = wp +3—FpF—— (2.34)

Ihis is the result given by Bohm and Gross. It should be
noted that if the temperature is zero,'the frequency is merely
the familiar plasma electron frequency; the effect of

temperature is to broaden the spectrum.

2¢4.2 The infl¥ence of temperature on transverse
propagation

The case just discussed has serious shortcomings., It

is restricted to longitudinal propagation, i.e. the
perturbation and propagation are in the same direction, More
serious is the necessary assumption that the thermal motion
is limited to one direction. Also the lack of influence of
any magnetic field is inherent when only one-dimensional

perturbations are tolerated.

The case discussed in this section 1s somewhat more

satisfying. It embraces the influence of the magnetic field,



Lk

and a general distribution of thermal velocities is tolerated.
However, it is also a rather special case since it is assumed

that the propagation and the perturbation are transverse,

Returning again to equation (2.25), neglecting the
effects of collisions, and assuming transverse propagation,

B - %£.=0 , one has

( w-c* 2) {(w—_v?’- F) w4, + wac“’z}.— 2w’ wla (2.35a)
((.u2 cB 2) {(w—'{/?’- -E) W, i Ww 4, }r = u.)rzwzxt2 , (2.35b)
and (wz—c2 ,82>{(w—5;,—3h> w,as}'f wrzwz&3 (2.35¢)

where';; is now taken in the :z -direction for convenience.
Clearly (2.35¢) is independent of (2.35a) and (2.35b); it
can be written:

2

A= w LY — &g (2.36)
T (eg) -weB)

Now (2.,25a) and (2.35b) can be combined and reduced to a form
similar to (2.36), for multiplying (2.35b) by +i and adding

the result to (2.35a) gives

(w—czlgz){(w —;°-_,[§)w( L42)+wwc (Aiw } wetw ( t LA)

This can be written

2
wr

(@ —c?B?) . (w-;,?-,[-?-t we)

The solution of (2,36) and the two solutions of (2.37)

(A«Ii 'l.Aé)r = (A’|ii'd’2) i (2.37)

include all possible waves that are launched transversely.

It 1s clear that the propagation direction is normal to the
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direction of the magnetic field in the case of (2.36) and
parallel to the field in (2.37). It also should be noted that
the solution of (2.36) can be obtained from the solution of
(2.37) by merely setting w, = O in the solution of (2.37).

The three expressions (2.36) and (2437) are of the
same form as equation (2.28), and the dispersion relation can
be obtained in the same way. Corresponding to (2.36), the

dispersion relation is
\ (0]
. : P gor - (2.38)
(w 2-02,3 e ) €o M (w-"’B)
eo)
where v+ 1s the component of velocity in the direction of

propagation and f(v)is the distribution of particles in

this velocity per unit volume,

Corresponding to (2.37), one has

(¢ 0]
Y e Flv) dvr = | (2.39)
(wz_CzB 2) €o M / (w_i/‘,Bt W, ) |

®
The next step is to evaluate the integral in these dispersion

relations.

Suppose that the distribution function is Maxwell-

Boltzmann so that

m 2
-5 (V-%)
tlo)en, ) 0 o T (2.40)

where N, 1s the density of the charged particles in all the

streams, Then (2.39) can be written

w N/ . e 2MT dv = |
(w?-c¥B?) €om 2wk T (w-vBtaw,)
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Making the change of variable

s /M (.04
MV 2k1R? (w-eB £ we) , and temporarily using the

notation b - /—M (w-_B-’fw )  this becomes (2441)
2kTS ’
wwp d’7]=| , (204-2)
w 2_¢t ZWKTB

The integral in this expression does .not exist in the Riemann

sense, but properly interpreted in the Cauchy sense, it is a
well behaved function of b. This integral is defined and
evaluated in Appendix 4; here the same result is obtained by
a formal method. Writing

D _(p-b)°
g(b)=fe 7~ 47, one has

Differentiating this expression with respect to b gives

b? ©
d -n+2b
d—b_ g(b)e = 2 e fr] 77 dl”
-0
(00) 2
b2 ~(m-b) 2
= 2e /e 7 d77=2«/7—T_ eb
- .

Now lntegrating on b leads to
b2 ,’72
g(b)=2«/'_ﬂ- e e dn . (2.43)
0]

The constant of integration is zero since g(o) must vanish.

g (b) 1
b s f
2/v_ has been tabulatedj™ a plot of the function together

lReference 31.
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with an approximation for large arguments is shown in Figure
2.1o The approximation is of'particular interest because if
1t is used instead of the integral in the dispersion relation
the result is the more familiar expression valid when the
temperature can be ignored, i.e. when T = O is a good
approximation. Frbm Figure 2,1 it appears that the
approximation is good for arguments greater than five or ten}
Here some evidence will be given to this point of view by
showing that the integral and its approximation have the same

limiting values and their ratio approaches unity.

A certainly has the limiting value zero so that it is

only necessary to show that

b
. _Zf 7;2
bI-I-Td) eb o€ 47
L
b

=1 (204’4)

Using L'Hopital's rule, one obtains

\ 77 2

lim ~[ d” - lim e’ -

w0 © T i b*(2-5"")
confirming (2.44).

Returning now to the dispersion relation (2.42) and
substituting in the value obtained for the integral gives

2 b
ww 2P 2
2 apz m 5 2T ebfend'q:I.
w —C B 27TkTB (o] _

Replacing b by its value from (2.41) and using u. - /2%%..,
the most prqbable thermal speed, this equation can be written,

(2.45)

2
p

(wz_czﬁz) : ,BlIJ-r '

e ) .

0
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s the dispersion re on for syerse pro tio
ioniz se It is more general than the usual

expression presented in the literature since it includes the
effect of a magnetic fleld, temperature, and drift. The two
cases glven in (2.45) apply when the propagation is in the
direction of the magnetic field, The dispersion relation for
transverse propagation normal to the magnetic field can be obtained
from this expression by setting the magnetic field equal to
zero, No other directions of transverse propagation are

possible.

'The expression (2.45) is quite complicated and difficult
to interpret. Using the asymptotic approximation for the
integral the dispersion relation 1s

2
ZF%;g?-z(w_FBia%) . (2.46)
This equation is independent of temperature and represents a
considerable simplification in other respectsj it 1s worth
noting just when it can be used. From Figure 2.1 1t appears

that the approximation is justified for
w-vRiw,

lb( ) Bu.

Restricting the consideration to that of strong magnetic

> 5 . ‘ (2047)

fields one sees that the approximation (2.46) is always good
for the dispersion relation with the positive sign, but the
approximation breaks down near the cyclotron frequency when
the negative sign is chosen, The temperature must be

taken into account under these circumstances. Figure 2,2 1is
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FIG. 2.2 A DISPERSION RELATION FOR TRANSVERSE PROPAGATION



51

a family of curves representing the dispersion relation (2.46)
assuming tne drift velocity is zero and taking the negative
signe The modification that the temperature introduces into

- these curves near the cyclotron frequency is shown in Figure
2¢3¢ These curves were obtained directly from the general
diSpérsion relation (2.45) after neglecting the drift velocilty
T o It is clear that neglecting the effect of temperature
introduces a radical‘error into the dispersion relation for

frequencies near the cyclotron frequency.
he o-lonic dispersion relation

A derivation of the familiar dispersion relation for the
ionosphere is given in this section., It is introduced here
because the Bailey bands for wave amplification are determined
from this dispersion relation, and these bands play an
important role in the interpretation of the experimental data
in the next two chapters.

~ The general equations of (2.27) are now
specialized to the case of a single stream, and the velocity
of drift,i?a,is neglected.1 Rewriting the equations (2.27)

for this case gives
¥
(wz_CZIBZ) _(w "i.V)wA‘ﬁ'i.wa (A,acos 9-A3sin9)J= wpszA| , (2.4-8)

: r
(w*-c?BY) _(w-Lv)woz-wacolcos 9] = w, w's, (2449)

lThe extention to include drift velocity can readily be
made, but the result is not pertinent in this development.
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and
. ) ) 2
(w—Lv>w43+wac4|s1n9=wp bLa . (2450)

Here there are three linear homogeneous equations in the three
components of the perturbed stream vector. Consequently, a
solution exists if and only if the determinant of the

coefficients vanishes. Thus

2 2
)
——5— —wl-iv)  -lwwgcosd L ww, sind
w -CB
w® w, 2
i.'CUCUCCOSQ CU((H"'LU) 0 = 0 ,
w® cB
- ilwwgsinf 0 wpz—w(w-lv)

and expanding in terms of the first row one obtains

l:w“; ::32 —w(w-tv):r [wpz—w(w"wﬂ‘wz“’cawszg [wpz-w(w-iv):l

—wzw sin 9[ —w(w-i.v)] =0

-CZ,BZ
. . w2 w42
This expression is quadratic in w-é—_.?glg_é ; solving for this
quantity gives

2
2
ww

w®w, 2sin 0 w® w'sin’g : 2 2
- wlw- Lv)+%—2°———i 3= | tww,cos
—C B Wp -w(w&.iu) Wp —w(w“-i,v)

Now the propagation constant can be obtained by inverting
and transposing in this expression; also normalizing all
frequencies and (c8)in terms of the plasma electron frequency

w . one has



5L

_ w-2sin28
C282=w2-{ w wIU P stn’
l—w(w-iv)

{'_ wg sin )}+ “’;f cos 6 (2.52)

2
l—w(w- iv
This is the important magneto-ionic dispersion equation
used extensively during the thirties to examine the

propagation properties of . the ionosphere.l

2] fi on s of B e 2

Bailey has pointed out that if the magneto-ionic dispersion
relation is plotted with the propagation constant S8 as a
function of frequeney w , neglecting collisions v , then
there are certain intercepts on the frequency axis and
certain vertical asymptotes. These are given by the frequencies

0, twp, tw,, tw,, *wz, AND *wy ,

=L i+ Z+
W, W, = 2[ Wg T AW, = e

where

and

|
RN 2\ 4 1 2, 22 , 2 2 2 >
Wgr Wy = [_2 (wc+wp)' 2«/(“’c +°"P) 4wy W cos 9] '

Bailey states that these frequencies are the edges of
frequency bands within which the propagation constant is pure
imaginary, and therefore waves cannot propagate in these
bands through the medium. However,

"When an electron drift velocity”;“exists the
correSponding(cu,B) curve has some branches which are

IReferences 1, 2, and 30.

