MULTIPLE CHOICE KNAPSACK FUNCTIONS

James C. Bean
Department of Industrial Operations and Engineering

The University of Michigan
Ann Arbor, Michigan 48109

Technical Report 87-26

October 1987

MULTIPLE CHOICE KNAPSACK FUNCTIONS

James C. Bean'
Department of Industrial and Operations Engineering
The University of Michigan
Ann, Arbor, MI 48109-2117

January 4, 1988

ABSTRACT

An optimal dynamic programming algorithm is presented for the multiple choice knapsack
problem. The algorithm is computationally competitive with the best published algorithms and
simpler to state and code.

OR/MS Keywords: 114 Dynamic programming, deterministic; 628 Programming, integer, algo-
rithms

The multiple choice knapsack is a knapsack problem with exhaustive multiple choice con-
straints, and is defined

m ng

a3 ey

=1 j=1

m ng
subject to: ZZa,-j:c,-j <b

=1 j=1

Y ooi=1, i=12..,m (MK3)

j=1

z;; €{0,1}, :=1,2,...,m; j=1,2,...,n,.

The MK} and its variations have been studied frequently in the literature, e.g., Zemel [1980],
Glover and Klingman [1980], Sinha and Zoltners [1979], Ibaraki, et al. [1978] and Nauss [1975].
The traditional solution approach has been branch-and-bound supported by linear programming
relaxations. This technique is attractive since the linear MK} has special structural pfoperties

allowing O(nlnn) solution.

t This paper is based on work supported by the National Science Foundation under Grant
ECS-8700836 to The University of Michigan

The literature contains mention of several applications of the structure such as capital budget-
ing and menu planning (Sinha and Zoltners). We were motivated to consider this problem during
a project on shopping mall merchandising with Homart Development Co. (see Bean, et al. [1987)).
In this problem we seek to maximize profit from a mall by selecting an appropriate group of stores
to populate the halls between the department stores. A set of potential stores is considered, each
having various possible sizes. In the formulation above, ¢ runs through the possible stores and j

enumerates the sizes for store . The knapsack constraint forces us within the square footage limit

of the mall.

This paper presents a dynamic programming approach to the multiple choice knapsack based
on the Gilmore and Gomory [1966] recursion for the knapsack problem. Advantages of this ap-
proach over traditional branch-and-bound techniques include stable and predictable computational
performance and simple coding. It is computationally competitive with the best branch-and-bound
codes. In Section 1 we develop the algorithm. Section 2 contains computational results. The third

Section is a summary and conclusions.

1. Dynamic Programming Formulation

In MK let n = Y - n; be the number of variables. Rather than viewing the problem has
making n 0 — 1 decisions, view each multiple choice set as one decision, that is, which element to
choose from the set. This view has been used successfully for the Multiple Choice Integer Program
(Bean [1984)).

Formulate a dynamic program with states consisting of ordered pairs, (k,), where 0 < k <
m, 0 <3 <b. Note that this is substantially smaller than the state space for the 0 — 1 knapsack
problem (Salkin [1975]). The multiple choice knapsack function, f(k,3), is the optimal value for
MKpg, considering only variables in multiple choice sets 1 through k. That is, f(k,3) =

k n;
max),) cijzy

i=1 j=1

k ng
subject to: Z Zaijxij <B

1=1 j=1

n{

inj = 1, 1= 172"' '7k (JMK(k_ﬂ))
Jj=1

zi; €{0,1}, i=12,...,k j=12,...,n;

2

Then f(m, b) is the optimal value to M K. We recursively solve a collection of these functions to

determine f(m,b).

Theorem 1: If the optimal solution to MK} has a subcollection of items from multiple choice
sets 1 through k having aggregate size J3, this subcollection must be optimal for MK} 5.
Proof: If not, replace that subcollection with the optimal solution to MKy 3). The remainder of
the solution is unaffected since the same multiple choice sets and portion of the knapsack are
still available. The sum of the contributions of the two partial solutions is greater than the

original, which was assumed to be optimal, a contradiction.®

The dynamic programming network implied by Theorem 1 has an arc to (k, 3) from (k—1, 3—
ax;) for j = 1,2,...,n; with value ¢;;. Additional arcs extend to (k, 8) from (k, 3 — 1), where
appropriate, to allow for slack in the knapsack constraint. They are assigned value 0. We seek the
longest path from state (0,0) to state (m, b).

