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Below are proofs, in full detail, for the two major theorems in Bean, Birge, Mittenthal

and Noon [1986).

Proof of Theorem 1: McKenzie [Lemma 1, 1976] proves the result given (a). This
condition does not cover scheduling problems with zy € X, the boundary of X;. Also,
the interiority of X;NY; may be difficult to verify. Conditions (b), (¢) and (d) are reasonable
assumptions that may be more readily verified. We show that each implies (z) and use ()

and the structure of f, to show (7).

Condition (b) implies that there is sufficient slack in the schedule that, at some fu-
ture time, all resources will be utilized under capacity. We wish to show that F*(z,) is

subdifferentiable at r,.

t The work of James Bean was supported in part by NSF Grant ECS-8700836 to The
University of Michigan.

! The work of John Birge was supported in part by the Office of Naval Research un-
der Grant ONR-N00014-86-x-0628 to The University of Michigan and by the National
Research Council under a Research Associateship at the Naval Postgraduate School.
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Consider z; € X;NY;. Let {z,,7 > t} attain F*(z;) so that

oo

Ft(xt) = Zfr(xr,xr+l)'

=t

Let 2} = z, + v where v is a vector of perturbations such that =i € X, NY;. To show
subdifferentiability, we show that there does not exist a  such that the one sided directional
derivative of F'* with respect to vy is —oo (Theorem 23.3, Rockafellar [1970]). For this, it
is sufficient to show that F'(z}) > F'(z;) — K
F(z}) > F'(z;), the result is trivial.

z} — ||, where K is a constant. If

If F'(z;) > F(z}), construct a path, {z},>;, with a suitable bound. Assume {z}}
is an optimal path from z}. Let T be the next hypothesized slack time following ¢. In the
following, we use the notation

 _J1, if s=d(i,k) for any k

Homdiin) = {0. otherwise '
For r=t+1,...,T, let z,(1) = z,(1) + 3, _ [2451() — 24 (2) + L{s=a(i,k)}P(¢, k)] for all i €
I' = {i|y(:) > 0}. Fori ¢ I'. let s(i) = inf{s > t|z} (i) — 2}(¢) + L{s=a(i,k)}P(2, k) > 0}.
Let I? = {i|s(:) < T.i ¢ I'}. For i € I*. let
Ir(i) — It(i) - E:;tl 1{s=d(i,k)}p(i7k), T S _S.(Z) .

(i) T > 5(1)
This is possible by scaling 4 such that 7(:) < r's(i)“(i) - x’i(z) + 1{s(i)=d(i,k)}P(2, k). For
allinotin I =I'UI. 7 <T.let ry(1) = r,(z) — Z:;tl 1{s=d(i,k)}P(2, k). Then we have
rr(1) < a%p(1) = 4(1) for all 1.

Define x744(¢) = '0,,(i) for all + € I' by scaling v until adequate resources are
available for all ¢ € I'. This is possible by the slackness hypothesis. We have defined a

path from z¢ to x4, such that rpy (1) = 10y (1) foralls € Tand z741(2) = Ty, (1)=7(2)
forallz ¢ I.

Next let J!' = {j|u(j) = 0.5 ¢ I}. Note that J! includes all setup states (j > n)
not in I. According to the slackness hypothesis, for all j < n and j € J?, we can

increase production by —4(j). remain feasible and avoid earliness costs. Let z7,,(j) =
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2l 1) —v(G) forall 7 > T, 5 < n, j € J'. For setup states (j > n), we have state
constraints, 0 < z.(j) < 1, and dynamic constraints.

A feasible perturbation of {z.(j)} for all j > n, j € J!, is obtained by defining
gp1(j) = 2 (G) — () for j > n, j € JU. Forr >T+2,j >n,j € J', define

recursively,

z

") = {maX{x_’r(j),w’r’-_l(j)}, i a(g) —ahoa(5) 20
T 2l _1(9) + (27() — 27o1(5) i 27(5) — 27-1(7) <0

Forallj ¢ J',7 > T+1,let 2/(j) = 2%.(j). This defines a feasible path since z/(j) > z’.(5),

2 1(5) = 25(§) € #h41(§) — 2-(j) and 27(j) = 2%(j) whenever z(j) 2 z7.,,(7) — (7).
Then FT*!(al., ) < FTH(a},,) since u(j) = 0 for j € J'.