2Reference 8.
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similar to the ones just considered but distorted in a skew
manner so that they become unsymmetrical about the w -axis,
The principal consequence is that in general we now obtain

bands in which 8 is a complex number (atib)e

"These bands approximate to the bands considered above
in the magneto-ionic theory. We thus see that the effect of
electron drift is to create wave amplification and consequent
electromagnetic noise in_frequency bands in which otherwise
waves cannot propagate."

In this way Bailey concluded that there would be three
frequency bands in which one could expect fluctuations. These
bands were approximately the frequency intervals ( o, 0,2),

( Wp, Wgq ) 9AND (w,, w3 ) .

207 The low-frequency propagation normal to the magnetic field

Chapter IV is an experimental study of the low-frequency
propagation normal to the magnetic field., Antiecipating that
éhapter, a brief theoretical study on such fluctuationsis
presented in this section. The objective is threefold: (1)
to show that the group velocity of propagation is approximately
equal to the electron drift velocity in the direction of
propagation, (2) to show that there is amplification in this
propagation and determine the dependence of this amplification
on the plasma parameters, and (3) to show that the preferred
direction of this propagation is parallel to the electron
drift. |

Returning to equation (2.25), and writing that expression

. for a single stream in which the cyclotron frequency is so>

iReference 8, pe 431, Some of Balley's symbols have
been altered in the quotation to bring them into agreement
with the rest of this paper.
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high that other terms in the equation on the left are

negligible compared to those containing w . gives

-

(.wz—CZBZ) [mZxZJC—L(B“-Z)?x Z".c:] = (.qu [wZA—CZ(E-Z)ﬁ] . (2.53)

Following the previous convention of assuming propagation in

the 2~direction one has

—

B'—'(0,0,B)’ .
and taking the magnetic field normal to that direction leads to
c—u‘c=(0,wc,0) .

Under these assumptions the vector equation (2.53) expands

into two scalar equations:

(a0 -t Boia] o s

and if (w2-c%8%) # o ,

,:LwA.,wc-LBA3i/',°wc] -0ty (2.54b)

As before the determinant of the coefficients must vanish, and

2 2
wp w . °
W 2B? ‘wc(w_le:; )
= 0 ,
- twcw wpz*'lwc,vi

Expanding this expression and dividing out w gives

wpzw (w ot i.wc,B#f) —we? (wz_Csz)(w —,Bz/';) =0
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Now assuming the phase velocity GuAB)<<1c s the velocity of
light, this equation approximates,

wpzw(wp2+ ’LwCBU’,o) + wczczﬁz(w—ﬁ%o) = 0. (2.55)

This relation is the result of several approximations,
and other simplifications will be made in the development of
‘this section. These approximations are made assuming the
following values as representative of the quantities in this

experimental study

w "~ 22T, 105 radiaens per second

wp ~ 27 .3:109 radians per second
W ~ 2T, 10]-O radians per second

B>

ch ~ > 7.10%0 per second.

~ 2m7.10° per second (2.56)

2¢7.1 The velocity of propagation

Equation (2.55) can be simplified further by noting
that the term involving 1;°, the velocity normal to the
direction of propagation, is much smaller than the other terms

present. Thus (2.59) can be approximated by
w tw+w e B (w-Be) = 0 (2.57)

This equation is linear in the frequency of the disturbance;
solving glves

2 .23 o
w - wcCB %) . Bu? |
Wyt w 2c*RE 3 wp*
P c | + P
wCZCZBZ
Differentiating this equation with respect to the propagation

constant gives the group velocity,



Q+3 . )
o = AUy wCZCZBZ
g dB 3 0)4 2 8
(' + ‘—“?E?—“T'> (2.58)
: w, C°B

CU"
P
For the. representative values of (2.56), ZCZBZ < u and
c

the group veloci is approximate equal to the component of

glectron drift velocity in the direction of propagation.
2,7,2 The amplification with propagation

These low=frequency waves that propagate normally to the
magnetic field at about the electron drift velocity can
amplify as they propagate. This is clear from equation (2.57)

which is cublec in the propagation constant and can be written:
4

Bs—u:o )é- —2 s 0 . (2.59)

22 o
v-
we"C Yy

Descartes! rule of signs implies one positive root and one
complex conjugate palr of roots for this expression. BEvidently
the complex solution with'the positive imaginary part represents
a wave amplifying as it propagates. An important consideration
is the amount of this amplification and its dependence on
the velocity of electron drift and other properties of the

medium; we turn now to an examination of that gailn,

Equation (2.59) is a cubic and the three solutions can
be written out explicitly in terms of the coefficients in
(2.59)s Writing (B' + i Bz) as the solution for the amplifying

wave, 3, 1s given by
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(2460)

weC

27wp4 (v'3°)2
where x= T, e . In this form B, is normalized with respect
‘ » w w
Cc
to its maximum value. Figure (2.4) is a graphical representation

of this function. From the figure it is evident that the gain
remains nearly constant for a wide range of frequencies and
values for the electron drift parallel to the direction of

propagation.

The maximum value of gain can be estimated using the

representative values of (2.56) .

w 2/cucc )
Maximum gain = 20 log,, ( e P (2461)

2
20 Wp
2.3 wcc

2¢7¢3 The direction of propagation

~ 2db per cm .

The study of the last section was carried through
assuming that the term involving velocity transverse to the
direction of propagation, ©1° could be ignored in the
dispersion relation (2.55) since it is much smaller than the
other terms, In this section that velocity is taken into
account by a perturbation methods The result indicates that
any such velocity transverse to the direction of prOpagation'

introduces attenuation and consequently, the preferred

rection of low-frequency pro tion normal to the magnetic

field is parallel to the electron drift.



ool ol

d1314 JIL3INOVN 3THL
Ol ATIVWYHON Q31VOVdOdd S3IAVM

)
m m
ANNON
2

€
A dmyz

)

AON3INO3H4 MO HO4 NIVO A3ZITTVWYON

¥'2 9old

/

310LJWASY

20

0

90

8’0



61

Equation (2.55) 1s a cubic in the propagation constant
B 3 it can be written,

( We 2CZV3°>BS_( wczczw)ﬁz“ (L“’pz""‘i"c"’uo )B-wp"w =0 (2.62)

This 1s just the same as the cubic (2.59) except that the
term involving the transverse velocity has been added. Now
this added term is presumed small compared to the others,
Suppose that ignoring it the solution is 3 ; we seek a
solution ,80 + ¢ which includes this term with the understanding
that ¢ << 8, + Putting/3, + € into equation (2.62), using

the fact that 3o satisfies this equation if the higher order

term is ignored, and keeping only first order terms in € gives
2 2 ° 2 2 2 R °
( we C Vg )3,806_(‘% ¢ w)ZBOG—pr wwet;°By = 0
Dividing out w, B, and solving for e leads to

2 )
wp CU‘U'I

(2463)

€ = 1
2 z
3c,30wc1/°3 -2<.uCC w

Now it is not difficult to show that the real part of B,is
negative for the amplifying wave discussed in the last section.
Consequently e introduces a negative imaginary part into that
solution, This corresponds to attenuation, and one can conclude
that the maximum amplification of these ‘low-frequency waves
occurs when the propagation is parallel to the electron

drift velocity.



Chapter III

AN EXPERIMENTAL TUD THE P VER
'EPE"'T""""CT Uli, TECHNIQUE . w RESUITS

3¢l Gas diode and experimental apparatus

Several electrode structures were considered as a pre-
liminary step in the expefimental study of the power spectrum
of a glow discharge in a magnetic field, but all of the
spectral data of this report were obtained using the electrode
geometry of Figure 3.1. The cylindrical anode showﬁ in the
figure is made of copper, the cathode discs of aluminum. A
section of the anode is made of copper screen instead of plate
copper so that the discharge can be observed visually. This
electrode geometry is particularly useful for low=pressure
work in the presence of a magnetic field, the cathode structure
being similar to that incorporated into the Philips ionization

‘gauge.

The construction of the probe shown in Figure 3.1 will
be discussed later 1n the section on instrumentation. How=-
ever, it is worth remarking early in this chapter that most
of the spectral data were taken with an electrostatic probe
like that indicated in the figure. 1In all cases this probe
was located midway between the mycalex insulating plates and

1.5 inches from the anode.

Figures 3.2 and 3.3 are photographs of some of the
experimental apparatus. Figure 3.3 includes a front view of

the aluminum chamber that houses the gas diode. During

62



FIG. 3.2

GENERAL VIEW OF EXPERIMENTAL APPARATUS
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FI1G. 3.3
REAR VIEW OF MAGNET AND BOX SHOWING
VACUUM PUMPS AND MAGNET POWER SUPPLIES
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operation this whole chamber is evacuated; the chamber is
continuously pumped, and the desired gas continuously enters.
This assures a pure gas, and also provides an easy method of

controlling the pressure.

3s2 Static characteristics of the discharge

The gas diode just described 1s typically operated with
1500 volts between the terminals. The current is about 0.5
amperes with a pressure of 10 microns and a magnetic field
of 3500 gauss. The discharge appears as a uniform, transparent
glow filling the whole volume of the diode under these

circumstances.

The static characteristics for this type of discharge
are extensiveiy treated in a report by Rarly, Smith, and
Lu.l The significant distinction between the volt-ampers
characteristics of this glow discharge and the more familiar
one at higher pressures with no magnetic field is that the
magnetic field and the lower pressure tend to increase both
the resistance and the incremental resistance of the
characteristics. Thus the characteristics appear much like a

conventional high-vacuum diode.

