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SYNOPSIS

By means of digital computer simulation the complete load-
deformation history of a column may be obtained. Thus about one thou-
sand simulated column tests have provided a basis to establish system-
atically the maximum‘strength and study the behavior of both straight
and initially crooked columns for various yield point steels and a
typical aluminum alloy. The effects of residual stress, alone or in
combination with initial crookedness, are systematically evaluated for

steel columns.



INTRODUCTION

If an initially straight prismatic column with either homo-
geneous or symmetric stress-strain characteristics is loaded axially,
the column will remain straight until it reaches the critical load at
which it can be in equilibrium in either a straight or slightly bent
configuration. Since any real column has some initial imperfection,
the buckling of a perfect column may be thought of as a limiting be-
havior that is approached as the imperfections are reduced toward zero.
At the critical load the column will begin to deflect laterally* at
either a constant load or with a load gradient depending upon whether
behavior is elastic or inelastic.

If all of the material is linearly elastic up to the critical

load, the average critical stress is given by the Euler equation:

om = ﬂgE (1)
T
where E = Young's Modulus of Elasticity.

L = Length of column.

K = The equivalent length factor, such as to make KL
equal to the half wave length of the column deflec-
tion curve.

r = Radius of gyration of the cross section.

It is assumed that the cross section is such as will preclude torsion-
al buckling.
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If the material hdas not been linearly elastic up to the

buckling load, the critical stress is

2 0
c = - Ef(g) (2)
E
B r
where 1 = T

Ep 1is the slope of the stress-strain curve at the instant of buckling.
If the inelastic behavior has been homogeneous, i.e., identical at all

points within the column,

£(n) = n (3)

and Equation (2) in this case is commonly termed the "tangent-modulus"
stress. ILack of homogeneity of inelastic behavior may be due to non-
uniformity of stress-strain characteristics or to the presence of initial
residual stresses, or both.
A full discussion of the development of the foregoing equations
with examples of various functions f(n) will be found in Reference (1).
As detailed in Reference (1), the effécts of nonlinear stress-
strain properties, residual stress, and initial crookedness have been
studied extensively heretofore as separate parameters. The primary
purpose of the present investigation, as made possible by means of the
digital computer, has been the study of these effects in combination,
not only in the elastic range but up to and beyond the maximum load in

the inelastic range of behavior.

(l) Column Research Council Guide to Design Criteria for Metal Compres-
sion Members, 2nd Ed., John Wiley and Sons, 1966.
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For aluminum élldy columns, inelastic behavior has been assumed
to be homogeneous, with stress=-strain relations simulated as typical of
Aluminum Alloy 6061-T6 having a yield stress of 40 ksi., For steel columns,
simple elasto-plastic stress-strain relations have been assumed, with
yield stress levels of 36, 60, and 100 ksi in combination with maximum
compressive residual stresses of 10 and 20 ksi.

Initial crookedness is introduced in this study by assuming
the initial shape to be a half-sine wave with amplitude of 0.0005, 0,001,
0.002 and 0.004 times the length. The amplitude of 0.00lL is represen-
tative of allowable tolerances for camber or sweep of rolled steel or
extruded aluminum sections used as columns.

Column analysis, adapted to the numerical incremental treat-
ment by means of a digital computer, will be covered briefly. The
results of simulated tests of aluminum alloy columns are then discussed.
Finally the results of simulated tests of steel columns are presented,
involving three yield points, and varying amounts of residual stress with
or without various levels of initial crookedness. In addition, special
studies include the effect of residual stress pattern and the effect of
assuming that the shape of the column axis remains that of a half-sine

wave throughout the inelastic range of behavior.



MATHEMATICAL MODEL

A conceptual representation of the column considered in this
study is shown in Figure 1., Due to initial crookedness, the centroidal
axis of the column is displaced a distance vo(z) from the line of action
of the loads. As load is applied, additional displacement v(z) takes
place due to the bending strains induced by virtue of the initial dis-
placement. At any stage of loading, the load, moment, and deflection are

related by equilibrium, as follows:
M(z) = Pe[vo(z) + v(z)] (%)

Referring to Figure 2*, a typical unit length segment of the
column is subjected to a strain distribution due to bending. The strain
is assumed to vary linearly across the section, proportional to the

distance from the neutral axis, y - c¢. The strain is, therefore,

e=2vo(y~0) (5)

ﬁdsm
N

- For the general stress-strain relation, o(e), the load, P , and the

resisting moment, M , may be expressed as follows:

v}
Il

a
[ o(e) * b * dy (constant throughout the length) (6)
o

=
I

d
Jo(e) « (y -yo) = b~ dy (7)
(e}

Substituting Equation (5) into Equations (6) and (7), and the latter into

Equation (4), the following equation results:

*
As drawn, for graphical clarity, the strains shown are the mirror image
of the actual compressive strains to be expected in the column.