We now have z7.41(i) = z%,,(¢) for all i € TUJ'. Let J2 = {j|j ¢ TUJ",s(j) < oo},
and let T = max{s(j)|j € J*}. Define

z!(1), ieIuJl,r=T+1,...,T
- (Z)Z zT(Z)—Z:;tl 1{a=d(i,k)}p(i’k)’ i € J237-=T+17'-~a§.(j)_1 ~
i 2,(8) = 020 Vamaiinyp(is k), i¢ TUJ'UJEr=T+1,...,T
(1), ie Jtr=s(j),...,T.

Again, this path is feasible since it requires no processing beyond ;.

Forall7>t,5 ¢ IUJ'UJ?, we have

21G) =240 = Y Yemaijanpl k) <zei) = D Lamagiip(s k).
s=t+1 s=t+1

Let T/ = inf{r|Y_1_ t41 Lo=d(ihnP(U k) 2 23(5) — ()} Let JB={¢IuJ'UJITI <
oo}, the set of channels with no processing under {z}} and with demand exceeding current

inventory. Let T= min{T > T’|j € J3, all resources slack for j € J*}. Define

"'(i):{f'r'(i)—‘Y(i)» i€t r2T+1
T

(1), otherwise

and _
). 1€ IUJ'UJE T >T

1
, 1), e 3 r>T+1
(1) = - r—1 . s - =
23(1) - Es:t 1{s=d(i,k)}p(2ak)a 1€ J , T = T, ,T )
)= 121 Lomaipp(is k), 1@ TUJ'UJPUTS 7 > T.
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Note that

F™(e3 ) < FT+(z 3,0+ Y winG).
r>T+1,j€J3

Hence, w(j) must be zero for j € J* at state 2% on an optimal path from z}.

T+1
In the remaining case, Y 0,11 1{s=d(j,k)}P(J, k) =aet Pj < 23(5) — ¥(s) = z4+(s). Since
we can scale down v arbitrarily (maintaining 4 # 0), we can choose —v(j) < P; —z3(y) for
any j such that P; > z}(j). For all such j, T? < co. Hence, we can assume z(j) — P; =
6(7) > 0forall j ¢ TUJ'UJ?U J® and some 6(j) > 0. We then have z,(j) > 6(j) > 0
forall 7 >tandj ¢ TUJ'UJ2UJ3. Note that 0 < zl'(j) < z,(j) +7(j) < z4(j) for all
T>TI, ¢ IUJ'UJ?UJ3. Then FT“(x- D2 FT'H( ’7','+1)+Z:17=,+1 (7)u(j) = oo,
implying that z; ¢ X, for any 4(j) > 0 and z} € X;. Therefore, we have ITUJ'UJ2U J? =

1,2,...,2n} and F'(z;) < F'(z})+ K[|z} — ]|, for some K < ~_, max{w;, u; T—1).
t 1=1

A similar argument is used if (c) holds by noting that only a finite number of costs

are reduced in optimal paths from r} and z;. This again implies subdifferentiability.

Condition (d) can be interpreted as a generalization of (c), in which a finite cost
path is eventually obtainable from every feasible path at decreasing cost. Note that
ZTK (@, Teg1) + fr (2T ' 41) has a finite number of terms, each with bounded

slope, and is hence subdifferentiable. Hence, there exists pf and path {z},,,z},,,... 27T, }

such that
Tk -1
Z fr(fr~fr+l)+fTK(ITK"T,TK+1)_ptI‘It
r=t
Tk -1
K
< Z f,-(.l‘” r,+1 +fTK 1T1(’xTK+1) D¢ mt? (9)

for all z{ € X . Rewrite (9) as

Tk =1 Tk-—1
p( ‘r! _‘rf < Z ,«;1 1-+1 Z fr $r,$r+1
fra g T 1) = fric (31, T 41)- (10)
Note that |F!(z,)| < oc and |F*(r!)] < co. Hence p! has a limit point, p;, and by (d)
pulxy — () < F'(zy) = F' (1), (11)
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for all 2! € X,. Hence, F" is subdifferentiable at z;.

