A Lagrangean Algorithm for the

Multiple Choice Integer Program

Technical Report 82-14

James C. Bean

Department of Industrial and Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48109

September, 1982,
Revised: November, 1982

Revised: Mav, 1983

A Lagrangean Algorithm for the Multiple Choice Integer Program

James C. Bean

Department of Industrial and Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48109

ABSTRACT

The Multiple Choice Integer program is a binary integer
linear program in which the variables have been partitioned into
generalized upper bounding sets (or special ordered sets). This
problem is solved using a branch-and-bound scheme designed to
take advantage of this structure. The basic procedure 1is
enhanced by solving a Lagrangean problem as an approximation.
Further, a variable reduction technique is used to eliminate many
of the variables prior to probleﬁ solution. Computational
experience is promising for the randomly generated problems,

scheduling problems and budgeting problems tested.

This work was supported in part by ONR contract N00O14-76-C0418
and NSF grant MCS76-81259. '

A Lagrangean Algorithm for the Multiple Choice Integer Program

1. Introduction

The Multiple Choice Integer Program (MCIP) can be thought of
as a generalization of the classical assignment problem. In the
assignment problem we have m workers and m tasks. Each task must
be assigned to a different worker to minimize the cost of
completing all tasks.

This problem was relaxed by Ross and Soland (1973) to the
generalized assignment problem. In this case some workers may be
able to complete more than one task, up to some capacity. For
example, one job that takes five hours and one that takes three
hours can both be accomplished by the same worker in one day.

In the MCIP we still require that each task be assigned to
some worker, but now allow any other constraints that can be
expressed as linear inequalities or equalities. This makes the
" MCIP a generalization of the generalized assignment problem.

Mathematically, the MCIP is a type of binary integer linear
program in which the set of variables has been partitioned. For
any feasible solution, precisely one variable from each
partitioning set must have the value 1 and all other variables
must have the the value 0. Any additional constraints that can
be expressed as linear inequalities (or equalities) are also

acceptable.

A formal statement of the problem being considered is:

m
Minimize I c.. X,.

= 1
Subject to: b + Ax _ 0 (MCIP)

Py

X X..=l, 1=la 2,...,11’1

j=1

x,. € {0,1}

ij

where m is the number of partitioning sets (referred to

henceforth as generalized upper bounding sets or GUB-sets), n. is

i
th

the number of variables in the 1 GUB-set, cij is the cost
associated with selecting variable xij’ b is a constant vector in
RK, K is the number of general constraints, A is a K by (Zni)

coefficient matrix and {xij} are the binary variables.
Interpreting this in the earlier problem context, each GUB-set 1is
the set of workers to which a particular task could possibly be -
assigned.

Problems that can be formulated in this manner include many
in the fields of scheduling, facility location, assembly line
balancing, project selection, menu planning, catalogue space
planning, school time tabling, budgeting and portfolio analysis.

Early attacks on problems similar to the MCIP came from
Healy (1964), Beale and Tomlin (1970) and Ross and Soland (1973).
More recently, direct atacks on this problem have begun: Mevert
and Suhl (1977), Bean (1982), Martin (1980), Sweeney and Murphy
(1981) and Martin, Sweeney and Doherty (1981). Most of these

have been branch-and-bound algorithms and, henceforth, the

terminology of branch-and-bound algorithms will be assumed. Any
reader not familiar with the terminology is referred to Geoffrion
and Marsten (1972).

Following this introductiqn, the paper is divided into four
sections. In Section 2 a branching strategy special to this
problem is developed. The resultant branch-and-bound algorithm
is described with its theoretical computational characteristics.
Section 3 describes a Lagrangean alteration of the problem that
greatly enhances computation. This is followed by a discussion of
a variable reduction technique that eliminates most variables, a
priori, from consideration in the branch-and-bound procedure.
Finally, section five presents computational results on two
classes of real problems and a set of randomly generated

problems.

2. Branch-and Bound Procedure

We will begin by describing a branch-and-bound methodology,

referred to.as the basic procedure, that strongly exploits the

structure of this problem.