-5-



Figure 1. TInitially Crooked Column- -

Figure 2. Strain Distribution in Typical Section
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d 42
[ o ZZZ°(y-C))°(y-yo)'b°dy=
S .
d 2
o+ [ 0|5 (v -e)| b ay (8)
0 Z

In general, Equation (8) is solved by finding the unknown
functions v(z) and c(z) . In the linearly elastic case, o(¢) =E * ¢ ,

Equation (8) reduces to

d2V
ET =P (v, + 7V 9
& (vo + v) (9)
where E = Young's Modulus.
I = Moment of Inertia.

For certain initial crookedness functions, vo(z) ; and section
variations, I(z) , closed solutions of Equation (9) can be found. Numerical
methods can be used for more difficult cases.,

In the inelastic case, the stress is a complex function of the
strain history and the initial residual stress, Op s at the point in
question., This is true not only because of the non-linear aspect of the
stress-strain relationship, but also because of the irreversible nature
of this relationship with respect to strain regression. Because of the
resulting mathematical difficulties, plus the desire to be able to study
- a variety of functions vg(z), d(z), b(z,y) o,(y), and o(e) , a numer-
ical-incremental analysis was chosen. This procedure involves calculating
and recording the complete stress-strain distribution at a number of dis-
crete stations along the column length during small finite increments of
load and lateral deflection. To avoid convergence difficulties in the
vicinity of the maximum load, the increment in midpoint deflection, rather
than the load, is taken as the independent variable. Numerical integration
is used to evaluate the load, moments, and deflection curves during each

increment,



The values of v and c are considered at m-1 equidistantly

spaced (Az = L/m) stations along the column length, and are represented

by
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The unknown values of v and c can be found for each increment by a

trial-and-error solution of Equation (8) as explained in the next section.

Associated with v 1is the "angle change" function

() o g (ag) = 0y

dz2

The vectors, ¢ and v , can be related linearly as follows:

Jj=-1

The matrix, R , can be derived as the product of two matrices,

(11)

A and

B , which are defined below (See Figure 3). © =A @ (the elements of

©i

are concentrated angle changes)

;:E@::§K¢=§.¢

Thus R = B A .

For a column of length L and m = 4% , for example,

can be defined as follows., Using Newmark's method,

|1 1 0
A=|1 10 1
0 1 10

L
n

QO

A

and E

(12)
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and by the conjugate beam method,

3 5 2 L
B= |2 4 2
1 2 5| 16

32 2L 12 2 8 6
R=|2L4 Lh ol &g = 6 11
12 2L 32

Thus,

(13)

(14)



COMPUTATIONAL PROCEDURE

The procedure begins by establishing the load at which
bending begins. For straight columns (vo = 0) bending begins at
the tangent modulus load, found parametrically in terms of the strain

in the equation

fd o(e)brdy - 1‘; : fd Ey(e) (v - %)2-b°dy =0

o = o
For v, # O , bending begins immediately at P =0 .

For each increment of deflection, the initial shape of the
incremental deflection curve must be assumed and corrected as neces-
sary. For example, a good initial guess would be the half-wave of a
sine curve. At each station along the column it is possible to solve
Equation (8) for c if v 1is known or assumed. When the correct
deflected shape has been assumed, the values of AP calculated at
each of the sections will be equal. Normally, for the first trial
deflection curve, the AP wvalues will be unequal and the curve must
be corrected. If the AP value at a station is below the average of
all AP's, a greater angle change should be assumed for that station,
whereas, if it is above the average, a smaller angle change should

be assumed. It was found that the following equation gave a good

revised estimate of the angle change value.

AP gyg + Q
i - 01 AP:?V'I‘ 2 (15)

The term Q was used to optimize the rate of convergence.

-11-
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When the deflection curve has been established such that
the deviations of the AP values from the mean are below a desired
value, Equation (8) is considered to be solved for that particular
deflection increment. For the next increment, the incremental de-
flection curve from the preceding increment is assumed and corrected
as necessary.

Further increments are thus considered until as much as
desired of the load-deflection curve has been established. A flow

diagram of the procedure is given in Figure k4.



COMPUTER PROGRAM

The incremental procedure has been programmed for an IBM
7090 computer. Idealized stress-strain relations shown qualitatively
in Figure 5 were assumed. For steel, the stress increment diagrams
consisted of triangular and trapezoidal shapes which allowed a direct,
rather than approximate, integration for load and moment. The stress-
strain relations for aluminum alloys were approximated by algebraic
expressions, and the integration of stress diagrams for load and
moment was accomplished numerically by Simpson's "one-third" method.
Residual stresses were not considered in aluminum alloy columns be-
cause of the straightening operation performed on extruded sections
involving a longitudinal stretch of about one per cent. In the
steel wide flange sections, residual stress patterns that varied
linearly or parabolically (Figure 6) were considered. In both metals,
the wide flange section was assumed to be of constant section through-

out the column length.