3.3 Instrumentation

The method used to obtain the spectral data can be
understood by referring to Figure 3.4, which is a block

diagram of the circult arrangement.

lReference 22,
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CAPACITIVE COUPLING TO ELECTROSTATIC PROBE
/ CRO.Ippuf
NOISE SOURCE

(:::}’*I _|PrROBE ATTENUATOR RECEIVER METER
C 50 L
SIGNAL
GENERATOR
FIGURE 3.4

BLOCK DIAGRAM OF INSTRUMENTATION CIRCUIT ,

A probe in the gaé discharge, indicated here as a noise source,
plcks up the fluctuation in the discharge and feeds it intb

an attenuator, The role of the attenuator is a decoupling
one: to insure that all frequency components in the
fluctuations are presented the same loading. To maintain

this constant loading even at very high frequencies, the
electrostatic probe 1is so‘constfucted that it i1s essentially

a short section of coaxial transmission line using a
hypodermic needle for an outer conductor, tungsten wire for

an inner conductor, and a ceramic tube for a spacer. The
probe dimensions are chosen to give a characteristic impedance
of fifty ohms so that the probe conveniently connects to an

R. G. coaxial cable that goes to the attenuator. A glass
envelope shielded the probe so that all the current flowing

in the probe is due to induction. From the attenuator the
signal is fed to a receiver; the output of the receiver is

metered so that the noise input in the pass band of the receiver
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can readily be determined by using a signal generator as shown

in Figure 3.4. An attempt is made to avoid errors by calibrating
each point separately; that is, the output of the signal |
generator 1s adjusted to give the same meter deflection as

the noise source produces at the same frequency. Using this
method, the power spectrum at a given frequency is the output

of the signal generator at that frequency divided by the noise
bandwidth of the receiver.l |

There are three significant errors in the method of
instrumentation. (1) A 10 db fixed attenuator was used.
Under the most extreme variation of the receiver input
impedance from zero to infinity the input to the attenuator
would vary from 44 to 67 ohms. For microwave frequencies
the variation in resistance at the probe might be even greater
because of the standing wave on the coaxial line. (2) Any
nonlinearity in the amplification of the receiver before the
second detector leads to error. It was presumed that the
superheterodyne receivers used were linear as long as the
metered output was below that value which indicated overload
with a sine wave input. (3) The argument developed in
Appendix 5 indicates that the meter following the linear
amplification must be squaré-law. The meters in this study
were connected to measure the filtered output of the second
detector. For low power input this is square-law; for high

power more nearly linear. The error introduced by this

lA proof of this statement is included in Appendix 5.



69

feature is outlined in Appendix 5. It is estimated there
that the error in the square root of the power spectrum does

not exceed 11% from this cause.

3e4 Presentation of data

There are a great many parameters that enter the
experimental study of the power spectrum. They include the
type of gas, gas pressure, magnetic field strength, discharge
current, type of probe, position and orientation of the probe,
and many others, Much of the data that have been taken in
this study represent a survey of the influence of these
factors on the spectrum. These data are coarse; the points
are too far apart to indicate the detailed structure of the
spectrum, On the other hand data have been obtained in an
investigation of the spectrum near the ion cyclotron frequency
in which the fine structure of the spectrum was examined
with care. These data were taken using hydrogen and helium
since these lighter gases have the higher ion cyclotron
frequency for a given magnetic field., The rather sharp dip
in the spectrum at the cyélotrbn frequency provides one of

the few methods of comparing the theory and experiments.

3e4.l The ion eyclotron frequency data

The emphasis in this section is on the power spectrum of
hydrogen and helium near the lon cyclotron frequency,
Consider Figure 3.5a3 a curve is presented there for the
square root of the power spectrum of hydrogen with the

particular magnetic field, current, and pressure indicated.
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The striking feature about this curve is the sharp dip at
the ion cyclotron frequency and the rises in the curve above
and below that frequency., This is reminiscent of Figure 1.6
in the theoretical study of the ion fluctuations. A
discussion of this similarity in the theory and experiment
is included in Chapter V_whére a general comparison of the
theoretical and expérimental work 1s presenteds Two other
features of Figure 3.5a are worthy of note. (1) Near the
frequency of 800 kilocycles per second there appears to be a
‘broad resonance. It is likely that this resonance is to be
identified with ions oscillating in a potential minimum as
discussed by Ballantine and later Cobine,l (2) The power
spectrum seems to decrease markedly near 15 megacycles per

second.

These features discussed in connection with Figure 3.5a
are common to all of the data that have been taken near the
ion eyelotron frequency. Figure 3.5b shows much the same
behavior; the direét current is half that of Figure 3.5a
‘and the amplitude is correspondingly depressed, but near the

cyclotron frequency the behavior is much the same. It is

impértant to note that the cyclotron frequency is computed
gssuming an lonized atoms if ionized molecules are present
in the gas, their effect is certainly much less pronounced

in the spectrum, Figure 3.6 shows the effect of a change in

lReferences 10, 16, 17, and 18.
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pressure, and in 3.7 other values of magnetic field have been

chosen, Figure 3.8 shows similar curves for helium.

The cyclotron dip assoclated with these curves seems to
be less pronounced for gases of higher atomic weight, and
for increases in pressure and decreases in magnetic field.
" Perhaps this is not surprising,for all these changes tend to
increase the ion collision frequency relative to the cyclotron
frequency, and such an increase would likely dampen any
pronounced effect at the cyclotron frequency, Probably this
is the reason Cobine in his extensive studies did not report
any peculiar behavior of the spectrum at the ion cyclotron

1 Most of his work was with heavier gases than

frequencye.
hydrogen and helium, and his pressures were higher and his

fields lower than those considered here,

3242 Reproducibility of data

The figures of the last section reflect the accuracy
that can be attained if considerable care is taken in
gathering the data. However these results are somewhat
deceptive, for although successive points of these curves
are in good agreement, if the electrode structure is taken
apart, reassembled and the same data takén, the agreement 1is
not nearly as satisfactory. This is shown in Figure 3.9
where the results of taking the same data on successive days

after dismantling and reassembling the equipment are plotted.

lReferences 16 and 18.
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The average difference for these points is about 7%; this figure
of 7% is a rough measure of the reproducibility of data in

the low frequency range.

3e4.,3 The power spectrun of a nitrogen discharge

Most of the survey data on the spectral distribution of
the fluctuations were taken with nitrogen gas. The influence
of gas pressure, magnetic field, type of probe, and probe

location have been considered, Figure 3.10 presents some of
| these data for a wide frequency range. The ion cyclotron
frequency for nitrogen gas is below half a megacycle per
second and the characteristic dip does not appear. These
curves show the relative behavior of the spectrum with
frequency and pressure, The absolute calibration on the
ordinate is not too significant since it depends on the
probe size, but some idea of what the numerical value of the
ordinate implies 1s given by noting that the thermal noise
from a linear resistance of fifty ohms connected at the input
to the probe would plot as a horizontal line in Figure 3.10
with an intercept at 4.5'x 10~%, This value is far below the
data represented in the Figure.l

The curves of Figure 3,10 show a very broad spectrum,
high in intensity compared with thermal noise, The curves
fall away to a minimum near 200 megacycles per second and

increase above this value. In Chapter V the regions below

lThis value for the thermal spectrum of a linear resistance
is calculated assuming room temperature, 300° K.
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and above this minimum are identified with the amplification
bands of Bailey.l The rolling character in these curves that is
most prominent near 30 megacycles per"second is believed to be due
to the slight mismatch on the line and probably has nothing

to do with the fluctuations,.

Figures 3.11 and 3.12 give similar curves for different
‘choices of the magnetic field. Evidently for such high fields
the value of the field has 1little influence, although the
low=frequency spectrum tends to increase slightiy with an
increase in the field, The influence of pressure is more
prominent, An increase in pressure seems to lead to a
décrease in the power spectrum at all frequencies., This
result was checked over a wider range of pressure for
particular frequencieé. The result is shown in Figure 3.13.
The lowest pressures of these curves represent the lowest

| values of pressure at which the discharge could be sustained
for the fixed power inpute. These curves indicate that over

a wide pressure range a decrease in pressure implies an increase
in the spectrum, In all the studies of hydrogen, helium,
argon, and nitrogen, this same result has been observed.,
Different probes, magnetic fields, or other parameters do not

seem to alter this statement, and it 1is appafently true that

if other things are unaltered an increase in the spectrum

accompanies a decrease in pressure. Perhaps such a general
conclusion is to be anticipated because the damping on the

| I 8.4

eference
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fluctuations is due to the rate of collisions of the charged
particles,and a reduction in pressure reduces theAéollision

rate.

3e4e4 Data with a loop probe

- Some of the survey data for the low-frequency end of the
spectrum have beeh obtained using a two=turn loop probe.
This probe was constructed in a manner similar to the
electrostatic probe already discussed except that the termination
was a two-turn loop of tungsten wire covered with a high
temperature cement so that the wire was not directly exposed
to the discharge., This type of probe seems to be of limited
usefulness since it is necessarily more bulky than the
electrostatic probe, and the inductive reactancé of the
two turns places an upper frequency limit on its applicatidn;
the two-turn, quarter-inch diameter loop of this study was
satisfactory to about 50 megacycles per second, However, by
orienting the plane of loop in the direction of the magnetic
field and normal to that direction, information about the
fluctuations could be obfained that was not revealed by the

electrostatic probe.

In many respects the data obtained using the loop probe
was similar to that of the electrostatic probe. For example the
spectrum obtained with the loop probe was relatively insensitive
to the magnetic field and increased with a decrease in the

gas pressure in much the same manner as the spectrum obtained

when using the electrostatic probe. Figure 3.14 gives a new
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result; it shows the influence of the location of the loop
probe on the character of the spectrum. The probes in the
three cases are located 0.5, 1.5, and 2.5 inches from the
anode. The general tendency seems to be for an increase in
the amplitude of the spectrum with the loop nearer to the
anode. This has important implications, for it 1s argued in
Chapters IV and V that much of this spectrum has its origin in
waves that propagate from cathode to anode, increasing in
amplitude as they move. The higher intensity of the spectrum

near the anode is explained in this way.

Figure 3.15 presents a comparison of data taken with the
probe in different orientations. An interesting feature in
these curves is the change that seems to take place at about
four megacycles per second. Above this frequency the horizontal
and vertical orientation seem to give a similar spectrunm.

Below this frequency the horizontal probe seems to have a con-

tribution that the vertical orientation does not provide.

There is a general tendency for the amplitude of the
spectrum at low frequencies to increase with frequency when a
loop probe is used and decrease with frequency when an electro-
static probe is used. This is not surprising for one can
expect the ratio of the absolute values of the electric field
and the magnetic field in the plasma to be approximately
independent of frequency. Assuming that the voltage on the
electrostatic probe is proportional to the electric field
and that on the loop probe proportional to the time derivative
of the magnetic field, the square root of the power spectra
with the two probes will differ by a factor proportional
to frequency. This is approximately the result obtained.
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Chapter IV

TR I S ————— A— A B ———

The last chapter was a study of the distribution of the
power in the fluctuation with frequency. This chapter is an
exanination of the fluctuations in time; the objective is to
answer the following questions: |

(1) How fast do the fluctuations propagate?