An n variable binary program in general has an enumeration
tree containing 2" branches. If the variables are separated into
GUB-sets (or special ordered sets) such that there are m sets,
the jth containing n; variables, we haven = I n, variables. Of
the branches mentioned above, only In; are feasible in the
multiple choice constraints defined by this partitioning. If the
GUB-feasible nodes of the general enumeration tree are connected,

we get a much smaller enumeration tree.

The algorithm presented here enumerates the smaller tree

leading to savings from two sources. The primary savings result
from the fact that there are many fewer branches to enumerate.
Beyond this, there are now fewer constraints to consider since
the GUB constraints are handled implicitly. No potential
solution need be tested for GUB-feasibility since only GUB-
feasible solutions are considered. When a partial solution is
augmented in the algorithm, it is augmented by a GUB-set of
variables. That is, some unfixed GUB-set is chosen and all the
variables in that GUB-set are fixed; one at 1 and the others at
0. Progress through this more complicated tree will be recorded
by storing n? integer values.

Before introducing these values some preliminary notation 1is
necessary. Since we know that in any feasible solution there is
a single 1 in each GUB-set, it is never necessary to record any
feasible solution in its entirety. It is sufficient to simply
record which element of each GUB-set has the value 1 in that
solution., This requires storing m rather than o, integer
values. This can be accomplished by storing the index, in each
GUB-set, of the variable set to 1. Such a vector of indices will
be referred to as a position.

Progress through the tree for this algorithm can be recorded
by storing m solutions in this manner. These positions will
serve as addresses to which the algorithm will backtrack or
jumptrack. These stored positions will be referred to as bases
and will be indexed 1, 2,...,m. The notation bj and term j-base

will be used to indicate specific bases. The bases record the

nodes of the tree passed through while branching to the current

solution.

2.1 Branching

The branching process of this algorithm will be referred to
as stepping. A step involves changing the index of the 1 in some
GUB-set. If a step is carried out on a particular GUB-set that
currently has a 1 for its third variable, the new position will
have a 1 for the fourth variable of that GUB-set. The values in
all other GUB-sets will remain the same. This implies that
branching rules are imbedded in the indexing of the variables in
each GUB-set (as well as rules for augmentation of partial
solutions). Steps are indexed by j = 1, 2,...,m. A j-step is a
step carried out when the current partial solution contains j
GUB-sets of variables.

When augmenting a partial solution, the free GUB-set of
variables to be fixed is chosen as follows. Let j be the number
of GUB-sets of variables currently fixed in the partial solution.
Recall that the j-base is a GUB-feasible binary vector-
corresponding to some node in the enumeration tree. It is the
completion of the partial solution at that node, which the
algorithm investigated last. The binary vector represented in
the j-base has precisely m 1l's, one in each GUB-set. Consider
the objective coefficients for each of these 1's. Label the GUB-
sets according to these coefficients, lowest first. It can be
proven that the j lowest of these correspond to those GUB-sets
already in the current partial solution (see Bean (1982)). To
augment the partial solution, choose the GUB-set associated with
the next smallest objective value ((j+1)5% smallest overall) as

the next GUB-set to be fixed. The variable indexed by the j-base

for this GUBset is fixed at 1 and all other variables at 0. All
ties are broken by the least index rule.

Having discussed the primary attributes of this algorithm we
will now state it formally.

2.2. The Algorithm.

Step O0: (Initialize) Order the variables in each GUB-set by
cost, lowest first. Set all m bases at the solution
consisting of the lowest cost element in each GUB-set
(set each base to a vector of ones). Set the
incumbent at ¢ and the incumbent objective value at
+° (assuming minimation). Set j = 0, indicating that

the partial solution is empty. Go to Step 2.

Step 1: (Cost fathom) Is the total cost associated with the j-
base greater than or equal to the incumbent value? If
so, set j = j - 1 and go to Step 4. If not, go to Step
2,

Step 2: (Feasibility fathom) Is there an easily determined
optimal and feasible completion to the partial solution
with better objective value than the incumbent? If so,
go to Step 3. If not, go to step 4. If there is not
enough information to decide, go to Step 5.

