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ABSTRACT

We show that the e}ects of over_tting and under_tting a vector auto!
regressive "VAR# model are strongly asymmetric for VAR summary stat!
istics involving higher!order dynamics "such as impulse response functions\
variance decompositions\ or long!run forecasts#[ Under_t models often
underestimate the true dynamics of the population process and may result
in spuriously tight con_dence intervals[ These insights are important for
applied work\ regardless of how the lag order is determined[ In addition\
they provide a new perspective on the trade!o}s between alternative lag
order selection criteria[ We provide evidence that\ contrary to conventional
wisdom\ for many statistics of interest to VAR users the point and interval
estimates based on the AIC compare favourably to those based on the
more parsimonious Schwarz Information Criterion and HannanÐQuinn
Criterion[ Copyright Þ 1990 John Wiley + Sons\ Ltd[

KEY WORDS VAR^ lag order selection^ model uncertainty^ bootstrap

Much of what we know about macroeconomic dynamics is based on summary statistics calculated
from estimates of vector!autoregressive "VAR# models[ These dynamics crucially depend on the
lag order choice\ because the statistics of interest are functions of the order of the autoregressive
lag polynomial[ In this paper\ it is argued that the e}ects of over_tting and under_tting the VAR
model are strongly asymmetric for VAR summary statistics involving higher!order dynamics
"such as impulse response functions\ variance decompositions\ or long!run forecasts#[ It is shown
that under_t models tend to underestimate the true dynamics of the population process and may
result in spuriously tight con_dence intervals[ These insights are important for applied work\
regardless of how the lag order is determined from the data[ In addition\ they provide a new
perspective on the trade!o}s between lag order selection criteria[

Although it is common in applied work to determine the VAR lag order based on information!
based lag order selection criteria "see Nishi\ 0877^ Granger\ King\ and White\ 0884^ Sin and
White\ 0885#\ to date very little is known about the implications of alternative lag order selection
procedures for estimation and inference[ This gap in the literature is surprising\ given the great
importance attached to the substantive conclusions from vector autoregressions[ It is widely
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believed that strongly consistent lag order selection criteria such as the Schwarz Information
Criterion "SIC# and the HannanÐQuinn Criterion "HQC# are better suited for the analysis of
_nite!lag order VAR models than the less parsimonious Akaike Information Criterion "AIC#[ In
contrast\ for in_nite!order autoregressions\ the AIC is regarded as more appropriate[ In this
paper\ the case is made that even in _nite!order VAR models for many statistics of interest to
VAR users the use of the AIC tends to result in more accurate point and interval estimates[

Previous studies of the lag order choice in _nite!lag order VAR models tentatively concluded
that the SIC performs best in small samples[ That conclusion was based on simulation evidence
about the distribution of the lag order estimates and about the short!run forecasting performance
of the estimated VAR model "e[g[ Nickelsburg\ 0874^ Lu�tkepohl\ 0874\ 0880#[ Evidence for other
statistics of interest such as impulse response functions\ variance decompositions\ measures of
predictability\ or long!term forecasts apparently has not been presented[ This paper takes the
view that the latter statistics di}er in important ways from short!run forecasts[ For example\
impulse response functions can be thought of as curves well approximated by higher!order
polynomials[ Under_tting the lag order amounts to approximating these curves by lower!order
polynomials[ Consequently\ much of the curvature of the impulse response function is e}ectively
erased\ resulting in misleading estimates and inference[ In contrast\ over_tting only results in less
precise estimates of the impulse response function[ Thus\ the e}ects of over_tting and under_tting
the model are strongly asymmetric\ especially at long time horizons\ and the relative performance
of the lag order selection criteria may di}er substantially from the results reported for short!run
forecasts[ The fact that the costs associated with under_tting the model tend to be dis!
proportionately larger suggests that less parsimonious lag order selection criteria such as the AIC
may result in more accurate impulse response estimates compared to the highly parsimonious
SIC and HQC[

A Monte Carlo study illustrates that\ in the presence of higher!order dynamics in impulse
response functions\ the AIC indeed has better _nite!sample properties than more parsimonious
lag order selection criteria[ The simulation study compares the performance of four well!known
information!based lag order selection criteria based on] "0# the small!sample distribution of the
lag order estimates^ "1# the mean squared errors of the implied impulse response point estimates^
and "2# the coverage accuracy and average length of the implied impulse response con_dence
intervals[ The latter part of the paper builds on a recent study of Kilian "0887a# which compared
various con_dence intervals for VAR impulse responses under the assumption that the lag order
is known\ and concluded that bias!corrected non!parametric bootstrap intervals tend to be most
accurate in small samples[ A description of the algorithm is provided in the Appendix[