-13-
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Figure 5. Types of Stress-Strain Relations
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Figure 6. Residual Stress Patterns Assumed in Flanges of Wide
Flange Steel Sections



BEHAVIOR OF ALUMINUM ALLOY COLUMNS

Typical stress-strain properties of Alloy 6061-T6 were
used for the simulated aluminum alloy column tests. The stress-
strain curve, representing the average of a large number of mechan-
ical tests, and the arithmetic expressions used to approximate this
curve are plotted in Figure 7. By considering strong and weak-axis
bending of a wide flange shape (Figure 8) the practical range of
shape effect is approximately covered. A total of 110 combinations
of parameters were studied systematically, involving axes of bending,
L/r, and vb/L , as follows:

Axis of Bending L/r Vb/L

X - X 20 0

y-0y 30 .0005
4o .0010
50 .0020
60 .00LO

70
80

90
100
120
160
In studying the buckling behavior of columns with various
degrees of initial crookedness it is of interest to examine the
stress distributions at a number of sections along the column length
at various load levels. Inelastic buckling of an initially straight
column is accompanied by an increase in column load. Thus there
must be strain reversal at the mid-point of the column at the onset
of buckling to provide an equilibriating increment of internal re-
sisting moment. Reference (1) describes the development of column

buckling theory from the work of Euler in 1759 down to the present

-16-
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time, with emphasis on the recent developments made possible by con-
cepts introduced by Shanley(2> in 1947. For initially crooked columns
which begin to bend at P = O , strain reversal will not necessarily
occur as bending begins. These facts are illustrated in Figure 9 which
shows successive stress distributions for a straight and a crooked
column of the same length. Note that for the straight column, strain
reversal does occur immediately in the central region of the column,
but not at sections near the ends.

As bending progresses, the relative neutral strain axes move
across the section in a direction away from the convex toward the con-
cave side of the column. This movement is most rapid at sections away
from the midpoint. In fact, as shown in Figure 10, the extent of strain
regression is apt to be greater for these sections than for the midpoint
at an advanced state of bending. This leads to an interesting fact con-
cerning the shape of the deflection curve. Because of the influence
of the elastic modulus, sections that initially undergo strain regres-
sion have a greater bending stiffness than those that do not. This
naturally affects the shape of the deflection curve which would be a
half sine-wave if the bending stiffness were uniform along the column length.
Figure 11 shows that, for initially straight columns, the shape is some-
where between a half sine-wave and a parabola for the first small fin-
ite deflection. As bending progresses the shape becomes more sinu-
soidal (v(L/4)/v(L/2) = JE/E) and finally becomes more sharply bent

at the center than a half sine-wave.

(2) Shanley, F. R., "Inelastic Column Theory", J. Aero Sci., Vol. 1k,
No. 5, May, 1947, p. 261 :
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Figure 8. Proportions of Wide Flange Shapes Assumed for Aluminum
Alloy Columns
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Y\A' =35.17 ksi (v/L=0010)

sk ) ~P/A=35.09 ksi
P/A=35.1l ksi (v/L=.00I5)

(v/L=.0005) \ (UNLOADING)

o.0L

O.lL

0.2L

0.3L

0.4L

0.5L

Figure 10. Initial Strain Regression Regions Near
Maximum Load for an Initially Straight

Aluminum Alloy Column
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For crooked columns‘whose initial imperfection is in the shape
of a half-sine wave, the deflection curve remains sinusoidal until the
proportional limit is exceeded at some point. It then begins to bend
more and more rapidly at sections near the center because of the de-
creasing bending stiffness at these sections.

Plots of load versus mid-point deflection provide an excel-
-lent means for visualizing column behavior. A number of these plots for
various combinations of slenderness ratio and crookedness are given
in Figures-12, 14, 15, and 16. Of special interest is Figure 12 which
plots average stress versus mid-point deflection divided by length
for three initially straight columns with L/r of 20, each having a
different distribution of cross sectional shape about the axis of bending.
All three begin to bend at the same average tangent modulus stress. As
bending progresses, each gains additional load, the wide flange bent
about the weak axis gaining the most, the same shape bent about the
strong axis gaining the least, and the rectangular shape performing
somewhere between these extremes. To show this increase in strength
for other slenderness ratios, the ratio of ultimate load to tangent
- modulus load is plotted against L/r in Figure 13 for weak and strong
axis bending of the wide flange shape. The figure shows that the
weak axis maintains this superior reserve over the entire inelastic
region (L/r from O to 60). More importantly, however, the reserve
strength is very small compared to the tangent modulus load - a maxi-
mum of about two per cent for weak axis bending. This fact further
Justifies use of the tangent modulus load as a basis for estimating

the strength of initially straight columns.
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The effect of crookedness on column strength can be seen in
Figures 1L, 15, and 16. These are for strong axis bending (about x - x)
of WF shapes. Very similar families of curves could also be shown for
weak axis bending. The strength is increasingly reduced with increasing
initial imperfection, and there is a marked effect on the magnitude of
deflection required before ultimate strength is reached.