To show conclusion (i7), we must show that (pi_,,—p;) € Ofi—1(zi_;,2}), where
pioy € OF*(zi_y) and pf € OFY(z}). From (i), F™\(s1_y) = pioytioy < F* (i) -

pi_y&¢—1 for all z;—;. Hence,
fro1(zi_y, 23) + Ft(x:) —pi_2i_1 < ft—l(mt—l,-'l?t) + Ft(xt) . (12)

for all (z4—1,2¢). For ¢'(z4-1,2¢) = fi—1(2t-1,2¢) + F*(z¢), (12) implies that (p;_,,0) €
dg'(z}_,,z}). Note that f,—; is polyhedral. Also, note that for any z; € ri(Xy), the
point (z4,;) belongs to ri(dom Ft), where F'(y,z,) = F'(z;) when y € ®2". Hence,
dom fi_y Nri(dom F') # (. The subgradients of g* are then the sums of subgradients of
fi—1 and F* (Theorem 23.8, Rockafellar [1970]), that is,

(P;_1 ,0) = (Qt—laQt) + (Oap:), (13)
where (qi-1,q) € 0fi—1(z*_,,z}) and (0,p}) € OF!(z}_,,z}), or, p; € OF'(z}). This

completes the result.m

Proof of Theorem 2: We want to show

. -inf)ez' (24 2h41) = (26, 2e1)l| <€ (14)
“tivt41 t

Let z' have supporting prices p' as in (22). Let vi(2f) = (p; — py)(z} — 2{). By summing

inequalities (22), for all T,

1)~

P’*F+1(-T’T+1 “I;“+1)2 (fz(f?-r7+1)—ft(fv't,ﬂr't+1))—pS(xo—IS), (15)

...
1

(

f=}

and

M=

Prot(@ppy — Ipyy) 2 ) (fulrgzigy) = filzl, zi4)) — polz — z0)- (16)

t

From the finiteness of F%(zg) and F°(z3), both right hand sides in (15) and (16) are

1]
<

unifor‘mly bounded from below for all T. Hence, we know

vi(z§) > K > —o0, (17)
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for all ¢ and z7.

The subgradient set of f; at (z},z},,) is

Ofy(x},zi41) = cof (g) lvi = —wi, 27 (¢) 2 0, or v; = u;,z7(7) < 0}

+ N(dom f; (x5, $:+1))a

(18)

where co denotes the convex hull and, for any convex set, S, and point, z, N(S;z) =
{v|vT(y —z) <0,Yy € S}, the normal cone to S at z and, for two sets A and B, A+ B =
{z|zr = a+b,a € A,b € B}. Equation (18) follows from noting that the subgradient set of
any proper, closed, convex function is the convex hull of all limits of neighboring gradients
plus the normal cone to the effective domain of the function (Rockafellar, Theorem 25.6).

We use (18) to show that

Z} = Zy =qet {(2> 2041)|20(3) = Nizs (1), A > 0, if 23 (8) # 0,u; # —wi; (24, 2041) € dom fi}.
(19)
First consider any vector (z, z(+1) € Z;. There exists some (p}, —p}, ;)T € 0fi(a}, 25,1

such that

ft(x:’x:-{-] ) = piTs +P:‘+1I7+1 = fi(zt, 2441) — Py 2 +P:+1Zt+1- (20)

Let (pf,—pir1)T = (v,0)T + (n1.n2)T as in (18) where (v,0)T is in the convex hull of

neighboring gradients and (n;,n,)7 is in the normal cone. Write (20) as
filzeze41) = filag o oiy)) + ez - i)+ n?(zt —-z3)+ nrér(zt+1 —Ti41) (21)

Note that (z, z41) € dom fy since (x7,27,,) € dom fy. Since A(n1,n2)T € N(dom fi; (x},
r7,,)) for all A > 0, we have nT(zi=—r))+nl (241 —2}4,) <0 If nl(zi—2z3)+nd (241 -
rie1) < 00 then fi(zroziqr) < filaf xipy) + pi(ze = 27) = Piyr(ze41 — 734,) for some
(pi.—pis) € Ofi(xy.x7,,). violating convexity of f;. Hence, nT(zy — 2}) + nd (2441 -

r$4,) = 0. From the definition of fi(z.z41) and equation (21),

2n

S (i)™ + uiz(i)t) = filenze)

1=1



2n 2n
= (mwiai()” +wizi (1) + ) vilz(6) - 21(3))
1=1 =1
2n
= Zv,-zt(z), (22)
1=1
where
v; = —w;, z3(¢) <0
v = uj, zy(¢) >0
—w; < v; Sy I:(Z) =0