(2) In what direction do the fluctuations propagate?

(3) Do the fluctuations amplify or attenuate as they

propagate?

4,1 The low-freguency fluctuations

The experiments of this study were performed in the gas
diode described in the last chapter, but the probe structure
was modified from that previously discussed. The probe was
merely a bare wire in a fine ceramic tube with the wire
extending a quarter of an inch beyond the ceramic as sketched
in Figure 4.1. The probe is midway between the mycalex plates
and extends half an inch into the diséharge. The other end of
the wire was returned through a 300K ohm resistor to the plate.1
The average potential on such a probe 15 typlcally 400 volts
below the plate potential. Photographs of thé fluctuating poten-

tial on such a probe are shown in Figure 4.2, The high intensity

and random nature of tlis disturbance should be noted.

1A particular merit of bhiasing the probe in this way is
that it avoids the rectifying action of a floating probe., See
References 22 and 41,
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4,2 A comparison of the f;uctggt;ons on two neighboring probes

If a second probe is placed in the discharge one inch
from the first and at the same distance from the anode, as
indicated in Figure 4.1, the fluctuations on the two probes
typically have the appearance shown in Figure 4-.3.1 The
corresponding potentials on the two probes appear remarkably
alike with two important exceptionss: , (a) the fine structure
is different in the two fluctuations, (b) the voltage on probé
2 seems to be delayed ih time with respect to the voltage on
probe 1, This delay apparently represents the time it takes
the fluctuation to propagate from a point near the one probe
to a point near the other. If the direction from one*probe
to the other is the direction of propagation, then the velocity
of propagation can evidently be determined merely by dividing

this time delay into the distance between the two probes.

4,3 The methodology

The data were obtained in the way suggested in the
discussion of Figure 4,3 except that a reticule appears on
the/photographs of the working data and the average level of
the voltage was carefully noted. Also a half-megacycle signal
was placed on the oscilloscope and photographed so that any
nonlinearity in the sweep-rate could be calibrated out.

About 200 photographs were taken in all, The relative probe

IThese photographs were obtained using Polaroid Land
cameras mounted on two Tektronix 513 oscilloscopes. The
common time base was determined by intensity modulating the
beam at the point t = O shown in Figure 4.3. The sweep-rates
were set at four microseconds per centimeter,
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positions, maghetic field, pressure, and power input. were

changed during this study.

The time delay between the fluctuations on the two probes
was determined by cross-correlating the two potentials, That
is, calling the potential on probe 1, ¢, (t) , and that on

probe 2, ¢, (t) , the value of t where the correlation

function, g, (t+7) @, (t) , reached its maximum was taken
as the delay. The bar over this product means the avérage
in time, where the average is extended over all time where
the potentials are defined by the photographs. Figure 4.4
shows the cross-correlation for the pair of curves given in
Figure 4.3a, and the auto-correlation for the potential on
probe 1 of the same Figure. In this case the coirelation

functions have been normalized in the usual way, i.e.,

¢(t+7)¢ (1)
"/qbf(t) ¢; (1)

auto-correlation = ¢, (t+7), (1)

$2(t)
The fact that the cross-correlation of Figure 4.4 reaches a

cross-correlation =

value of 0,99 indicated that apart from the delay of 3.8
microseconds the potentials of Figure 4.3a are nearly the

sane.

The procedure that has been used to determine the velocity
from the time lag can be understood by referring to Figure
4,5, Suppose the fluctuation is prbpagating in the direction
P-P' with the probes in the positions shown. We now

assume that the delay 7 measures the time it takes the



SANOO3SOYHOIN NI JNWIL

al-

9l 2l '8 v o v- 8-
)
[*e}
AV13d 3IWIL 90
D¢t 34N9I4 40
IVNOIS WY3NY1Sdn ¥04
NOILV13¥H0D-01NV
al 1'0 X\ /
N N
\ X 7
AN
x/ ! 80
N / _ y
et IYNDIS ¥O4 N\ N /
NOILV13¥H0D-SS0YHD // p
X, s yd
. // a4
N | / \\\ \
NX
X
e G %
- Toi
ALIDOT3IA NOILVIIHYEOD 3HL 3INIWN3L3A
Ol d3SN NOILVI3HY0I-SS0HD ANV
NOILVI3HH0D-01NV 40 SIAYNI IAILVLINISINd3Y
vy old




9

electrical disturbance to propagate from a point nearest
probe 1 to a point nearest probe 2 along the direction of

propagaticn. This time is

Lcos d
v

where £ is the distance between the probes, v is the velocity

T =

of propagation, and a is the angle as shown in Figure 4.5.
The delay T 1is given by the correlation-function, and the
distance £ between the probes is known, so that by taking data

for two different relative probe positions the unknown velocity
and direction of propagation can be calculated.s In practice
three different relative positions of the probes were taken so
that there was a check on the answer, For all three positions
the probes were one inch apart and in the éame horizontal plane,
but the .direction between the probes was altered. In one case
the probes were equidistant from the anode; in a second they
were on the same radial line; in the last case the relative

position was between these two.

PROBE 2

FIGURE 4.5

DIAGRAM SHOWING THE METHOD USED TO DETERMINE THE
’ -VELOGHTY .OF PROPAGATION .
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4,4 ent that the correlation velocit d gro
veloci e % e Same

The last section showed that a "corfelation" velocity
for the propagation could be obtained by cross-correlating
the fluctuations on two neighboring probes. The question
arises as to the relation between this velocity and the more
familiar group, phase, or signal velocity. In this section

a fo:mal proof is given that

The correlation velocity is equal to_the group velocity
‘whenever a single group velocity exists.

As corollary we have that

The group Velocity is the velocity of maximum correlation.

The phrase, '"wyhenever a single group velocity exists,"

will be taken to mean that the disturbance can be expressed

4in the form

© i[wt—B(w)z]
f(t,z)= fF(w)e dw (4.1)
-
with a group velocity independent of frequency.

Tt is to be understood that F(w) is a function of w which
' i[wi-B(w)z]

changes slowly with w compared to e o Under

these circumstances the group velocitygrué,is given by

|
“9°4dB * | (442)

dw ,
The fact that the group velocity represents the velocity

of propagation of f(t,z) 4is often argued using Lord Kelvin's
%principle of stationary phase." This principle effectively
states that f(t,z) as given in (4.1) reaches its greatest

value as a function of t and # where there 1s stationary
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phase, i.e., where

[a:t -B(w) i]== 0.

dw

Carrying out the differentiation

a
¢ - dw 2=0

so that
agz _ |

& ° g

: dw
and the disturbance travels with the group velocitye.

The correlation velocity in this notation can be
represented in the following way. Probes are located at 2

and 2, ; the fluctuations on these two probes are fr(t, #)

and £(t, 2,) respectively. Forming the product, r(t+ 7, 25) f(t,ll),

the cross=correlation is defined by
T

<I>(f)=*}il‘1w§.— / £ (t+7T, ) f(t, B) at. (4.3)
-T
Taking the delay where this correlation function has its

maximum as v = T e the correlation velocity i1s given by

-3
T

We now want to show that this correlation velocity and the

group velocity are equal, i.e.,

| 25
B T
dw
Substituting into the integral of (4.3) from (4.1) gives
ﬂwr+un—§t-3(w)£¢+ﬁ(§)zJ

lim | T @ @ *
d(T)=r_ T Tdf[mdwj_'wagF (w) F (£)e

(4.4)

(4.5)
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where the star indicates the complex conjugate. Freely
interchanging the order of integration and carrying the 1limit
under the integrals gives a form

y I T i(w-t)t
im  _1_ , -
oo ZT-[:Te dt= 8(w-0) (4.6)
where & is the Kronecker 8 function defined by
$(x) = {(l) if x# O

if x= 0. (407)
Then (4.5) becomes

o © i[wr—B(w)zai-B(t )z,]
[mdwf_wdg Flw)F(L) 8(w-t)e (4.8)

®(7)

=f°°|F(w)l’e i[“’T'B(“’)*fB(“’)‘l]d
. 7=

w.
Now applying Kelvin's prineciple of stationary phase to

determine the value of r that maximizes this function,
d - w)z :0.

On differentiating, one obtains

d8 .

Tm'(i.‘z' Z-,) do - 0, or

*2 - i' - | (404‘)
s ’
T d8
dw

which is what was to be proved.
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4,9 The velocity of propagation

Figure 4,6 summarizes the important results of the velocity
measurements. The figure shows the direction and magnitude |
for the velocity of propagation in nitrogen gas for various
conditions of operation, The directions of these vectors
are probably reliable to * 15° and the magnitudes to * 30%.
This sizable error seems to be due to three effects, (1) The
correlation calculation was made by averéging over about forty
microseconds of the fluctuations., This period was evidently
not long enough to insure.accurate reproducibility. (2) The
eross-correlation function was calculated from enlargements
of the original photographs. The drying of the enlargements
introduced nonuniform shrinking, (3) The direction of propagation
was incorrectly estimated at the beginning of the study, and
consequently the choice of relative probe positions was not
the most satisfactory. The errors due to these three difficulties
could certainly be reduced by: (1) taking several photographs
with the sameAconditioné of operation and consequently
increasing thé period of averaging, (2) exercising more care
in the drying of enlargements, and (3) selection of new
relative probe positions in view of the result already
obtained, It should be easily possible to halve the errors
in this way.