A summary of strengths obtained with the mathematical model
is provided by the column curves plotted in Figure 17. The reduction
in strength due to crookedness plotted in Figure 18 shows that the
greatest effect is on columns which, when straight, buckle at stresses

near the proportional. limit.
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0 | 1 | | ]
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DEFLECTION — Y /L

Figure 14. Load-Deflection Curves for Aluminum Alloy Columns;

L/r = 20
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DESIGN CONSIDERATIONS FOR ALUMINUM COLUMNS

The "Suggested Specifications for Structures of Aluminum
Alloys 6061-T6 and 6062-T6" (ASCE Proc. Paper No. 33L41) gives the
following allowable stress formula for columns used in buildings:

20.% - 0.135L/r , for L/r <67
Ua = (16)

%%73%2 , for L/r > 67

In the inelastic region, this design formula is based on a straight-
line approximation to the tangent modulus curve corresponding to
minimum mechanical properties. In the elastic region, it is based
on the Euler formula. The factor of safety used in its derivation was
1.95.

The straightness tolerance specified in the Alcoa Aluminum
, Handbook for extruded shapes having a circumscribing circle diameter of
1—1/2 inches or more, is .0125 inches times the length in feet. As-
suming a deviation from straightness of .0120 x L(ft), corresponding to
va/L = .00l, the ratio of ultimate strength to design strength based on
" Equation (16) is given in Figure 19. This gives the theoretical safety
factor for a pin-ended column (K = 1.0), having typical mechanical pro-
perties, as a function of slenderness ratio. The fact that the safety
factor is greatest for short columns is due to the fact that there is a
greater uncertainty of material strength, on which th; strength of short
columns is dependent, than of the elastic modulus, which governs the

strength of slender columns.

-33-
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The dip in safety af' L/r = 67 reflects the sensitivity of col-
umn strength to initial crookedness in this range, a factor which was not
directly considered in the development of the specification formula. In

(3)

a discussion of these specifications, Hartmann and Clark have pointed
out that the effects of small amounts of initial crookedness or eccentricity
may be offset by the use of conservative values of equivalent length factor
as a basis for the specification formulas. To illustrate this, consider
the hypothetical case of a column with typical material properties and ends
restrained such that throughout loading up to ultimate strength the portion
of the column between inflection points is always 0.9L. Assuming bending
about the Y-Y axis and an initial crookedness of 0.00lL, the theoretical
safety factor is plotted in Figure 20, both for this case and for the case
of pinned ends. Thus, for a relatively slight amount of end restraint, the
actual safety factor for the given column varies from a value slightly above
2.2 in the short column range to a minimum of 1.97 at L/r-= 67. It then
increases with L/r to slightly above 2.2 at L/r = 120. The effect of
initial crookedness in reducing the safety factor from 1.95 to 1.67 is,
hence, offset if the column is restrained at the ends such that an actual
K,,yalue of 0.9 is produced.

Although the easy-to-use specification design formula has
been shown to be conservative for nominal amounts of crookedness and
end restraint (at least for columns with typical material properties)
it does not“deal directly with the effect of crookedness. On the other

hand, the procedure employed in this project to obtain maximum column

(3)

"The U.S. Code" by E. C. Hartmann and J. W. Clark, Proc., Symposium
on Aluminum in Structural Engineering, London, June 11-12, 1963,
The Aluminum Federation, London -
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strength values does directly include the effect of crookedness, but
is not easy to use for routine design use. A semi-rational interaction
type formula has been considered, therefore, which includes crookedness

as a factor and is relatively simple to apply. This interaction for-

mula is:
2
o g, v.c/r
a+‘5‘°/ <1 (17)
O em Tal| ~
opll -|=—
where o, = average column stress, P/A
. maximum average column stress for initially straight column
0y = limiting fiber stress for member subjected to bending only.

Oe = JrgE/(L/r)2
v = initial crookedness parameter
¢ = the half-depth of the section

r

1

radius of gyration
The first term is the stress ratio for axial load and the second is the
stress ratio for bending at the midlength of the column.

In evaluating the suitability of this relationship it was as-
sumed that o,, was the value obtained in the simulated tests for vb/L = 0,
and o0, was the 0.002 offset yield stress for the stress strain curve in
Figure 7 (ﬁO ksi) multiplied by a plastic shape factor. This shape factor
was taken to be 1.5 for weak-axis bending and 1.12 for: strong-axis bending
of the wide flange. The corresponding values Qf Ope Were 60 ksi and
45 ksi. Figures 2la, 21b, 22a, and 22b are each plots of three curves:

the actual strength for Vg = O(ccm) , the actual strength for the
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amount of initial crookedness in question, and the calculated strength
based on Equation 17. Figure 21 is for strong axis bending and Figure
22 is for weak axis bending. In general, the interaction equation
provides excellent correlation with the actual strengths in the short
and intermediate slenderness range and is slightly conservative through-

out the long column range.
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Figure 21. Comparison of o5 by.Equation 17 with Actual Strength for