Step 3. (Record New Incumbent) Record this new best solution
as the incumbent. Set j = 3j - 1 and go to Step 4.

Step 4: (Jumptracking) If j < 0 stop, the incumbent is

optimal. Otherwise order the costs associated with the

j-base and label the GUB-sets 1 through m according to

this ordering (lowest = 1, highest = m, break ties by

the least index rule). If the position of the 1 in the

GUB-set labeled j is at the end (=n.

1)’ SEt j = j - l

and go to Step 4. Otherwise, increment the position of
the 1 in the GUB-set labeled j. Set the j-base and all
bases of order higher thanm j to this new position.
Relabel the GUB-sets according to the costs associated
with the new base. Go to Step 1.

Step 5: (Augmentation) Set j = j + 1. Go to Step 2.

It is important to note here that at any point in the
algorithm the partial solution is determined as the variables in
those GUB-sets labeled one through j in the current labeling
scheme. The partial solution consists of a zero for all
variables in these GUB-sets except those indexed by the current
j-base.

Proof that this basic procedure finds an optimal solution to
the MCIP in finite time, as well as an illustrative example, can

be found in Bean (1982).

2.3 Worst Case Performance.

We wiil now look at how the tree enumerated here grows in
number of variables and configuration. This algorithm is complex
enough that it is very difficult to establish bounds on
performance tighter than the greatest number of subproblems that
could be evaluated. In fact, if Step 2 is restricted to its
simplest version, the algorithm can be shown to investigate every
possible subproblem for some examples.

In the case of a general binary problemwithn variables, an

enumerative algorithm must consider, implicitly or explicitly, 2

possible solutions. In this general problem the variables could

be partitioned into m sets, containing n. variables for i=1,
m 0 m 0,

2,0, m« Then n = I n; and 2" = 1 2%. 1In the MCIP, where
i=1 : i=1

such a partitioning is natural, the number of possible

m
combinations is I n: . Clearly, for any positive integers m and

1
i=1
n;, i=1, 2,...,m, it is true that
m m n,
ITn, << I 2°%,
i=] * i=1

In general binary trees the maximum number of solutions
investigated is a function only of the number of variables. In
the multiple choice case the number of branches is a function of
both the number of variables and the configuration of the GUB
partitioning. Following is a discussion of three configurations:
the worst for computation, an average case, and the best for
computation.

Given n variables, the worst possible configuration is n/2
GUB-sets each with 2 elements. In this case the upper bound on

investigated solutions 1is

2 = 28/2 T p 40,

n/2
Il
i=1
Through this is clearly better than the 20 upper bound on the
general problem, it is exponential and greatly limits the size of
problems that are solvable.

An average case configuration is "square," that is,

m=n1=n2=...—nm-

]

The classical assignment problem is an example of a "square'

problem.

The upper bound on investigated solutions for this

configuration 1is

Since the number of variables is n = mz, the upper bound on the
number of partial solutions explicitly investigated is’ﬁ@l

It can easily be shown that this is better than exponential, but
not polynomial.

The last configuration to be analyzed is that having a fixed
number of GUB-sets. Let m be held constant as the number of
variables is increased. That is, all new variables are added to
existing GUB-sets rather than introducing new GUB-sets. The
number of elements in any particular GUB-set is not greater than

the total number of variables so

Hence, the upper bound for this configuration is polynomial with

order, at most, equal to the number of GUB-sets.

3. Lagrangean Alteration

As noted, the basic version of the algorithm first selects
variables with low costs. This strategy is very effective so
long as the variables of low cost contain a feasible solution.
If all feasible solutions involve higher cost variables, the
basic algorithm uses many steps to reach them.