4,§ Ihe amplification of propagated waves

The argument of Bailey that the fluctuations are to be
identified with those waves that amplify as they propagate
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has been mentioned many times in the earlier chapters. This
chapter has demonstrated experimentally that there are high
intensity waves propagating from cathode to anode, and it 1is
natural to investigate whether there is amplification assoc-
iated with these waves., This has been done in the following
way. The two probes alreédy discussed were placed midway.
between the mycalex insulating plates (see Figure 4.1)3; these
probes were one-half inch apart and on the same radial line.
By connecting their output to the input of a pulse transformer
which isolated the probes from ground it was poscible to obtain
the fluctuating’difference voltage between the two probes.
This was accomplished by connecting a 100-ohm resistance across
fhe secondary of the transformer and determining the effective
voltage on this resistance by using a crystal rectifier and
microammeter. Just as in the experiments on the velocity of
propagation discussed earlier in this chapter, the probes were
connected to the anode through resistances so that a direct
current was carried by the probes. This current was maintained
constant when the probes were moved to new positions by changing
the resistances between the probes and the anode. |

The results of this experiment‘are shown in Figure 4.7
where the voltage between the probes is plotted as a function
of the distance from the probes to the cathode axis. The
position of probes is taken as the point halfway between them.
The increase in the curve of Figure 4.7 with distance from the
cathode supports the idea that the waves amplify as they propa-

gate from cathode to anode.
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This chapter was a study of the velocity of propagation\
for the low-frequency fluctuations. The observations on the
amplification of propagated waves arose as a by-product of
the study, and the data on amplification were quite limited.
However, it seems worth emphasizing that the important and
controversial problem of growing waves in a plasma caﬁ be
experimentally investigated more thoroughly using a two-
probe (or multi-probe) study similar to that outlined in this

chapter.



Chapter ¥V
A COMPARISON OF THEORY AND EXPERIMENT

The theoretical studies of Chapter I and II are largely
an examination of particular solutions for the differential
equations used to describe the electrical character of the
plasma, These solutions also satisfy the wave equation and
consequently represent the propagation of electrical
disturbances through the medium. An important result of this
theory 1s the determination of a dispersion relation which
relates the frequency of prOpagation and the wave length.
Unfortunately neither the dispersion relation nor the other
results of the theory permit an explicit prediction on most
of the experimental data. However there are several conse-
quencés of the theory that can be checked experimentally and
likewise implications of the experiments that can be tested
in the theory. This last chapter compares the theoretical
and experimental studies of the earlier chapters in five
ways: (1) by examining the power spectrum near the ion
cyclotron frequency, (2) by studying the experimental data
on the power spectrum for the ion cut-off frequency predicted
by the theory, (3) by checking the Bailey amplification bands,
(4) by examining the amplification of propagating waves, and
(5) by noting the velocity of low=frequency propagation.

9¢) The power spectrum near the ion ecyelotron frequency

Chapter III is an experimental study of the power spectrum, -

103
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In principle one might take the particular solutions of the
theory, assign a particular weighing function to’them, and
represent a theoretical spectrum by a sum over these weighed
solutions, However there is apparently no convenient way to
determine such a weighting function, and only in a narrow fre-
quency range near the lon cyclotron frequency will this technique

be employed,

It is shown in Chapter I that the electric energy in the
propagated waves approaches zero as the frequency approaches
the lon ecyclotron frequency. In Chapter III the experimental
dat; revealed a sharp dip at the ion cyclotron frequency.
These two observations seem to support one another; the point
can be made more concretely in the following way. Suppose the power
spectrum on the probe at a given frequency is assumed pro-
portional to the average electric energy per unit volume in
the gas at that frequency. In Chapter I the ratio of this
electric energy density to the average kinetic energy density
for the ionsis determined; this ratio, R(w, 6), 1s given in
equation (1.43), and graphically presented in Figure 1.6.
Under the identification of the power spectrum on the probe
with the average electric energy per unit volume, the

spectrum can be written,
2w

J W (w, Q) * R(w, Q) a0 (5.1)
0]

where W represents the average ion kinetic energy per unit
volume for those waves propagated in the direetions between

6 and o + do with frequencies between w and w + gw »
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An estimate of the weighting function W in (5.1) leads to
a spectrum; for want of a better cholce suppose W is assumed
constaﬂt; that is, assume thaﬁ all permitted waves are present
and that thelr total ion kinetic energy 1s evenly distributed
among them. The spectrum in this case is pruvyortional to an
integral of the known function R(w, 0)e This integral was
evaluated graphically; it is plotted in Figure 5.1. The
similarity of this curve near the ion cyclotron frequency to
the experimental curves in Figures 3.5 to 3.8 is taken as
support of the theory. Of course, the assumption that the
weighing function W is independent of frequency and the
direction of propagation is an oversimplification, but for
‘any sensible choice of W the integral of (5.1l) would dip at

the cyclotron frequencye.

There is one further check on the theory of Chapter I. In
Section 1.3 it is shown that the dispersion relation implies a

greatest unattenuated frequency for the ion fluctuations given by

(542)

where wp is the plasma ion frequency and cucis the ion cyclotron
frequency. This frequency might typically be 30 megacycles

per second for the choice of parameters'in Chapter III. The
curves for hydrogen and helium in Figures 3.5 to 3.8 lend

~ support to this idea of a cut-off, but the curves for nitrogen
in Figures 3.10 t0 3.12 show no sign of any cut-off frequency
below about 100 megacycles per second at the lower pressures.

To identify the minimum at 100 megacycles per secondl
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with the maximum frequency given by equation (5.2) would
require about 13% ionization.at a pressure of 4 microns and
a gas temperature of 1800° Kelvin, Stated another way, this

10 cycles

would imply a plasma electron frequency of l.6 x 10
per second., These values of percent ionization and plasma
frequency are too high, so that it seems impossible to
attribute the broad noise band of nitrogen below 100 megacycles

per second with ion fluctuations.

A more successful explanation of this noise is given by
the Baiiey amplification bands discussed in Section 2.6.
According to Baiiey's_argument this low-frequency noise band
is attributed to electronic disturbances, which extend from
w = 0to w2 = %[/wca + hwpz _ch, where these plasma and
cyclotron frequencies are for the electrons. Solving this

last expression for the plasma electron frequency gives

wp=\/wc w, + w22 . (5e3)

Taking values from the 4 micron curves of Figure 3.9 one has

Wy = 2T (]_.'50’)1,08 radians per second

w. = 2T (1.28)10lo radians per second,
c

Putting these numbers into (5.3) gives ‘“’p 2 7 (1.38) 109
radians per second, which is a very reasonable value for the

electron plasma frequency,

5,2 The low-frequency propagation normal to the magnetic field

Chapter IV is an experimental study of the low frequency
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propagation normal to the magnetic field. The group velocity
for these propagations was determined experimentally, and an
estimate of the gain associated with the propagating -waves
was made, These experimental results can be compared with

the theoretical work in Section 2.7.

5,2,1 The velocity of propagation

The experimental results for the direction and amplitude
of the propagation velocity are summarized in Figure 4.6.
This velocity was determined by a correlation method, but it
is shown in Section 4.4 that this correlation veloeity 1is
equal to the group velocity of the propagating waves. The
theoretical studies in Section 2.7 argue that these low
frequency waves, propagating normal to the magnetic field,have-
a group velocity that is approximately equal to the component
of electron drift velocity parallel to the direction of
propagation, and further that any electiron drift normal to the
propagation direction introduces attenuation, so that the
preferred direction of propagation 1s parallel to the direction
of electron drift,

These theoretical and experimental observations can be
compared qualitatively, but it is difficult to check the
agreement exactly since neither the amplitude nor the
direction of the electron drift velocity is known independently.
The direction of the velocities in Pigure 4.6 must be nearly
that of the electron drift velocity, for the electrons tend

to move from the cathode to the anode, but the Lorentz force
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deflects them counterclockwise. Also, one would expect this
drift direction more nearly f:om cathode to anode fof a
reduction of the magnetic field, and rotated farther cdounter-
clockwise for an increase in power input. Figure 4,6 shows
just this behavior; it seems likely that the theory and

experiment are in good agreement on this point.

Checking the magnitude of the group velocities in Figure
4,6 with the theoretical observation that this magnitude
should be approximately equal to the drift velocity is more
difficult. The speeds of Figure 4.6 correspond to about
0.04 volts which certainly does not seem like too high a value
to identify with the velocity of the electrons. Also these
- velocities are somewhat less than the Lorentz velocity which
is sometimes taken as an approximate wvelocity for the electron
drift. On the other hand, if the density of electrons is
estimated by dividing the direct current delivered to the
anode by the anode area, the electron charge, and the component
of group velocity normal to the anode as given in Flgure 4,6,
the value seems quite small., Thus, taking this velocity as
10% meters per second, the anode area as 4 x 102 square
meters, and the current as 0.2 amperes, .the density is given
by

- 0.2

N = -
o = 3.13 - 107 (5.4)
19) . 4 -2 y
(1'6 » 10 ) 10 (h-lo ) electrons per cubic meter .

This number can be compared with 2.66 x 1019 which represents

the particles per cubic meter for an ideal gas at 4.5 microns

pressure and 1800° Kelvin, This gives an ilonization of about
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1
100 313 - 10 > - .012% which seems low, The corresponding

2.66-1019 W
electron plasma frequency is é_#?_ . 505 megacyecles per
second. It is likely that this plasma frequency is too low
by a factor of about four and that the corresponding density
of charged particles given in equation (5.4) is low by the
square of this, or sixteen. This apparent discrepancy can be
explained away by noting that the "effective™ area of the
anode is likely to be much less than the‘geometric area and also
that the electron drift velocity is likely to be much higher rear
the middle of the anode where the data were taken than at
the top or bottom., Both these considerations would reduce

the denominator of (5.4) and provide a more satisfactofy

ansﬁer for the density of charged particles.

5,22 The gain with propagation

It is argued theoretically in Section 2,7.2 that the
low frequency propagations normal to the magnetic field can
experience gain. The value of gain is calculated in that
section, and the result is presented graphically in Figuré
2¢4, This result can be compared with the gain that was
observed experimentally., The approximate value of the
experimental gain is given in Section 4.6 as 1.2 db per
centimeter, For the parameters used in that experimental
study the abscissa of Figure 2.4 would be less than unity
and the theoretical gain would be approximately given by its
asymptotic value of 8.7 %?;. R Thé magnetic field for the

C
experimental studies of Section 4.6 was 3550 gauss which
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corresponds to a cyclotron frequency of w. = 27-10°s If

this value is used and the theoretical gain identified with

the experimental gain, a plasma frequency can be calculated;

that is,
W 2

8.7 -p——— = 102.

wcC

Solving for the plasma freguency

wp* \/41'2)(2 78.‘}{010)(3,10101 - 27 (2.8)107

radians per second.

This is a very reasonable value for the plasma electron

frequency.