Therefore, we have
0= Y 0+ Y 0
{i]z(i)<0,22 (i) <0} {1]z(1)20,27 (i)>0}

Y wtwa+ Y (wrw)(-a@) (g

{ilz(1)>0,27 (1) <0} {1]2:(1)<0,27 (1)>0}
Y wmwda@+ Y, (witw)(—z().
{ilz(1)>0,27 (1)=0} {1]2(1)<0,z7 (1)=0}

Every term in the sum in (23) must be zero since each has nonnegative components.
Hence, Z; C Z,. Note also that if (2(.2¢+1) € Z¢, then we can choose v; = u; if 24(z) > 0
and v; = —w; if z¢(1) < 0 for all 7 such that r}(z) = 0. In this case, we have constructed

(pf.—DPiy1) € Ofi(xy. x7y,) to satisfy (20). This proves that Z; = Z4.

Suppose (14) does not hold. There exists ¢ > 0 and a sequence of times, {t;} — oo
such that

inf H(II,)..I‘I,)_H ) = (ze.2e41)|| > € (24)

(lr) 4 )E[()

Suppose there exists a subsequence, {(.’r:“.:r’t)kﬂ )}, of the sequence, {(z,, 2} 41},
such that

inf ||z

‘:, ey |)€',.
e Tt Yk

” —Ilt”H—*O (25)

as t,,» — oc. Then. for any ¢ > 0. there exists some t.z}, (27, 2i41) € Z7 such that
sp—rt| < ébut ||z =rx', || >€—6for all = such that (z;,z) is feasible. However, b
t t+1 t y

construction of fi, for any r,. if r, = r, + p for a perturbation vector, p, with ||p|| < 6,

-
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then, in the worst case, we have changed by p, the level of some channel ¢ that bounds
production for all outputs. In this case, for any Z;,;, feasible from Z,, there exists some
Ty41, feasible from z,, such that ||Z;+1 — ¢41|] < 2n|p|. In particular, this is true for
t =t and Z = ', hence, 2n8 > ||z — z}, || > € — 6 for all 6. Hence, (24) and (25) are

inconsistent.

Therefore, if (24) holds, we must have some § > 0 such that

inf
(:!j vzlj +l)€Z:J

2}, — 24,1 > 6, (26)

for all {t;}. Note that (19) implies that the set of zy; € 27, for some feasible zy; 4,
defines a cone, C,, corresponding to the orthant that contains z3,(¢) for u; # —w; plus all

coordinate directions, 7, such that r;(7) = 0 or u; = —w;. Consider zt*j defined by

0 if 1 € A =qer {1]27.(2) # Azl (2) £ A >0 and u; # —w;
zt*)(z)-—-{ if 1 € A =ger {1]27,(1) # Azy, (¢) for any A > 0 and u; # —w;} 27)

zy,(1) otherwise.

*

The vector :c’tj — zy; 1s then normal to C{ at z{, so it achieves the infimum in (26). We

then have

wf el ==l =) e 0] 2 6 (28)

(::J-:x}u t i€A
Note that (28) implies that there exists some ¢ such that u; # —w;. Let v = min{u; +

wiui + wi # 0} > 0. We then have. for any (pf , —pj 41) € Ofi(zy,, 2%, 41);

! N N .. * ! X
frj(1¢,‘~’:,+1) P (r = 20) + 0041 (2g 4 th+1)

2n
:Z(—ll‘,.l';}(i)— + ll,JI,J(I)+)+ Z 0-— Z vim'tj(i)
=1 {l|=,°)=I;j(i)} {i|z:j;6z;j(i)} (29)
= Z (—u‘,.r',l(z)' - 11,11)(i)+)+ Z (ui+wi).:c'tj(i)|
{1l =2 (0} {ilsf #z, (1)}
2 fo, (25 2 40 ) + b
By definition of Z;. for any (r}.ry )
flatoaip) = piag + pia gy = folzf2040) = Piet + Pigi 2 (30)
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From (29) and (30), we have for any T,

T
Zf T}, Ti41) th(wt?xt+1
t=0

< (py — py)(zg — z5) — (05 — pp)(aT — 2F) — Z vl|(25;5 2¢,+1) — (T4, 2, 40)II- (31)
{i1t; <T}

By (17), if (14) does not hold, then the right-hand side of (31) approaches —oo as
T approaches oo since the normed term exceeds § infinitely often. This contradicts the

finiteness of F(z}).m
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