The remainder of the paper is organized as follows[ The next section brie~y reviews the lag
order selection criteria used in the simulation study[ The design of the Monte Carlo study is
explained in the third section[ The fourth section contains a summary of the simulation results[
The _fth section relates the _ndings to the existing literature on lag order selection\ and the
sixth section contains an example of how the di}erences between the Akaike and the Schwarz
Information Criterion may a}ect the substantive interpretation of macroeconomic VAR models[
In the _nal section we summarize the results and outline several extensions[

LAG ORDER SELECTION CRITERIA FOR VECTOR AUTOREGRESSIONS

Consider a covariance stationary N!dimensional VAR process with _nite lag order p9 and iid
disturbances ut with vector mean zero and unknown positive de_nite covariance matrix Su]
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yt �B0yt−0 ¦B1yt−1 ¦[ [ [¦Bpyt−p9
¦ut "0#

Let b�vec"B0\B1\ [ [ [ \Bp9
# and s� vech"Su#\ where vec denotes the column stacking operator

and vech is the column stacking operator that stacks the elements on and below the diagonal
only[ The statistic of interest is the estimated response of variable k to a one!time impulse in
variable l\ i periods ago\ denoted by u
kl\i"b
\s
\ p¼# where p¼ is an estimator of p9 "see Lu�tkepohl\
0880\ for further discussion#[

In practice\ p¼ must be determined from the data[ It is common to use information!based lag
order selection criteria for this purpose[ We consider four such criteria\ which di}er by the
severity of the penalty imposed for parameter pro~igacy and hence in the parsimony of the model
selected] the Schwarz Information Criterion "SIC#\ the HannanÐQuinn Criterion "HQC#\ the
Akaike Information Criterion "AIC#\ and the bias!corrected Akaike Information Criterion
"AICBC# of Hurvich and Tsai "0882#[ The AICBC is a modi_cation of the AIC designed to bridge
the middle ground between the HQC and the AIC by reducing the AIC|s tendency to over_t in
small samples[ For an N!dimensional VAR"p# process without deterministic components]

SIC"p# � ln = SÞu"p# = ¦
lnT

T
"N1p#

HQC"p# � ln = SÞu"p# = ¦
1 ln lnT

T
"N1p#

"1#

AIC"p# � ln = SÞu"p# = ¦
1

T
"N1p#

AICBC"p# �T"ln = SÞu"p# = ¦N# ¦ 1b"N1p¦N"N¦ 0#:1#

where T is the e}ective sample size\ SÞu the maximum likelihood estimate of Su\ and the bias!
correction factor for the AICBC is b�T:"T−"pN¦N¦ 0##[ In each case\ the lag order p¼ is
chosen to minimize the value of the criterion over a range of alternative lag orders p given by
"p] 0¾ p¾ p¹#[ It is assumed that the true lag order p9 is contained in this set[ Our ultimate goal
is to use estimates p¼ to construct point and interval estimates for u
kl\i"b
\s¼ \ p¼#[

Only the SIC and HQC are strongly consistent for p9 "see Quinn\ 0879\ p[ 071#\ but all four
criteria imply consistent estimates of ukl\i"b\s\ p9#[ For further discussion see Shibata "0865\ 0879#\
Hannan and Quinn "0868#\ Quinn "0879#\ Paulsen and Tjo�stheim "0874#\ Shibata "0875#\ Quinn
"0877#\ Po�tscher "0880\ 0884#\ and Kabaila "0884#[ Although the AIC will tend to overestimate
p9\ the asymptotic probability that the AIC selects the true lag order is 9[77Ð9[78 for bivariate
processes\ about 9[85 for trivariate processes\ 9[88 for dimension 3\ and 9[887 for dimension 4
"see Paulsen and Tjo�stheim\ 0874#[ This means that the asymptotic probability of overestimating
the lag order can be safely neglected in most multivariate applications[