Strong Axis (x-x) Bending for VO/L = 0.001 (Figure 2la) and
vo/L = 0.004 (Figure 21b)
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BEHAVIOR OF STEEL COLUMNS

It will be assumed that the stress-strain diagram for steel is
as shown in Figure 5a; linearly elastic up to the yield stress and there-
after perfectly plastic., If at any point within a column cross section
there is strain regression after prior yield, stress reduction is assum-
ed to be linearly elastic. The column cross-section is assumed to be
that of an idealized wide flange shape in which the web is reduced to
zero and thus the section consists simply of two flanges that are assum-
ed to behave as 1f they were connected by a web with adequate shear ca-
pacity. Bending of the idealized wide flange shape about the weak axis
is comparable to that of a simple rectangle bent about its strong axis.
Bending about the strong axis is essentially the same as that of two
point areas of material situated at a distance h/2 from the bending
axis where h 1is the diétance center to center of flange areas. Bend-
ing is considered about both the strong and weak axes.

A critical (bifurcation) load may be established if the column
is initially straight and centrally loaded and if within the column
cross section there exists a bisymmetric pattern of residual stress. It
is assumed that compressive residual stress exists at the flange tips
and that this gives way to tensile residual stresses in the remaining
core sections of the flanges. The column buckling load may be theoreti-
cally determined if either (1) the distribution of'residual stress is
known or (2) there is available an average stfess-strain diagram of a
short stub column section tested as a unit and having the same residual

stress pattern that is under consideration. For the idealized wide

~40-
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flange shape just described the critical stress for strong-axis bending
is given by Equation (2) with the f(n) equal to 7 , while for weak-
axis bending f(q) = n5 . Research into residual stress effects on

steel columns was initiated by Column Research Council and a summary of
the developments to date is described in Reference (1). Much of the
current research has béen done at Lehigh University as Treviewed by Beedle
and Tall(5).

In the main program of simulated tests the linear variation of
residual stress in the flanges as shown in Figure 6(a) was assumed. Levels
of residual stress in the program were primarily O, 10 ksi and 20 ksi.
The level of 10 ksi corresponds approximately to the 0.3 Oy that has
been commonly accepted as an average level for structural grade steel
with a yield point of 35 ksi. Recent studies at Lehigh(u) indicate that
maximum residual stress levels for steels with a high yield stress are
not appreciably greater than for the low yield stress steels. However,
for comparative purposes, the maximum compressive residual stress level
of 20 ksi was included througﬁout the simulated test program and in a
limited number of cases the effect of a maximum residual stress level
"of 30 ksi was determined for the 100 ksi yield stress steel. In addition,
comparative tests were made at the 10 ksi level for the parabolic residual

stress pattern shown in Figure 6(Db).

(h) Estuar, F. R., and Tall, L., "Experimental Investigation of
Welded Built-up Columns", Welding Journal, Vol. 42, April, 1963.

(5) Beedle, L. S., and Tall, L., "Basic Column Strength," Trans.
ASCE, Vol. 127, Part II (1962), p. 138.
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In addition to the consideration of the perfectly straight
column, four degrees of initial curvature were included in the test
program. These included initial mid-length crookedness of I/1000
corresponding very nearly to ASTM specified allowances for sweep or
camber in wide flange shapes, together with crookedness levels of half,
twice, and four times this allowable value.

In summary, then, the simulated tests for weak-axis bending

included the following range of parameter variation.

Steel Yield Maximum Compressive Initial Slenderness
Stress Residual Stress Crookedness Ratio
’ 50 N\
¢ \ Lo
: 0 50
36 ksi 0 0.0005L 60
60 ksi 10 ksi { 0.001L ) { 80 §
100 ksi | 20 ksi 0.002L 100
0.004L 120
s 160
200
* 2o /.,

Thus, there were 450 simulated column tests for the weak-axis bending
sequences.

In strong-axis bending f(n) = n and the behavior is iden-
tical with that obtainable by the aluminum column test program modified
so that the effects of residual stress are used to determine an average
non-linear steel stress-strain curve which is smoothly continuous above
the proportional limit. .With this replacement and with the web area
reduced to zero the modified aluminum program was used to study the

following cases of strong-axis bending in the steel column program.
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Steel Yield Maximum Compressive Initial Slenderness
Stress . Residual Stress Crookedness Ratio

( 20 )
40
. 60
e : ‘ 80
0.001L { 100 )
120
160
200
| 240

36 ksi
\ 100 ksi

Thus, the basic program of simulated strong-axis tests of steel columns

involved 72 runs.



GENERAL BEHAVIOR OF STEEL COLUMNS

The theory for buckling of steel columns with residual stress
has been provided in Reference (l) and in the list of references provided
therein. TFigures 23, 24, and 25 illustrate the general behavior of 81
of the weak-axis bending tests of sfeel columns for KL/r ratios of
40, 100, and 160, respectively. The load-deflection curves are plotted
for the three yield stresses and three residual stress levels but only
the two largest initial crookedness ratios are included along with the
curves for initially straight columns.