5e3 Concluding remgrks

Much of the data that have been presented in this paper
must be regarded as qualitative, and the interpretation given
to that data in certain instances may be subject to serious
eriticism, The theoly too has shortcomings, for it is
essentially a small-amplitude study of a high-amplitude
phenomena. Also the theory contains parameters such as the
density of the charged particles and the temperature of the
electrons which héve not been independently determined and
indeed cannot be determined by any familiar method. For these
reasons the concluding remarks should be looked on as the
author's impressions and not as facts; these remarks are an
attempt to explain the high-intensity fluctuations that were

observed in the experimental studies of this report.

It seems likely that most of the fluctuations described
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in this report are attributable to electron behaviore. The
low frequency disturbances appear to have their origin near
the cathode; very likely they are generated by cathode
sputtering, This embryonic disturbance is probably several
volts in amplitude., Much of this early disturbance is likely
attenuated but certain components are amplified. The greatest
gain is experienced by the waves propagating‘parallel to the
electron drift velocity. These waves grow at about two
decibels per centimeter, reaching thelr maximum near the énode.
The velocity of these waves 1s very nearly fhat of the average
electron velocity. These waves grow by taking kinetic energy
out of the electron stream which in turn take energy from the
average electric gradient established by the potential on the

electrodes.

These electronic disturbances cannot explain all of the
fluctuations at the low frequencies. The power spectrum curves
of the hydrogen and helium discharges discussed in Chapter III are
certainly not to be interpreted without admitting ilon
fluctuations, However, it seems likely that the prominent
contribution of the ions in the spectrum of hydrogen is local
to the cyclotron resonant frequency and merely adds to the
broader spectrum due to the electrons. Also it appears that
gases heavier than hydrogen have a reduced ion contribution
in the spectrum, and it is likely that the broad spectrum of
nitrogen discussed in Chapter III is entirely due to the

electron fluctuationse
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Appgndix 2
LIST OF SYMBOLS

a constant

the vector potential

a constant

the magnetic flux density

a constant

a constant

the velocity of light

the electric field

the electric field of the undistrubed stream
the perturbed electric field
the fundamental charge

the direct current

the current density

the Boltzmann constant

the electron masé

the ion méss

the density of electrons

the density of ions or of electrons in the
undisturved plasma

the ion density

the perturbed electron density

the perturbed ion density
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pressure

total stream vector

stream vector of the r'th stream

total perturbed stream vector

perturbed stream vector of the r'th stream
electron temperature

perturbed velocity of the ions

ion drift velocity in the direction of propagation
electron velocity

group velocity

ion velocity

ion velocity of the undistrubed plasma
drift velocity of the electrons

electron velocity in the r'th stream

most probable thermal speed

propagation constant

free-space dielectric constant

éngle between the direction of propagation and the

direction of the magnetic field

the

wave length

a normalizing constant

the

permecability of free-space

a constant approximately equal to the collision rate
of the charged particles

an angle
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space charge density

space charge density of the r'th stream
electric potential

electric potential of the undistrubed plasma
perturﬁed'electric potential

fluctuating potential on a probe

radian frequency

cyclotron frequency vector for ions or for electrons

upper frequency limit for the ion noise spectrum
Tonks -Langmuir ion frequency defined by (1.17)
ion or electron plasma frequency

characteristic frequency of the r'th stream

ratio of the frequency to the cyclotron frequency



Appendix 3

A GENERALIZED ION DISPERSION RELATION

An extension of some of the material in Chapter I is
made in this appendix to include the role of ion drift and

attenuation due to ion collisions,

The general differential equations (l.1-1.%5) embrace
the effect of ion collisions and permit a drift in the ion
stream. However, the perturbation equations (1.7-1.10)
neglect these factors. If we rewrite the perturbation
equations including these factors only the Lorentz law is

changed. It now has the form,

-—-(—'V¢+U.XB°)=— +(rv"V)u.+vu.. (3.1)a
mp 0 Do

Equations (1l.11) and (1l.12) remain unchanged under the
generalization since neither of these involves the Lorentz

equation., Taking the gradient of (1.12), as befom, and
eliminating the potential by using (3.1)a gives

(vz_wpemp)[ T (%O.V)iﬁ + v ou _EE_XBO}_Q,;V(V.;:)

kT /Lt T : of T ot
wgm (302)3.
where (v‘--1;$r—2—) is understood to be a distributive operator.

Just as in the discussion of the less general form in Chapter
I, we seek solutions to this equation in the form of
propagating waves,

ilwt-B2) (3.3)a

u=[u|,uz,u3Je .
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Adopting the convention of (1.15) the equations of (1.16)

now have the form

(B + wp® mD)kw - jwv-wBugu,* iw(w,wg cosf-u wcsme)]

(3 4a)a

wim i =
(182"' :T P)[(wa- iwv“wB“'o)uz" wu'chOA«Q] =0, and (3.4b)a
(3.4c)a

(B+9_Lm_>[w'- iwv"wBuc)uz,f iww w,

4in 6 ]-wp B us= 0
where uorepresents the ion drift velocity in the direction
of propagation 2 « Just as before a solution for u;, , U,,
and usimplies that the determinant of the coefficients vanish
and adapting the notation previously used the dispersion
relation becomes,
[(w‘iv"Buo)'-(wcoo-c_Q)'](wz—ivw—Buow- )
-(wc,oi/hae)z(w '~ jvw-Bugw)=0. (3:5)a
This is the more general form of (1l.18a). This expression
is considerably more complicated than the form which
neglects ion drift and the démping due to collisions, but
certain interesting obser'vations are readily made:
a. The dispersion relation is independent of the
components of ior; drift normal to the direction
of provagation.

be 0—~0. If the ion density aporoaches zero the
diSpersion relation becomes

(w®-ivw -Bu.ow)[(w |v"Bu) “’c] o

there are three solutions

w =Pug + iV and (3.€)a
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(3.7)a
w=Buy+iviwg.

Here the ions are so loosely coupled that

waves can propagate in the medium only by being
carried with the drift velocity of the ions in the
direction of propagation. In (3.6)a the ion motion
is in the direction of propagation, and the

frequency is given by the doppler shift. In (3.7)a
the perturbed ion motion is normal to the propagation
direction and the doppler frequency is modified by
the cyclotron frequency.

we=0. If the magnetic field vanishes
2 1]
(g,-iu-Buo)(af‘tvw-ﬁuow-wuz)=0,

and again the doppler shift gives one solution.
For the other,

w :Bu%+iva(B%o+iv)'+w6' (3.8)a

the more general form of the Tonks and Langmuir
solution that embraces the damping due to collisions
and the effect of ion drift.

If the propagation is parallel to the magnetic field,
sin 8= 0 , and

[(w“ iv=Bu o)t'wc'] (0™ jvw ;B uow‘wao] )

which gives two solutions already discussed above.
For the one, ion perturbation is normal to the field,
for the other, parallel to the field.

If propagation is normal to the field, cos = O,
and one solution 1s given by the doppler shift
(3.6)a; the other solutions are quite complicated.



Appendix 4

©  -(x-a)"
IHE INTEGRAL, p(a) = [ 2 = dx
-®

The value of the integral p(a) is determined formally in
the text. In this appendix, the integral is properly defined

and its value determined more carefullye.

It 1s evident that p(a) does not exist as a Riemann
integral. As in many problems in physics, the integral must
be interpreted in the Cauchy sense if the answer 1s to have

any meaning. We therefor write,

lim lim o e—('x.-o)z be—(rx,-'o)z (4.1)
’p(o)ib~ooet~o{j_.b ™ dm+.£——m—-—dm}. . ?
Introducing a new function,

L egrRam b ot 2ax
fa)s Nim Him {f 2 — —dx +f E—da };

b-w€ =0 -b o { x }

we note that if f(a) exists, then p(a) exists and has the value,
. o
p(a) =e f(a). (442)a

Now by changing the sign of x in the first integral of f(a),

b_n?2 2ax -2ax
%X e _e °°

f(a)= lim IiT' [ e ~ dn. (4.3)a
b—~wo €—~0 ¢ .

The integrand in this expression has a removable singularity
at x = 0, and by defining the value of the integrand at
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x = 0 as (4a), it becomes continuous on [0, b],and we have

unambiguously
. b _n2 2ax -2ax
f(a): lim [e "8 =€ dx. (4.4)a
b—w 0 x

The next step is to show that the derivative of f(a) can be
obtained by differentiating this expression under the integral
sign. After that, the value of p(a) is established just as

in the text., The proof that the differentiation can be carried
under the integral sign follows the conventional development
except that here the interval is infinite and this imposes a

more severe restriction on the integrand.

From (4.4)a,

f(a)-fla,) lim bé’xz 2ox 20 —2ax 205

_ e -e _e - }d'x.

Now employing th% mean value theorem, one has
ax  205% ax -2apX 2a,x  -20,%
-e _ -e = 2x (e +e )
a-ap a- 00
where q, and a, are on [o a ] o Then

f (a)-f(ag) 2I|mf e (e2°9‘+e'2°2")dx

a-ag " b~
Whence,
fla)-f(ag  2lim j‘b 'x e20% 2a"")d,x
a-a, b—oo

2lim be_xz(eZQ,x_e20x+ e—z-oafx._e-ZG'x) dx I

b—-mo 0
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This expression can be made arbitrarily small by taking d,
sufficiently close to a . Therefore,

20'x,+e-20'x) 4

b

f (q)= 2||m fe

and we have established the right to differentiate under the

integral sign. The rest of the argument follows as in the

text.

a? 2

b )
f (a)=2e lim e—('x a) dn =2 /7 el
b—wo
-b
2

a
Int t1
ntegrating, f(a)=2~/_17foen dn,

the constant of integration necessarily being zero, and then,

pla) = 2J—efe dg.

This is the result formally derived in the text.