An important drawback of strongly consistent lag order selection criteria is that they have a
tendency to underestimate the true lag order in small samples[ As a result\ the implied parameter
vector need not converge uniformly to the true parameter vector "see Kabaila\ 0884^ Po�tscher\
0884#[ We conjecture that\ in practice\ this tendency to under_t may result in severe mis!
speci_cation bias for VAR statistics like impulse responses\ especially at higher horizons[ The
practical importance of this problem\ however\ is not obvious because biased estimates tend to
have lower variance than unbiased estimates[ In many instances a researcher may prefer a biased
estimate\ provided the MSE is reduced[ It thus seems natural to compare the performance of
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alternative lag!order selection criteria in terms of the MSE of the parameter estimator u
kl\i"b
\s¼ \ p¼#[
The Monte Carlo study below will examine the biasÐvariance tradeo} in greater detail[

SIMULATION DESIGN

The population process underlying the Monte Carlo study is designed to produce impulse
response functions with shapes characteristic of impulse response functions encountered in
applied work\ notably the existence of higher!order dynamics in the impulse response functions[
The data!generating process is a bivariate VAR"3# with coe.cient matrices]

B0 � $
9[5251 −9[9901

9[9089 9[4671% B1 � $
−9[9057 −9[9174

9[4100 −9[2930% "2#

B2 � $
9[9162 −9[9917

9[0457 9[1118% B3 � $
9[0406 −9[9087

−9[6599 −9[2057%
with a dominant root of 9[7783[ The iid innovations are normally distributed with vector mean
zero and varianceÐcovariance matrix Su]

Su � $
9[914 9[998

9[998 9[276%×09−2 "3#

This particular process was chosen for two reasons] "0# its impulse response functions are
similar in shape to responses that might be encountered in larger systems such as the empirical
example given later^ "1# the process is persistent\ but its dominant root is small enough to allow
us to abstract from any complications that may arise in models with roots close to unity[ In
practice\ interest often centres on VAR models estimated subject to cointegration constraints[
We do not address the subject of cointegration in this paper because it is not central to our point[
The purpose of the Monte Carlo study is to illustrate the potential quantitative importance of
the biasÐvariance tradeo} in as simple a setting as possible[ A comprehensive study of alternative
models and estimators would more appropriately be the subject of a separate study[

Based on draws from this data!generating process\ we compare the MSEs of the orthogonalized
impulse response point estimates u
kl\i"b
\s¼ \ p¼# for each of the four lag!order selection criteria
discussed earlier[ We also evaluate the e}ective coverage accuracy and average length of the
corresponding nominal 84) bootstrap con_dence intervals[ E}ective coverage is de_ned as the
relative frequency with which the con_dence interval covers the true\ but in practice unknown\
impulse response value in repeated trials[

The intervals are obtained by conditioning on the estimated lag order\ as though it were the
true lag order[ As a standard of comparison\ the counterfactual interval that would be obtained\
if the true lag order were known\ is also included[ By construction the true lag order of the
process is p9 �3[ In the Monte Carlo study\ the lag order is estimated under the maintained
assumption that 0¾ p¾ 7[ This assumption is likely to favour parsimonious criteria like the SIC
by preventing them from selecting p¼ �9[ The number of Monte Carlo trials is 399\ implying a
Monte Carlo standard error of 9[90 for the 84) interval\ and the number of bootstrap replications
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is 1999[ The sample sizes are 79 and 059\ which may be thought of as twenty and forty years of
quarterly data[

SIMULATION RESULTS

Lag order estimates

It is well known that consistent lag order selection criteria are more likely to underestimate the
true lag order than to overestimate it in _nite samples[ In contrast\ inconsistent criteria such as
the AIC tend to be more balanced about p9 in small samples\ with a tendency to overestimate p9

slightly as the sample size grows[ We begin by examining the accuracy of these claims for the
data!generating process in equations "2# and "3#[

Table I summarizes the _nite!sample distribution of p¼ for each lag order selection criterion[
For sample size 79\ the SIC underestimates the true lag order in 87) of the 399 trials[ In fact\
with probability 9[81 it picks a lag order of one[ This strong downward bias of the SIC lag order
estimator con_rms that the SIC has much higher risk of underestimating the lag order than of
overestimating it[ Table I also shows that the SIC has almost zero probability of overestimating
p9[ In contract\ the AIC lag order distribution is roughly centred on the true value[ It under!
estimates the lag order with probability 9[15 and overestimates it with probability 9[07[ As the
sample size increases to 059\ the performance of both criteria improves\ but the basic pattern is
preserved[ The SIC still picks a lag order of one with probability 9[50\ whereas the AIC selects
the true lag order with probability 9[72[ It is noteworthy that the AIC underestimates the lag
order in only three cases\ and that the probability of overestimation further declines with the
sample size\ consistent with the asymptotic results of Paulsen and Tjo�stheim "0874#[ The fact
that in small samples the AIC lag order distribution tends to be more balanced about the true
lag order than the SIC lag order estimates is consistent with _ndings by Nickelsburg "0874# and
Lu�tkepohl "0874\ 0880# for other data!generating processes "see also Shibata\ 0872#[