Since the initial crookedness was assumed to be distributed
as a half-sine wave, the maximum center deflection is given by the
simple amplification formula so long as the column remains completely

elastic.
Vom
.2
Pe

In Equation (18) the plotted deflection includes the initial crookedness

Vn =

(18)

and is equal to vy * vop . In all three of the figures, dots inter-
jected at various points along the common stem indicate loads and de-
flection at which the maximum stress (including the residual stress as
well as tﬁat caused by bending moment plus axial load) equals the yield
point. At these points the various curves start to diverge from the
common stem but this is not always immediately observable on the curves.
For the idealized situation wherein the column is initially straight,
the load-deflection curves show no deflection until one of three loads

is reached:

4l
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(1) The yield point load for the case of zero residual stress

in short columns with ‘% <z \/%%ﬁ.

(2) The Euler buckling load for slender columns, having
% > 1 Ez;é_EBQ where ORe is the maximum residual
stress in compression.

(3) The critical inelastic buckling load by Equation (2) with

f(n) = n5 for those columns which buckle in the inelastic
range about the yy (web) axis.

Considering now ‘Figure 235 for -KL/r = 40 , which is typical of
the large bulk of columns actually used in heavy structures, the average
column stress reaches the yield stress in all cases for which Vy = 0
and there is a fairly rapid decline from maximum load at small deflec-
tions.

In Figure 24 the slenderness ratio is at the upper end of the
usual design range. .In this case all but two of the initially straight
columns reach the Euler stress of 28.6 ksi. For the initially curved
columns the greater effect of residual stress in comparison with KL/r
= 4O may be noted. Referring to Figure 25, for KL/r = 160 , it is to
~ be noted that all of the initially straight columns reach the Euler
buckling stress of 11.18 ksi. It is of interest that these columns
maintain this load for much greater deflection than at KL/r of 100
and that the Euler load is maintained for increased deflections in the
case of higher yield stresses. Thus, though there is no difference in
the buckling load of slender steel columns, there may be applications
where the ability of the higher yield stress material to absorb-large

deflections without inelastic behavior is of some advantage.
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Figures 26 and 27 show the maximum column strength curves,
with and without the effects of residual stress and initial crookedness
(alone or in combination and at levels usually considered proper as a
basis for design) for both weak-axis and strong-axis bending, respective-
ly. Also shown in each of these figures is a plot of what has become
known as the "CRC column strength curve", accepted in 1961 as a basis
for the current AISC Specification formulas(6), together with a norma-
lized plot of the AISC design formula for centrally loaded columns. The
good agreement between AISC design practice and the maximum strength of
A36 columns which have nominal amounts of initial crookedness as well as
residual stress is brought about by the variable factor of safety that
increases with increasing slenderness and reaches a maximum value at
r=v2 .

Only the column strength cﬁrves associated with yield stresses
of 36 and 100 ksi have been plotted. Residual stress, when included, is
held at a constant level of 10 ksi maximum and thus is very nearly equal
to O.5’dy for structural carbon steel but only 10 per cent of the yield
stress for high-strength steel. Column strengths (reduced by effects of
 initial crookedness and residual stress) in comparison with idealized
strengths (with these adverse factors absent) show that the maximum ef-
fect of ei%her factor, alone or in combination, always occurs when the

dimensionless slenderness ratio parameter A equals unity. It is also

(6) Manual of Steel Construction, Sixth Ed., American Institute of
Steel Construction, 1963.
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seen that the effect of initial curvature, for a given residual stress
magnitude, is greatest at the point where the curve for residual stress
alone meets the Euler curve. For values of A\ greater than this Euler
intersection point, the effects of initial curvature gradually diminish.
Figures 26 and 27 also show that, when residual stress is held at a con-
stant level, no single non-dimensionalized curve is satisfactory for
different levels of yield stress. These curves also show that the basic
CRC strength formula is satisfactory for higher strength steels for col-
umns with nominal levels of combined crookedness and residual stress.

In Figure 28 are plotted the ratios obtained by dividing the
strength of steel columns having nominal imperfections (alone or in
combination) by the idealized strengths of a perfect column, that is,
one with neither residual stress or initial crookedness. The strength
of such a perfect column is the full yield load for IL/r less than
x E/cy and is the Euler load for L/r greater than n'JE7;& . Figure
28 shows that the separate strength reductions caused by initial crooked-
ness alone or by initial residual stress alone cannot be added to yield
an approximation of the strength reduction due to crookedness and residual
~ stress in combination. Figure 28 is based on weak-axis bending but the
curves for strong-axis bending are similar.