Appendix 5

THE EXPERIMENTAL DETERMINATION OF THE POWER SPECTRUM

The experimental method for observing the power spectrum
in this study has been to empley superheterodyne receivers to
convert, filter, amplify, and detect the incoming noise. The
relation between the output of the receiver with noise at the
input and the power spectrum of the noise source is discussed

in this appendix,

Input Quantities Output Quantities
Potential: $(t) Potentials ¢ (t)
Transforms S(f) Transform: .4(f)
Power spectrum: G(f) Power spectrum:g(f)
o—t+—o °o o Frequency © -0 o—+—o
2,(f) ] z, () |
Converter

Figure 5.1la

Consider Figure 5.la which shows an idealized receiver
that amplifies, converts, and filters, It is assumed that the
potential & (t) at the input is amplified and filtered by the
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‘linear transfer function #,(f) , the result translated fq

in frequency by the converter, and then amplified and
filtered by the transfer function Z,(f) which represents the
intermediate frequency stages with f; as the intermediate
frequency, Using this idealization and the notation of
Figure 5.1la the Fourier transform for the output of the
first stage is S(f)*Z, (f) . After the converter stage
this has the form S(f+f)Z (f+f,) ., and after the i-f
stages, S(f+f ) Z (f +f))Z,(f).

Now we write without proof thé expression relating the
auto-correlation function of the output potential with its power
' 1
spectrum,

o |
s tirr) =/ alf)eoal(2nfr) df. (5.1)a

As a special case of this,

@
=[ glf)df. (5+2)a
(0]

¢t (1)
But the output spectrum is related to the input spectrum by

g(£1=6(t+ |2, ( £+ 1) Z,() .

Putting this in (5.2)a gives

m .
Fn = [ stirig) |2l z(0] gt (5.3)a

Now the function #Z2 in the integrand of this expression

IFor a proof, see Reference 39, pes 40,
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represents the intermediate frequency stages; this function
peaks sharply where the argument is f; and is very small

except near this frequency. Assuming that the change in the
power spectrum of the input is slight where the intermediate
frequency gain is appreciably different from zero, equation

(5.3)a can be approximated

(00)
P =6f+10) [ [E(1+1) 2, ()] 1. (504)a
Defining a noise bandwidth by

(00}
[ 2,0 +£5)2, (1) " df

B =

* ’ (549)a

| Z, (f;+f)2,(f;)

equation (5.4)a has the form

S0 = B Gf+fo)E £+ 1) 2, (1), (5.6)a

—

¢'(t) represents the average power output of this idealized

system,l and|2|(fi+fo)Z2(fi)’ represents the peak

power gain at the frequency (f;tfy) « Then the ratio of

these two quantities,

$°(1)
2, (f+f5) Zo ()]

b}

is equal to the minimum average power input (centered on the

pass-band) required to give the same power output ¢g(f) .

lThe word power 1s conventionally but abusively used in
this way. Actually this is a mean=-squared voltage and represents
power only In the sense that it works into a unit resistance.
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Returning this result to equation (5.6)a, we have that

(amplitude of the

power spectrum) = (minimum input %ower for the given output) .
noise bandwidth

(5.7)a
Thus the power spectrum at a given frequency is obtained by
dividing the input power of a calibrating signal generator
(which gives the same output as the noise source) by the

noise bandwidth of the receiver,

The following receivers were used in this study.

Receiver Tuning unit Frequency range Noise bandwidth

A (in me/sec) (in ke/sec)
Hallicrafter 0.56 - 34 2483
(SX71U) 47, - 55
APR - 4 TN - 16 38¢ = 95 169.

TN - 17 74. - 320
TN - 18 300. - 1000
IN - 19 975 ~ 2200
TN - 54 2150. - 4000

The following signal generators were used in this study.

Signal generator Iype Fregquency Range
General Radio Standard Signal 5 ke - 50 me/sec
" Generator 1001A
General Radio VHF Signal Generator 50 - 930 me/sec
Hewlett=-Packard UHF Signal Generator 800 - 2100 me/sec
Model 614A

BEquation (9.7)k makes it clear that the output of the
receiver must be metered using a square-law device., The

method adopted in this study was to use the filtered output
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of the second detector. For low power input this 1is square-
law; for high power it is more nearly linear. Many of the data
were taken in the square-law region, but part of the data were
taken in the region where the second detector was nearly linear.
It will be assumed that the greatest error in the spectrum

does not exceed that which would be produced by a linear

detector and an estimate of that error will be obtained,

The procedure in determining the Spéétrum with a square=-
law device is as follows. The noise potential &(t) at the input
of the receiver of Figure 5.la giveé an output ¢(t) « A
calibrating signal A cod wt is fed into the receiver in
place of the noisej its output is a coslwt +@). 4 45 chosen
so that

$*(t) = [o codlwt+ a)r =-€%—-'

(5.8)a

Then the power spectrum at the frequency f=-€%; is given by

_ A

-where B is the noise bandwidth.

Now 1f the recifier is linear and not square-law one

mistakenly gets

A
6/(f)= —5

for the power spectrum, A, is now determined by

2
(1) = |arcog(wt+an) = —=—a (5.9)a
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with the calibration input A,coe wt and its output a,codlwt+a,).
Thus the ratio of the correct power spectrum to that which
would be observed with a linear rectifier is

G(f) _ _A® _ _a* .
G, (f) A® a} | (5410)a

By equations (548)a and (5.9)a

a* _ 8 . ¢4)
ai LS ¢ ()]*

I

so that

6(f) . _8_, &N
G((f) LTI

(5.11)a

This equation'indicates the error that can be introduced by a

linear detector.

Since it is always true that

¢t (1) 2 |4>(t)|’,

and the power spectrum as determined is never greater than the

true power spectrum by more than

100 (Zg—-1) = 24%.

Actually it is the square root of the power spectrum that is
studied in Chapter III, and this will not be too high by more
and 11%.

No such general argument limits the observed power
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spectrum from being much too small since the ratio on the right
of (5.11)a can get arbitrarily large if any choice of output
potential ¢(t) 1s tolerated. However, it is often reasoned
that the output of a narrow band filter with a broad band

noise input has a gaussian amplitude distribution in time,

For such a distribution

$*(f) T
6] 2
and
G(f) __8  ¢tth _ 4
G\(f) L cb(t)la TT

The corresponding error in the square root of the power

spectrum is about 11%.

We summarize these arguments by noting that many of the
data were taken in the range where the detector was square-
law. However some of the data were taken where the detector
was more nearly linear., The error introduced by this
departure from square-law does not likely exceed 24% in power
or 11% in voltage. This error is of the same magnitude as
that Introduced by the mismatch on the line and the general
reproducibility of data, Therefore no attempt has been made

to adjust the data to compensate for this error.



Appendix 6

4 PROOF OF THE NYQUIST NOISE FORMULA
USING PLANCK HARMONIC OSCILLATORS

6,1 Introduction

The theoretical study of noise in a linear electrical
circuit has been a popular one since the classic work of
Nyquist.l Such studies have usually attempted a derivation
of the Nyquist formula for the noise spectrum of a linear
resistance, either by thermodynamic or kinetic theory
arguments. The formula“ applies to a gas discharge tube.
Indeed Knol has shown that the electron temperature in a gas
discharge can be determined by identifying the experimentally
determined power spectrum with the value from the Nyquist
formula.

The Nyquist result can be summarized in the following

theorems

Every linear frequency dependent conductance g(f) in
thermal equilibrium at temperature T has associated with it
a noise source which can be represented by a shunting current
generator with the power spectrum

49(f) €(Ff) , (6.1)

where E(Ff)= —Jﬂ%F———- , (6.2)2

eT—l

1Reference 43,
2This form is often approximated (F)=kT since hf/kT
is usually very small for the frequencies encountered in
electric circuits.
133
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h is Planck's constant, k is the Boltzmann constant, and f

the frequency.

This theorem is stated in its generality by Nyquist
in his original paper, but his proof has a serious short-
coming; implicit in his argument of a resistor matched to
a lossless transmission line is the assumption that the
resistance does not depend on frequency. Subsequent articles
have avoided this difficulty, but not without other limit-
ing assumptions, and the theorem has apparently never been
established in its generality. The following seem to be
the principal assumptions that have limited previous proofs.

(1) The conductance 1is taken independent of frequency.
(Sée Moullin,l Nyquist,2 Schremp,3 and van der Ziel.*)

(2) Equipartition of the energy in electric circuit
elements is employed. (See Uhlenbeck,5 M’oullin,1 and van
der Ziel.?) The difficulty here is that the theoretical
proofs of equipartition rely on the Nyquist formula, and
therefore equipartition cannot be used in the proof of the
Nyquist theorem.

(3) The kinetic theory models are one dimensional.

(See Bakker and Heller,® Bell,” and Schremp.3) Apparently

lReferences 42 and 43.

2Reference 45.

3Reference 53,

4Reference 61, 6Reference 9.

SReference 39. 7Reference 11.
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all kinetic theory models have been one dimensional, The
early studies permitted only particle motion in one direction;
more recent models have included velocity components in all
directions but allowed only one of these to coupie current
into the conductance terminals,

(4) A1l kinetic theory arguments have assumed a mean-free
time or a mean-free path independent of the particle velocity.
(See Bakker and Hbller,l Bell? Schremp,3) This step seemed
to be necessary since previots kinetic theory arguments have
resorted to Fourier theory techniques.

All these assumptions are avoided in the present development

of the Nyquist theorem.

~ Nyquist pointed out that two linear conductances that
have the same value at all frequencies, in equilibrium at
temperature T, necessarily have the same noise spectrum; for
if their spectra differ, they can be connected together with
a shunting lossless filter in such a way that a net power is
 transferred from one to the other, and this is a contradiction
of thermal equilibrium.* From this we have that any kinetic
theory model that established the Nyquist formula (6.1) for a
general frequency dependent linear conductance g(f) necessarily

establishes the formula for all linear conductances.

lReference 9.

2Reference 11,
3Reference 53

QReference 45.
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The argument developed below shows that the noise current
delivered to the terminals of a resistance is given by a sum
over the charged particles in the "interaction space." This
expression is obtained for an N terminal structure since the
derivation is no simpler if the number of terminals are re-
stricted to two. The result 1s'applied to a model where the
charged particles are a system of Planck harmonic oscillators,
homogeneously distributed in the 1nteractioﬁ space. It is
shown that the Nyquist formula applies rigorously for this
model, and since any linear frequency dependent conductance
can be constructed by a homogeneous distribution of Planck

harmonic oscillators, the theorem is proven.

6.2 Induced Current Theory

The objective of the appendix is an expression for the
spectrum of current flowing to each of N terminals., These
currents have their origin in the motion of charged particles
in the interaction space and are determined by the terminal
geometry, the charge on the particles, and the particle motlions.
The Theory of Induced Currents provides the necessary quantative
relation; but since this theory is not widely appreciated and
never argued in its generality, a derivation of the formula

for the induced current in a terminal will be included.l

Let Qg represent the charge inside a closed surface

bounding the j'th terminal, then by the familar divergence

1see Reference 33e This article by Jen is perhaps the
best published derivation, but it lacks the generality of

the present argument.