The evidence in Table I supports the view that the SIC may be extremely unbalanced even for

Table I[ Percentage distribution of lag order estimates by criterion

Lag orders

Criterion 0 1 2 3 4 5 6 7

Sample size 79
SIC 81[9 4[7 9 1[9 9[2 9 9 9
HQC 43[2 00[2 0[2 29[2 1[7 9[2 9 9
AICBC 21[7 04[2 1[9 34[9 3[2 9[7 9 9
AIC 03[4 8[2 0[7 45[4 00[2 1[7 1[2 0[7

Sample size 059
SIC 59[7 00[4 9[2 16[4 9 9 9 9
HQC 6[7 3[2 9[2 73[4 2[2 9 9 9
AICBC 9[7 9[7 9[2 77[7 6[7 0[2 9[4 9
AIC 9[4 9 9[2 72[2 09[7 1[4 1[7 9

Source
Results based on 399 Monte Carlo trials and the data!generating process described in the fourth section[ The lag orders
are constrained to lie between 0 and 7[ The true lag order is p9 � 3[
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sample size 059[ It thus seems sensible to explore less parsimonious alternatives[ Since the HQC
is the least parsimonious\ yet still consistent\ model selection criterion\ one would expect the
HQC to be more balanced and less downward biased than the SIC[ The Monte Carlo simulations
con_rm that view[ Table I shows that for sample size 79 "059# the HQC underestimates p9

with probability 9[56 "9[01# and overestimates p9 with probability 9[92 "9[92#[ However\ the
performance of the HQC interval still falls far short of the AIC interval\ especially for sample
size 79[ This suggests to consider alternative criteria such as the AICBC that bridge the middle
ground between the HQC and the AIC[ This criterion was introduced by Hurvich and Tsai "0882\
p[ 160# to reduce the tendency of the AIC to over_t in VAR models\ especially in small samples[
Table I shows that the AICBC indeed reduces the tendency of the AIC to over_t in small samples\
but at the expense of under_tting more often[ Given the earlier discussion\ one would therefore
conjecture that AICBC impulse response estimates ought to be more accurate at longer horizons
than SIC or HQC estimates\ but less accurate than AIC estimates[

Impulse response point estimates

We now turn to the question of how the accuracy of the impulse response point estimates is
a}ected by the choice of lag order selection criterion[ The accuracy of the point estimates
u
kl\i"b
\s¼ \ p¼# is evaluated in terms of their mean!squared deviation from the population value of
the impulse response at each time horizon[ Figures 0 and 1 plot the results for sample size 79 and
059[ To put the magnitude of the MSEs into perspective\ the plots also include results under the
counterfactual assumption that the true lag order is known[ To assist in the interpretation of the
results\ the left column in each _gure shows the underlying population impulse response functions
to be estimated[ The shapes of the true impulse response functions involve various degrees and
patterns of higher!order dynamics[ They represent four common patterns found in applied work[
Figures 0 and 1 show that\ regardless of the shape of the impulse response function\ the AIC!
based estimate overall has the lowest mean squared error\ followed by the AICBC\ HQC\ and
SIC\ in that order[ As the sample size increases\ the accuracy of all estimates improves\ but the
relative accuracy of the SIC!based estimates deteriorates further[ The ranking of the four criteria
is exactly as conjectured\ and the di}erences in accuracy can be substantial[

The magnitude of the MSE appears closely linked to the curvature of the population impulse
response function[ Note the tendency of the MSE of the SIC estimate "and to a lesser extent of
the other estimates# to oscillate as the time horizon grows[ This type of pattern is what one would
expect from _tting a smoothly decaying low!order polynomial to the population impulse response
functions in the left column[ Such oversmoothing of the impulse response function would also
account for the fact that in some cases the MSE of the SIC estimate temporarily drops below
that of the estimates based on the AIC or the true lag order[ Further indirect evidence that
higher!order dynamics are driving the result is the fact that in many cases there is little di}erence
between alternative lag order selection criteria at low time horizons[ In two cases\ for sample size
79\ the SIC estimate has substantially lower MSE in the very short run[ This evidence is consistent
with earlier _ndings by Lu�tkepohl "0874\ 0880# for short!run prediction MSEs in somewhat
simpler VAR models[ It is also consistent with the argument presented above that the adverse
e}ects of oversmoothing will only become apparent at higher time horizons[ However\ the
advantages of the SIC in the very short run disappear for moderate samples and in all cases are
dwarfed by increases in the MSE at higher time horizons[