The curves A show the effects of residual stress alone, i.e.,
no effect if the Euler load is reached below the effective proportional

limit of the steel. Curves B show the effect of initial crookedness
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alone. The separate effects.of initial crookedness and residual stress
each reach a maximum when L/? =T \/E73y . Curve C shows the maximum
strength obtained in the simulated column tests when initial crookedness
and residual stress are in combination, whereas Curves D represent column
strength estimates obtained by subtracting the sum of the reductions due
to the separate effects from the strength of a perfect column. In the
vicinity of L/r = ﬂ\/ﬁ—ﬁy , Curves C are above corresponding Curves D
but for L/r less than about two-thirds of =’ E/dy there is fairly
good agreement. For slender columns, Curves C fall below corresponding
Curves D. This is due to the fact that while the Euler buckling load of
a straight column below the effective proportional limit is not affected
by residual stress, the bending resistance is eventually reduced by resi-
dual stress regardless of slenderness ratio.

A comprehensive summary of the bulk of the weak-axis tests is
provided by Figure 29 for each of the three yield stresses. The ordin-
ates are ratios of average axial stress at maximum load divided by the
yield stress. The abscissae are the amounts of initial crookedness.
Thus, by use of these curves, one can estimate the maximum column strength
for any combination of initial crookedness, yield stress, residual stress,
and slenderness rates. These curves again show the degree to which in-
creasing slenderness ratio and/or increasing yield stress tend to reduce
the effects of initial crookedness. It also may be noted that for the
shorf columns residual stress has roughly similar strength-reducing pro-
perties at various yield stresses but that for the more slender columns
the effect of residual stress is almost negligible for higher strength
steels. For these higher strength steels the initial crookedness is

more important than residual stress. -
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Figure 50 shows the development with increasing load of the
stress distribution patterns in the flanges at different locations along
a short steel column (KL/r = 40). At increments L/8 from the center
of the column to the eﬁd, stress distribution development is shown for
the initially,straigﬁt éolumn, the slightly crooked column, and the col-
umn with a large amount of initial crookedness. The flange edges on one
side of the column with the large amount of initial crookedness never
reach the yield stress level. In all three cases, as the maximum column
load is approached, the increase in load comes about very largely from
the increased amount of plastified material in the concave side of the
column. The increments of bending moment that must accompany increments
of load are largely elastic and are in the convex half of the column

section.



MISCELLANEOUS CONSIDERATIONS IN STEEL COLUMNS

Three different special studies are now considered. All pertain
to weak-axis bending of wide flange shapes. (1) The relation between
load at initial yield and maximum column strength; (2) The effect of
assuming a nonchanging column deflection shape in the yield range; and
(3) A comparison between two different patterns of residual stress across
the column flanges. All three of these special studies are summarized in

Figure -31.

Initial Yielding in Relation to Maximum Column Strength

Referring to Figure 31, Curve 1 represents the load at initial
yield .if the column is perfectly straight whereas Curves 4 or 6 give the
maximum strength of an initially straight column for two different pat-
terns of residual stress. When both the residual stress and initial
crookedness are present, the same comparison of residual stress patterns
is provided by Curve 2 for load at initial yield and curves 5 and 7 for
maximum strength.

The more realistic situation involving both initial crooked-

" ness and residual stress in combination Shows by the comparison between
Curves 2 and either 5 or 7 that the load at initial yield is appreciably
below the ﬁaximum column strength for all usual design slenderness ratios.
The reduction amounts to about 10 per cent for KL/r = 120 and increases:

with decreasing KL/r .

Effect of Change in Deflected Shape of the Column in the Inelastic Range

In order to simplify beam-column studies in the inelastic range

-57. -
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of behavior it is frequently assumed that the column deflection curve
remains unchanged throughout the inelastic range. It is commonly as-
sumed to remain a sine curve. In the present investigation a sine curve
was assumed for initial crookedness, but the actual shape of the column
was determined iteratively at each increment of load in the inelastic
range. In Curve 3 of Figure 31, however, the deflection (computerwise)
was held as a sine curve throughout the inelastic range of behavior.
Curve-5 is from the regular simulated test program for the same values of
g, » residual stress, and initial crookedness. The maximum strengths are

y

slightly greater by Curve 5 than by Curve 3. No general conclusions can

be drawn since this comparison was made for only nominal amounts of

residual stress and initial crookedness.

Effect of Differences in Initial Residual Stress Pattern

The initial residual stress patterns in the flanges of wide
flange shapes which are allowed to air cool after rolling have been shown
usually to be between the straight line and parabolic distributions il-
lustrated in Figure 31. Curve 4 for an initially straight column with the
straight line residual stress pattern should be compared with Curve 6 for
the parabolic initial residual stress distribution. Curve 5 should be
similarly compared with Curve 7 for columns with a nominal degree of
initial crookedness. It is seen that when both initial crookedness and
residual stress are present, the differenct between patterns of residual
stress causes less effect on column strength than when columns are ini-

tially straight.
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DESIGN CONSIDERATIONS FOR STEEL COLUMNS

The design of nonferrous columns has usually been based on the
assumption that they were initially straight and that the strength could
be predicted by the tangent modulus formula. In the design of steel
structures, particularly railway and highway bridges, the basic principle
of design has been the calculation of the -load at which the maximum column
stress, including that caused by bending moment and including an allowance
for initial curvature and/or eccentricity, reaches the yield point. The
average column load when this occurs is then divided by a factor of safety
to yield a safe design load. When bending moment is due only to accidental
eccentricity or curvature in a nominally straight column, the rather cum-
bersome secant or other similar formula is replaced by the simple para-

bolic reduction formula, of the following type:
KL |2
0a=A-B(:r) (20)

Any nonlinearities in stress-strain behavior due to the presence of re-
sidual stress or other causes are ignored. This procedure is currently
'followed in AREA and AASHO design specifications.