The optimal value, f(m,), is found by solving forward with the recursive equations:
f(l,,@)=max{f(1,ﬂ—1),ma.x[c],- :alj Sﬂ]}7 (1)

f(k,ﬂ) = ma.x{f(k,ﬂ - l)ama-x[f(k - 1,:3_ akj) +ckj ¢ Qkj < ﬂ’f(k - 17ﬂ "'a'kj) > 0]}7 (2)

where (2) is used for k£ > 1.

Remark: The condition f(k—1,8—ax;) > 0 is necessary to force selection of one element of each
multiple choice set. It implies an assumption that all ¢;; > 0. If not, a suitable constant can

be added to all variables in a multiple choice set to attain positivity without loss of optimality.

Remark: Replacing arcs to (k, 8) from (k, 8 — 1) by arcs to (k,3) from (k — 1, 3) has the effect of
relaxing the multiple choice constraints to inequalities. In this case the condition f(k—1,3 —
ax;) > 0 is not necessary since we need not use an item from each multiple choice set. The

resulting recursive equation is:

f(kaﬁ) = ma‘x{f(k - l,ﬁ),ma.x[f(k - 11/3 - akj) + ij : a”‘j S ,B]}

This is analogous to the dynamic programming flow in the 0 — 1 knapsack problem where
not every variable need be chosen. This inequality formulation is appropriate in the mall

merchandising example which motivated this work.

3

The following algorithm solves equations (1) and (2).

Algorithm

Step 0: (Initialize) Set f(k,0) — 0, f(0,5) « 0,s0ln(k, B) — 0,z(k,B) « 0,k «— 1. Solve (1) for
1< B8 <b. For each g, if max{ey; : ag; < B] > 0, set soin(1,3) — arg max|cy; : a;; < A]. Go
to Step 1.

Step 1: (Solve equation) Let k — k+1. Solve (2) for 1 < 8 < b. For each 3, if max(f(k—1,8—ax;)+
ckj:akj < B, f(k—1,B—ar;) > 0] > f(k,B-1), set soln(k, B) « argmax(f(k—1, B—ax;)+cx; :
arj < B, f(k—1,8 —ax;) > 0]. f k=m, let B « b and go to Step 2. Else, go to Step 1.

Step 2: (Recover solution) If soln(k,8) > 0, let Tk,soln(k,f) = 1,8 — B — i soin(k), k — k — 1.
Else, let 3 — 3 — 1. Go to Step 2. Stop when k = 0.

Consider the following small example:
max 3213 + 5212 + Tz2; + 10249

subject to: 1z + 2212 + 1zyy + 3299 <4

Tii+ =1
T91 + T9o = 1
zij € {0,1}

Figure 1 shows the underlying network for this example. Table 1 displays the flow of the algorithm

for the example.

FIGURE 1: Dynamic Programming Network for the Example

2 @ -0—
ko1 -0
0
0 1 2 3 4

TABLE 1: Example Algorithm Flow

k B f(k,B) soln(k,p)
0 0 0 0*
11 3 1*
1 2 5 2
1 3 5 0
1 4 5 0
2 1 o 1
2 2 10 1
2 3 12 1
2 4 13 2*

tThis node has value 0 since there is no combination of choices, one from each multiple choice set,
that has total weight 1.

*Nodes along the optimal path. Indicates that the optimal solution is £3; = 13 = 1, others zero.
Optimal value is 13.

An important result in the Gilmore and Gomory paper is proof of the existence of a knapsack
size, b*, such that for any b > b*, there is an optimal solution containing at least one of the highest
value density item, where value density is ¢;/a;. This has the computational impact of limiting
the largest dynamic program that must be solved for a given collection of items. For any knapsack
larger than b*, reduce b by the size of the highest value density item and consider the smaller
problem. Iterative implementation of this theorem eventually brings the right hand side down to

b* at most.

An analogous result is trivial for M K;. Let @} = max;(a;;).

Lemma 2: fb> Y a} then an optimal solution is z;;» = 1, for all ¢, where j* = arg max, (¢, .

All other variables equal zero.

Proof: For a b this large the knapsack constraint is redundant. The solution stated in the Lemima

solves the problem with knapsack constraint relaxed.m

This result is important when viewing the computational bounds in Section 2.

2. Computational Tests

The algorithm above was coded in fortran H. Computational tests were run as describesi in
Sinha and Zoltners. Simple variable elimination tests from Sinha and Zoltners were employed j.rior
to executing the dynamic programming algorithm. Times reported are in milliseconds on an 1B

3090-400 at The University of Michigan, running the MTS operating system.