137

relation

4] =—€OjENde' » where (6.3)

Ey Trepresents the normal component of the electric field at
the surface, and €, is the free-space dielectric constant.

Taking the partial derivative of (6.3) with respect to time gives
I T (6.4)

but from the conservation of charge one must have
ayc i+ fogdsy (6.5)

where i; represents the current flowing to the j'th terminal
through its connecting lead and the integral gives the current
arriving from the interaction space. Substituting from (6.5)

into (6.4) one has
1y == flnreotn)as; (6.6)
Using this form, the current in the j'th terminal can

easily be expressed as an intergral over the interaction space,

for suppose we uniqueiy define a function qq as follows: let

| ON S;
v ={OON st, m#Ej . (6.7)
and vz \IJJ =0 (608)

in the interaction space. Then clearly (6.6) can also be

written
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. -

L =—_/¥q(JN+60EN%S (6.9)

where Ss:=2S; , the surface of all terminals. Equation
j

(6.9) can now be written as a volume integral over the inter-

action space,

—fV"{n,L/J. (T+ eo?)} T

—JVy(Tre ) ac (6.10)

J E

o is divergence free.

since VX H = + €

One more step remains before the current is in an
appropriate formes This is accomplished by reducing the electriec
field of this expression to the sum of three terms. |

E = E, + E,+ Ey (6.11)

defined as follows.

Let a scalar potential ®; be associated with each of

the N terminals; then write
E, - —%cij Vo (6412)

In this manner we have defined a field that is associated
with the interaction space if no space-charge is present,

Also, E, 1is irrotational and solenoidal, and its potential is

¢, = %@J ¥ (6413)
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Now 'Eg is to be defined so that it accounts for the remaining
charges on the electrodes, and those in’the interaction space.
Likewise, it is to be irrotational and its potential added to
that of 'E} is to be the potential in the volume and on the

bounding surface. Thus,

VxEp= 0, (6414a)
V.= -Vig,: _6/’0_ ; (6.14b)
and ¢,= O, ON S (6+14¢)

which uhiquely defines the field 'Ez o Then 7?3 is simply
the difference |

| Es =E‘(E| +E2) . (6.15)

The field E . has the following two important properties.
(1) It is solenoidal, a property evident if one takes the
divergence of equation (6.15), and (2) the normal component

of E; vanishes on s

This splitting of the field into these three components
may seem somewhat artificialj its importance in induced current
theory will be seen presently when we return to equation (6.10),
but it is worth remarking in passing that this division of the
electric field corresponds to dividing the power originating
in the interaction space into that delivered to the terminals,

that radiated from the system, and that vested in the capacity

of the electrode structure.
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Now returning to equation (6.10) and dividing the electric

field into these three components gives
ij = —qulj -'5d'r—eofV\pJ. -E'Id-l-

, ~ (6.16)
—fV\I/J '?adf—fvlpj 'E3dT

The last two integrals of this expression vanish, for applying
the divergence relation to the last integral one obtains

f\pj-éwds =f\7\pj -?sdr+f¢jv-?3dr , (6.17a)

but £,.= 0 on s and V-E, =0,

so that R (6.17b)
fvlpj ‘EgdT=0 .

Similarly,

fqéz(v\pj ), ¢ - [v4, vy, ar+fqézv2%d7, (6.18a)

but ¢, =0 on s and Viy -0 ,

so that 6.18b)
fEZ-VWjd-z-:o . (6.18b)

Thus equation (6,16) has the form
i = —fV\}/j -\Tdr-eo /Vl[lj -;E,dr . (6419)

Using (6.12) the second integral in this expression can be

written
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eoqu/j E, dr:-%@keofopj -Vl}/kdr . (6420)
Clearly
Ci = &) V¥V at (6.21)

is the matrix of capacities for the N terminal system;
using this notation (6.19) can be written

L =-fV1//J. -Td”% cjdek ‘ (6.22)

Thus the current flowing to any terminal can be reduced to

a capacitive current and an "induced current."

It is convenient conceptually to think of the induced
currents as the only currents flowing to capacity free
electrodes and to account for the capacitive effects by
allowing for condensers C;, near the electrodes. With this

understanding, we write

Lj=—fV¢ﬁ LTdT . (6423)

An alternative form for (6.23) is
- -fV'(qu. 7)ar +f¢rj\7°7dr
=y 0y a5y, par (6.24)

] - By
'“f"NdsJ ae JV; Pt
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In this form the induced current in the j'th electrode has

been reduced to the sum of the "arrival current" and the rate
of change of induced charges where wj represents the fraction
of the charge ( pd T ) in the volume element dr induced onr

the j'th electrode.

From (6.23) it is evident that the contribution of a single

partllcle to the induced current is

i'J = —qTI‘Vl]IJ (6025)

where q is the charge on the particle and uw 1ts velocity.
The integral of (6.23) can just as well be expressed as an

integral over the charges as one over the volume,
i.j = —‘/‘V\Ilj -Tqu ’ (6.26)

where 1t 1s understood that the integration is over all the
charge in the interaction space.

63 The Thermal Noise Spectrum

We imagine now that the charged particles of the
interaction space have random motions, and we proceed to in-
vestigate a volume dr of that space sufficiently small
that vlpj is essentially constant over that volume but
large enough that the distribution of particle velocities in
the volume 1s representative of that region of the interaction

space. Applying equation (6.25) to a particle in drt

Lj=—q,u.’V\[/j’ | (6.27)
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where u is the cormponent of © in the direction of vqg o
Squaring (6.27) and taking the average in time for that particular

particle,

—_— 2 o\ 2
i)t e 2 (mv%) . mu® . (6.28)

where mu® is twice the average kinetic energy for the

particle in question in the direction of VY ; .

At this point the argument is specialized to a particular
model, We choose a system of Planck harmonic oscillators for
the particles. The merit of this particular choice will
shortly appear. The choice really represents no loss of
generality since, as will be argued later, every linear system

is "equivalent" to a system of Planck harmonic oscillators.

For a Planck harmonic oscillator we have

hf 5
—Zh——’f——)—_ (6.29)
kT
where E(f) 1is the average energy of an oscillator of frequency
f 4 and the other symbols have their familiar meanings.

Now in the volume element dr there are
n(F)d+dT ‘ ‘ (6.30)

particles with frequencies in the interval (f, f+df)

where n(f) is the density of particles in frequency per unit
volume., Using this expression and (6.29), the average of the
square of the induced current for oscillators in the frequency

range (f, f+df) - and the volume element dr is
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2
@)
Integrating this expression gives the current spectrum
at the j'th electrode; in particular, if the Planck harmonic
osclllators are homogeneously distributed, il.e¢y n(f) is

independent of the position in the interaction space,

2 2
Gj (f)df Jl%ﬁil-E(f)dfj(V¢U> dr | (6.32)

For a homogeneous system the conductivity o(f) is the same
at every point in the volume, and the conductance between
the j'th electrode and all other electrodes tied together

is given by
2
gj(f)=o%f)/(V¢q ) dt . ' (6.33)

Substituting the integral from this expression into (6.32) gives

2
q n(f)ag.(f)
l _ Efdf . (6.34)

Gj(fldf= p—
We proceed next to determine the conductivity of a system
of Planck harmonic oscillators; this conductivity substituted

into (6.34) will give the final relation.

The differential equation for the motion of a single

harmonic oscillator can be written

1rhe justification for adding the squares of the particle
currents 1s the assumption that the particle velocities are
independently distributed with zero mean.
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d%x dx
gE=m + a + bx
dte dt ?
or in terms of current,
E = Tf% g; + rL+—S~[Ldt . (6439)
jew Tt
Under the influence of an electric field E=Ege one
has a solution of the form
jemft
1.=Ioe
such that
Io . ‘ B '
Eo , . 2mmf s 2 e _2 (6436)
o _ . 2TTm _ o
r+j > - r+j zf(f fo)

where f, 1s the resonant frequency of the oscillator. Now if
the density of resonant frequencies per unit volume of the
harmonic oscillators is given by n(f,) 4 then the conductivity

can be written:

0
, I,
oﬁ):/}Em_mmTOF(E )n(g)dg
0 (¢}

Fn(f)df.
. f’ . o’ 7o . (6.37)

For Planck harmonic oscillators we are concerned with the

conductivity for the case of very sharp resonance; that is,

r

0 o In addition, for r small the prinecipal contribution
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to the integral of equation (6.37) 1s very near f,:=f so that

for a system of Planck harmonic oscillators we have the

conductivity: ®
o) =n(n " i
- r-o 2 2T m)\3/ .2 22
" +( q2f ) (f fo)
A !
®
(f) lim rd'fo
=n r--0 2 2
oo ()
A q
LN AN (6438)
4 m

Substituting from here into (6.34) gives

Gj(f)df = 4q;(f)E(Fldf (6.39)

For a two terminal structure this is the celebrated equation
of Nyqﬁist; for more than two terminals the equation represents

a generalization.

Conclusion

Nyquist pointed out in his original articles that any
two terminal linear frequency dependent conductance in thermal
equilibrium has associated with it a unique spectrum. The
particular merit of a system of Planck harmonic osecillators
can now be seen. From equation (6.38) one notes that any
desired frequency dependent linear conductance g(f) at any
temperature T can be constructed from a collection of Planck
harmonic oscillators, merely by choosing a suitable distribution

n(f), but we have proved that any such system satisfies
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equation (6.39). Therefore, by the Nyquist argument every
frequency dependent linear resistancé must satisfy equation

(6.39), and the argument is complete.

The similarity between the Planck radiation law and the
Nyquist formula has often been noted in the literature. The
nature of this derivation of the Nyquist theorem and its similar-
ity_to Planck's kinetic theory derivation of the radiation law
: leads to the following conclusion:

All the electromagnetic energy delivered from a system
of charged particles takes place either by radiation or by
induction into terminals. If the system of particles is a
linear black body in thermal equilibrium, which delivers energy

to a nonreflecting load, then the radiation is given by Planck's
law and the induction by the Nyquist formula.
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