We would like to reorder in such a way that variables low in
cost, but also contributing significantly to a feasible solution,
are considered early in the process. This can be done

effectively by a Lagrangean alteration of the costs. Let A be

10

any non-negative vector of appropriate dimension.
Consider the problems

min cx - A(b + Ax)

Subject to: b + Ax > 0

i
(P,) L x,.,=1, i=1, 2,...,m
A j=1 ij
x., € {0,1}
min cX - }\(b + AX)
n,.
i
Subject to: Z Xij =1, 1i-=]-3 2,...,111
j=1
(PRA) %5 e {0,1}
and
min cx -A(b + Ax)
n,
L i
(PR,) Subject to: jzl Xig = 1

Let v(*) be the optimal objective value to problem (*). It
should be clear that;

v(FEX) < v(PRA) < v(PX) < v(P).

Further, the relaxation PRA has the integrality property (see

11

Geoffrion (1974) and Fisher (1981)) so that v(fix) = v(PRk).

By solving the problem P, we guarantee a feasible solution

A
to P and get upper and lower bounds on v(P). If x*(+) is an
optimal solution to (+), then

V(B) = ex*(2) - (b + Ax*(2))) < v(B) < ex*(2)).
If (b + Ax*(PA)) = 0, then we have solved P.

For an appropriate A > 0, altering the costs in this manner
reorders the costs just as we desired. The cost of a variable
now reflects both its actual cost and contribution to feasibility
in the general constraints, The basic procedure can now be used
to solve P .

In cases of Lagrangean relaxation we choose A to get as
close as possible to problem P. Typically, we can find A as the
argmax v(PRx). In a problem with the integrality property such
as tiis, we know that this is the optimal dual vector from the
L.P. Relaxation of P, P (see Fisher (1981)). We cannot use this
approach when only altering costs as in P since mix v(PA)';
v(P) with A= 0. This solution is useless since it does not
accoﬁplish the reordering we seek. Hence, we will use an optimal
dual vector from P here,.i.e” from now on we will choose X =X,
an optimal dual vector from P.

By solving Py rather than P we are not assured of finding an
optimal solution of P+ If the Lagrangean term A (b +Ax) = 0 at
the optimal solution to P, then we have found the optimal to P
also. However, when the constraints are inequalities, as 1is
generally the case, this complementarity condition is not

guaranteed to hold (see Fisher 1981)). In our experience,

however, an optimal solution has been found in most problems.

12

The solution of PA provides an upper bound on error. If this
error is not satisfactory, cx*(Px) can be used as a good initial
incumbent objective value and the basic algorithm used to solve
P.

If the general constraints are of the form b + Ax = 0, then
the Lagrangean term A(b + Ax) = 0 for any feasible solution. In
this case, x*(P),) is guaranteed to be optimal for P. Such is

the case in the scheduling'problems tested below.

4, Variable Reduction

A method for reducing the number of variables that must be
considered in solving the MCIP has recently been presented in
Sweeney and Murphy (1981) and Martin, Sweeney and Doherty (1981).
This method begins by ordering the costs cx -) (b + Ax) in each
GUB-set just as is done in Step 0 os the basic algorithm when
solving Py. Assume also that these costs have been modified by
subtracting the smallest cost in each GUB-set from each cosf in
the GUB-set. Since some element qf that GUB-set must be chosen,
this does not alter the optimal solution. It simply offsets the
optimal objective function value by a constant. (This is similar
to "cost reduction"” used in solving assignment problems). Now
the lowest cost in each GUB-set is 0. These modified costs will

be referred to as the reduced costs. Note also that the sum of

the m costs subtracted from the costs in the respective GUB-sets
is v(PRX) = v(PRXJ.
The procedure continues by accepting a user specified value

6 > 0. The problem is reduced by eliminating all variables with

reduced costs greater thang. Let D; be the set of all variables

13

in GUB-set i with cost not greater tham § and Xs be the new

vector of variables. Then we have a new problem.

min CXg™ A(b + AXS)

Subject to b + Axg >0

, I x,,=1, i=1, 2,...,m
(MPSA) jep, 1 yeees
1
x,. € {0,1}
We will also be interested in the problem
min CXs
Subject to: b + Axa > 0
(MP) L ox,,=1, i=1, 2,...,m
S jeD,]
xij e {0, 1}

Sweeney and Murphy (1981) prove the following theorem.
Theorem 1: If v(MPG) < v(PR‘i) + &, then
v(M%S) = v(P).
They go on to prove
Theorem 2: If 6 is is the value of a feasible solution to M%

and LB(MPS) is a lower bound on v(MPﬁ), then

0 - v(P) < 6 - min (V(PRX) + 8, LB(MPS)).