5

TABLE 2: CPU Times in Milliseconds on an IBM 3090-400
10 Randomly Generated Problems per Line

m: nk: mara: Minimum Maximum Average Fitted Average
sets items/set datarange CPU CPU CPU CPU
10 10 20 4 5 4.6 4.5
10 10 80 18 22 19.3 19.7
10 20 40 14 17 15.4 15.6
10 20 160 62 71 67.7 67.8
10 50 100 75 84 80.2 79.6
10 50 400 339 372 357.1 346.6
20 10 20 17 20 18.9 18.8
20 10 80 78 90 84.9 81.9
20 20 40 59 67 62.0 64.6
20 20 160 261 284 271.9 281.5
50 10 20 121 131 126.3 123.5
50 10 80 516 562 533.6 537.8

Table 2 shows the results for 120 randomly generated test problems. Each cell gives the min-
imum, maximum and average CPU time for 10 random problems of that size. The characteristics
of each cell are m,n; (constant for all ¢), and maza, where a;; and c¢;; were uniformly distributed
over the integers 1,2,...,maza. As in Sinha and Zoltners, mara was set at 2n; and 8n; for each

combination of m and n;.

Lemma 3: Computation required for this algorithm is O(nb).

Proof: The number of states is O(mb). To label each state the computation is O(nj). Hence,

overall computation for the examples is on the order of Z;be=1 Y opeynk =nbm

A regression was run to measure stability and predictability of computational performance,

fitting the model

CPU = KmF~ nﬁ"mamaﬂ" ,

where K is a constant. The adjusted r? was 1.00 with exponents for m,n; and maza of 2.05, .72,
and 1.06, respectively. Fitted CPU values are included in Table 1. Since b is approximately m x
maza and n = mny, these results show that, for these problems, the computational performance

is highly predictable and proportional to the theoretical bounds.

Remark: The only deviation between this interpretation and the regression results is that 3, is
significantly less than one. This is accounted for by the preprocessing which eliminated some

variables and reduced the effective ny.

The computation times in Table 2 are of the same order of magnitude as those reported in
Sinha and Zoltners, with each algorithm “winning” a subset of the cells. Variations may not be
significant considering the differences in machines and operating systems. The dynamic program-
ming approach does show an increase in computation time with b that is not so pronounced for
branch-and-bound codes. This can be dealt with in two ways. As shown in the previous Section,
there is an effective maximum on b due to Lemma 2. Further, computation can be saved by scaling
the a;; and b values. Thére is some loss in precision since they must take integral values. However,
in many real applications the data is not known to a high precision and/or the knapsack constraint
has some flexibility. For example, in the mall merchandising problem, such scaling can result in a
one to two percent over or under subscription of the mall when the optimal solution is evaluated
in the true knapsack constraint. All store square footages are then rescaled to find a satisfactory

solution.

3. Summary and Conclusions

This paper presents a simple dynamic programming formulation for the multiple choice knap-
sack problem by defining and solving multiple choice knapsack functions. Computational tests are
competitive with the best published techniques and computation times more predictable. Another
advantage of this technique relative to the common branch-and-bound algorithms is its ease of
coding and teaching.

Acknowledgment: I would like to thank Gary J. Salton of Homart Development Co. for moti-
vating and supporting this work.

REFERENCES

Bean, J. [1984], “A Lagrangian Algorithm for the Multiple Choice Integer Program,” Operations
Research, Vol. 32, No. 5.

Bean, J., C. Noon, S. Ryan and G. Salton [1987), “Selecting Tenants in a Shopping Mall,” Tech-
nical Report 87-1, Department of Industrial and Operations Engineering, The University of
Michigan, Ann Arbor, Michigan 48109. To appear in Interfaces.

Gilmore, P. and R. Gomory [1966], “The Theory and Computation of Knapsack Functions,” Op-
erations Research, Vol. 14, pp. 1045-1074.

Glover, F. and D. Klingman [1979], “An O(nlnn) Algorithm for LP Knapsacks with GUB Con-
straints,” Mathematical Programming, Vol. 17, pp. 345-361.
Ibaraki, T., T. Hasegawa, K. Teranaka, J. Iwase [1978], “The Multiple Choice Knapsack Problem,”
Journal of the Operations Research Society of Japan, Vol. 21, No. 1, pp. 59-93
Nauss, R. M. [1975], “The 0 — 1 Knapsack Problem with Multiple Choice Constraints,” Working
Paper, School of Business Administration, University of St. Louis.

Salkin, H. [1975], Integer Programming, Addison-Wesley, Reading, MA.

Sinha, P. and A. Zoltners [1979], “The Multiple Choice Knapsack Problem,” Operations Re-
search, Vol. 28, pp. 503-515.

Zemel, E. [1980], “The Linear Multiple Choice Knapsack Problem,” Operations Research, Vol.
28, No. 6, pp. 1412-1423.