In applications to building construction, recommendations of
Column Research Council have been followed, resulting in a modified
critical load approach based on Equation (2), but approximating the aver-
age between strong and weak-axis buckling of wide flange steel columns.
This procedure ignores effects of accidental curvature but takes account
of the effect of nonlinearity in the average stress-strain curve that

is introduced by the presence of initial residual stress. Paradoxically,
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either one of these approaches may be used to give essentially the same
design results since either the effects of residual stress alone or the
effects of end eccentricity or initial curvature alone may be arbitrarily
exaggerated to compensate for the fact that in any real column, both ef-
fects are present.

The present investigation provides a basis for the dual consider-
ation of both initial crookedness and residual stress in the development
of improved design formulas.

In Figure 32 are plotted curves in which the load at first
yield in a column free of residual stress is divided by the maximum com-
puted column strength based on both crookedness and residual stress.

Thus the maximum stress design procedure (ignoring residual stress) would
be unconservative when the ordinate is greater than unity. Although a
rather complete range is covered in Figure 32, the following discussion
will be based largely on the nominal values of initial curvature of 0.00lL
and maximum residual compressive stress of 10 ksi. Thus, for all nominal
levels of residual stress combined with accidental crookedness, regardless
of steel yield stress, the maximum stress design approach is never uncon-
 servative by more than about 10 per cent. As initial crookedness increases,
the estimates by the maximum stress theory tend to become more conservative
but are neVer overconservative by more than a few per cent when the re-
sidual stress is equal to 10 ksi. It should be noted that if residual
stresses are present to a greater amount than 10 ksi such as, for example,
20 ksi, the estimate of maximum load due to the combined crookedness and

residual stress may be grossly unsafe if residual stress is ignored.
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SUMMARY AND CONCLUSIONS

Maximum strengths of aluminum alloy and steel columns as influenced
by various parameter variations are systematically determined by
means of a mathematical model programmed for the 7090 computer.

The effects of initial crookedness on an aluminum alloy column and
the effects of both initial crookedness and residual cooling stresses
(alone or in combination) on the behavior of wide flange steel columns
are systematically evaluated for yield points of 36, 60, and 100 ksi.
Within the usual limits of variation. of residual stress and crooked-
ness magnitudes, the maximum column strength may be estimated by
interpolation for any given residual stress magnitude, initial crook-
edness, slenderness ratio, orvyield stress.

For idealized straight columns of éither aluminum alloy or steel,

the maximum inelastic post buckling strength is shown to be only a few
per cent above the bifurcation (tangent modulus) load.

The maximum strength of short and intermediate length steel columns
that are initially crooked maybe appreciably above the column load
that causes the maximum combined bending plus residual stress to reach
the yield stress.

The current AISC design formula for Eentrally load steel columns pro-
vides a reasonably consistent load factor of safety with respect to
the maximum strength of wide flange structural grade steel columns
having a combined maximum residual stress of 10 ksi together with an
initial crookedness of L/1000. For the samevlevels‘of combined resi-

dual stress and crookedness, in the case of the higher yield stress
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steels of 60 ksi and 100 ksi, the same AISC formula is shown to be
relatively more conservative than for the 36 ksi yield stress.
Reductions in strength caused by a combination of residual stresses
and initial crookedness are not approximated accurately by superposing
reductions caused by these factors acting separately.

An interaction formula for aluminum columns with initial crookedness
was found. to predict quite accurately the column strengths for the

range of parameters covered in this project.



ACKNOWLEDGEMENTS

This investigation was initiated in 1962 when the first author
was a graduate student at the University of Michigan. The work was largely
unsponsored and the authors are grateful for the very large amount of com-
puter time that has been made available through the Computing Center of
the University of Michigan to make the final results possible. In bringing
the work to a conclusion, the Bureau of Yards and Docks has provided sup-
port in the reduction of data and the Industry Program of the University
of Michigan has assisted in the preparation of drawings. The continuation
of the further development of the computer work at the University of Mich-
igan subsequent to the departure of the first author was made possible
through the assistance of Mr. Rafi Hariri. Assistance in reducing the
data and in preparation of drawings has been rendered by Mr. Ernst
Glauser. Both Mr. Hariri and Mr. Glauser are Research Assistants at

the University of Michigan.

_66-