*
We have cx (MP&\) as 6 and V(MP6K) as LB(MPS) 50

cx*(MPM) - v(P) < cx*(MP_) - min [v(P R_A__)+5, v(MP)\)].

SA ¢

14

The efficiency of this technique depends greatly onm the
value of § chosen. Too small a § causes the optimal solution to
be discarded, too large a § includes so many variables that the

problem is no easier to solve. We can establish an upper bound

for §. Recall that we are dealing with reduced costs. Deﬁote
these costs EEJ- . Let UB(P) be any upper bound on v(P).
Corollary 3: If Ti; < UB(P) - v(PR;), then X5 = 0 in any
optimal solution.

Proof: Similar to Theorem 1.

As a result, if we set § = v(P) - v(PRi), the duality gap in
this problem, we know that no variables in any optimal solution
will be eliminated. Before choosing § , however, we do not know
v(P). If by a heuristic or sampling procedure we can get a
reasonable upper bound on v(P) it can be used to choose a risk-
free §. One use of this result is that at each new incumbent the
improved objective value gives a better upper bound. This leads
to the opportunity to fix all variables with cij'>UB - v(PR) at
0 for the remainder of the algorithm. |

General Procedure

We will now state the general procedure:

1) Solve P to find A. (if the optimal solution 1is
integral, stop).

2) Using some §, (& < UB (P) - v(P) if possible), reduce
the number of variables in P

3) Solve MP;, by the basic procedure.

4) If cx* - min(v(PR;) + 6, v(M%

y)) is sufficiently

small, stop. Otherwise, use § = v(MPg) - v(PRy) and

15

solve MP6 by the basic procedure to get the optimal

solution.
This algorithm can be run as a heuristic or as an optimal
algorithm., If "sufficiently small" in Sfep 4 is zero, then the
algorithm is optimal. Otherwise, the difference expression in

Step 4 is an upper bound on error.

5. Computational Results

This algorithm has been tested on three classes of problems:
retail budgeting, league scheduling and randomly generated
problems. The budgeting and scheduling problems were derived
from real data while the randomly generated problems allow
comparison with other solution techniques. In each case the
general procedure was used. In Step 4, any error was considered
sufficiently small. When the basic procedure is used to solve MPGA
step two is evaluated using an internal LP routine. Except where
otherwise noted, problems were run on the University of Michigan

Amdahl V8 with MTS operating system.

5.1 Retail Budgeting.

These problems involve determining budgets for departments
of a large department store. Each line in Table 1 represents the
average of five real problems of the size indicated. The last
column indicates the average percent of the best known value for
these maximization problems. Details on these problems can be

found in Haessler, Sweeney and Talbot (1982).

16

TABLE 1: Retail Budgeting Problems

No. Dept. No. Gen. No. CPU % of Best
(m) Const.(K) Variables (Sec.) known
5 1 15 .016 97.5%
10 1 30 .051 99.9%
20 1 60 .019 100.0%

5.2 League Scheduling

This problem deals with moving teams from city to city to
play games in an athletic league. The objective is to schedule
games to minimize travel. Details of these formulations can be
found in Bean (1982). They were suggested by the problem in Bean
and Birge (1980).

Three problems were solved containing, 14, 16 and 18 teams.
Table 2 shows the results. All found optimal solutions as was
guaranteed by the fact that the general constraints were
equalities. The parenthetical values for dual pivots and CPU
time are peérformance to the best integer solution found. The

second values given in each cell are to the end of the algorithm.

TABLE 2: League Scheduling Results

No. Teams No. Gen No. CPU
(m) Const. (K) variables Pivots (Min)
14 14 196 (47) (.004)

55 .005

16 16 256 (46) (.01)
54 .01

18 18 324 (351) (.04)
’ 410 .05

17

5.3 Random Problems.

The randomly generated problems tested were devéloped by
Martin, Sweeney and Doherty (1982). Details on problem
generation can be found there. Only a'subsét of the problems
generated were tested due to budget limits.. These consisted of
the eight problems with 300 to 400 variables. The problems were
tested on the IBM code MPSX-MIP and their own RCBB by Martin et.
al. on an Amdahl V/6~-II. The problems were tested on this code
(MCIPC) on an Amdahl V/8 with the MTS operating system. The
ancedotal belief is that the V8 is slightly faster, though the
systems are roughly comparable. |

Table 3 shows the problem characteristics while tables 4 and
5 show comparisons of the three codes on solution accuracy and
CPU usage. In all cases timings did not include data input or
solution of the first LP to find) for variable reduction. It
should be noted that MPSX-MIP and RCBB are general mixed integer
codes, tﬁough both contain special consideratiqns for handling
multiple choice constraints. They both find optimal solutions
(if any) if run to termination. The code MCIPC is more limited
in that it solves only pure integer problems with exhaustive
multiple choice constraints. Further, MCIPC as run here is a
heuristic due to the Lagrangean objective. Both RCBB and
(clearly) MPSX-MIP require an installation to support MPSX-MIP
while MCIPC has a self-contained non-proprietary LP routine. The
problem numbers refer to the indexing in Martin, Sweeney and

Doherty (1981).

18

TABLE 3:
No.
Problem Var.
1 352
2 315
3 345
5 323
6 380
7 323
13 384
14 345

No.Gen. No.GUB-
Const.(K) sets(m) Density
10 16 28.2
10 21 21.7
8 15 26.1
8 19 22.9
12 20 24,5
12 19 16.3
11 24 15.3
11 15 26 .4

*No solution known.

Problem Characteristics for Random Problems

v(P) = v(P)

v(p)
.13

.10
.17
.06
.09
.04

*

.17

TFraction of non-zero coefficients for all constraints.

TABLE 4:
MPSX/MIP

Problem Value Error

1 767 0

‘2 2657 0

3 1069 0

5 1815 0

6 1920 0

7 804 0

13 - -

14 3004 36.8%
- no integer solution found.

Best Objective Found for Random Problems

RCBB
Value

Error

767

2657

1069

1815

1920

804

2180

19

0

0

1.9%

1069
1815
2103

804

TABLE 5: CPU Times in Minutes and Dual Pivots for Random Problems

MPSX/MIP
Problem Pivots CPU
1 (3268) (.86)
5806 1.66
2 (4906) (1.33)
7823 2.24
3 (1740) (.42)
3270 .91
5 (1986) (.60)
2179 .67
6 (5934) (2.07)
7299 2.61
7 (288) (.08)
302 .08
13 - -
(2.15)

14 (8238)

6. Conclusions.

Pivots

(1070)
1774

(1809)
4771

(1125)
2509

(481)
1678

(480)
3498

(165)
165

(4407)

RCBB

CPU

(.19)
735

(.34)
.98

(.18)
.48

(.09)
.33

(.09)
.75

(.04)
.04

(.77)

MCIPC
Pivots CPU
(3202) (.24)
3440 26
(6668) (.77)
6668 83
(111) (.03)
111 .04
(258) (.02)
258 .02
(226) (.02)
753 .07
(214) (.01)
217 .01

In both the retail budgeting and league scheduling problems

MCIPC found solutions in very low computation times. Despite the

fact that optimality is not guaranteed in the budgeting problems,

in most cases an optimal solution was found.

The results of the random problems were favorable though

somewhat mixed.

On problems with duality gaps

less than 157 of

v(P), MCIPC performed significantly better than the other codes.

On problems with very large duality gaps,

where it is difficult

for any of the codes to find even one feasible solution. RCBB

appeared quicker at finding such a feasible solution.

In 50% of the random problems on which MCIPC stopped, it

found an optimal

solution.

The average error was 3.447%. Since

20

none of the scheduling and few of the budgeting problems had

solution error, this may be somewhat atributable to fact that

these randomly generated constraints have positive slack with

probability (nearly) 1 at all solutions. This leads to positive
Lagrangean terms A(b + Ax). The real problems did not have this

characteristic.

In conclusion, the code MCIP appears to be an efficient
tool for solving problems of the structure discussed here.
Further, it is self-contained, and written for widely supported

FORTRAN-G.

Acknowledgement

I would like to thank Paul Sweeney for his work in coding
and testing this algorithm, Frederick Hillier for supporting the

initial research and also a referee for many valuable suggestions.

21

REFERENCES

Beale, E.M.L. and J.A. Tomlin (1970), "Special Facilities in a General
Mathematical Programming System for Non-Convex Problems Using
Ordered Sets of Variables," Proceedings of the Fifth IFORS
Conference, pp. 447-454.

Bean, J.C. (1982), "A Branch-and-Bound Algorithm for the Multiple
Choice Integer Program" Working Paper No. 82-1, The
Department of Industrial and Operations Engineering, The
University. of Michigan, Ann Arbor, Michigan 48109.

Bean, J.C. and J.R., Birge (1980), "Reducing Travelling Cost and
Player Fatigue in the NBA," Interface, Vol. 10, pp. 98-102.

Fisher, M.L. (1981), "Lagrangean Relaxation Method for Solving
Integer Programming Problems," Management Science, Vol.
27, pp. 1-18.

Geoffrion, A.M. (1974), "Lagrangean Relaxation for Integer
Programming." Mathematical Programming Study 2, North-
Holland, New York, pp. 82-114,.

Geoffrion, A.M. and R.E. Marsten (1972), "Integer Programming
Algorithms: A Framework and State-of-the-Art Survey,"
Management Science, Vol. 18, pp. 465-491,

Haessler, R., P. Sweeney, F. Talbot (1982), "A Separable Linear
Programming Model for Retail Planning," Proceedings of the
l4th Annual Meeting, American Institute for Decision Sciences,
San Francisco, pp. 271-273.

Healy, W.C. (1964), "Multiple Choice Programming," Operations
Research, Vol. 12, pp. 122-138.

Johnson, M.A., A. Zoltners and P. Sinha (1979), "An Allocation
Model for Catalogue Space Planning," Management Science,
VO]_. 25, ppo 117—1290

Martin, K., (1980), "Branching Strategies for Integer Programming
with Special Ordered Sets," Presented at ORSA/TIMS National
Meeting, Colorado Springs.

Martin, K., D. Sweeney and M. Doherty (1981), "The Reduced Cost
Branch and Bound Algorithm for Mixed Integer Programming,'
Working Paper, Graduate School of Business, University of
Chicago. (unnumbered)

Mevert, P. and U. Suhl (1977), "Implicit Enumeration with
Generalized Upper Bounds," Annals of Discrete Mathematics 1,
pp. 393-402.

Ross, G.T. and R. Soland (1973), "A Branch and Bound Algorithm

22

for the Generalized Assignment Problem" Mathematical Programming,
pp. 91-103.

Sweeney, D.J., R.A. Murphy (1981), "Branch and Bound Methods for
Multi-Item Scheduling," Operations Research, Vol. 29, pp.
853-864.

Zoltners, A.A. and P, Sinha (1980), "Models for Sales Resource
Allocation," Management Science, Vol. 26, pp. 242-260.

Zoltners, A.A., P. Sinha and P. Change (1979), "Algorithm for
Sales Representation Time Management," Management Science,
Vol.25, pp. 1197-1207.

Bean/Integer

23

i

3 9015 03994 8602