Figures 0 and 1 con_rm Shibata|s "0872# point that consistency for p9 is not necessarily a
desirable property if we are interested in a good estimator or predictor[ Lower!order models
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based on parsimonious\ consistent model!selection criteria tend to do relatively well at very short
time horizons\ but often poorly at higher time horizons[ In contrast\ inconsistent\ but more
balanced model selection criteria tend to do well at all time horizons\ even after accounting for
the increase in variance that accompanies a reduction in misspeci_cation bias[

Impulse response con_dence intervals

It has become standard in the macroeconometric literature to interpret VAR impulse response
estimates after accounting for sampling uncertainty[ This subsection therefore examines the
implications of the choice of model!selection criteria for con_dence intervals\ rather than point
estimates[ To conserve space\ results for only two impulse response functions are presented[ The
results for the other impulse response functions are qualitatively similar[

Figures 2 and 3 plot the coverage rates and average length of the implied con_dence intervals
for impulse response functions 0 and 1[ The left column in Figure 2 plots the true impulse
response functions[ The other two columns plot the e}ective coverage rates of the SIC\ HQC\
AICBC\ and AIC intervals[ As a reference point\ the plots also include the coverage of the same
interval under the counterfactual assumption that the true lag order is known[ Each subplot
shows the e}ective coverage rates of the nominal 84) intervals for a time horizon of 05 periods
after the initial shock[ A horizontal line at 9[84 would imply perfect coverage accuracy at all time
horizons and has been imposed on the plots as a reference line[ The true lag order interval
~uctuates around this ideal value for impulse response 1\ and comes very close for impulse
response 0[ This result is consistent with evidence in Kilian "0887a# that the bias!corrected
bootstrap algorithm performs quite well\ if the true lag order is known[ However\ in applied
work the lag order is rarely known[ A more realistic exercise recognizes that the lag order must
be estimated from the data before _tting a VAR[ The middle column in Figure 2 shows that for
sample size 79 the e}ects of lag order uncertainty can be striking[ Consider _rst the SIC and AIC
intervals[ For the exponentially decaying impulse response function in the upper panel the
e}ective coverage drops by up to 9[36 if the lag order p9 is estimated by the SIC and by up to
9[02 if p9 is estimated by the AIC[ For the cyclical impulse response function in the lower panel
the e}ects are even more dramatic[ For the SIC\ the coverage of the nominal 84) interval
becomes extremely erratic and may drop as low as 2)^ for the AIC\ coverage also becomes very
unstable and for some time horizons falls to 60)[ The peaks and troughs of the coverage plot
re~ect the oscillation in the underlying true impulse response function[ The relative performance
of the SIC and AIC is exactly as conjectured\ and consistent with the evidence for the point
estimates[

The right column of Figure 2 shows that if the sample size is raised to 059\ the e}ective coverage
of the AIC intervals is quite close to nominal coverage for the cyclical as well as the smoothly
decaying impulse response function[ In sharp contrast\ the coverage of the SIC interval slightly
deteriorates in the upper panel\ and only somewhat improves in the lower panel[ While its
coverage rates become more stable for the cyclical impulse response function\ the coverage of
the SIC interval may still be as low as 16)\ even for sample size 059[ Estimating the lag order
by the SIC rather than the AIC can reduce coverage by as much as 58 percentage points\ despite
the fairly large sample size[ The intuitive explanation is that the SIC lag order estimate apparently
converges more slowly than the impulse response estimates[ The lower coverage of the SIC
interval with higher sample size arises because the con_dence interval converges conditional on
p¼ ³ p9\ but not necessarily to the true value of the impulse response coe.cient[ This _nding is
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consistent with the point made by Kabaila "0884# and Po�tscher "0884# that the coverage of the
SIC!based interval may become arbitrarily small in _nite samples[

It is also instructive to compare the average length of the intervals[ For sample size 79\ the
AIC interval in Figure 3 is slightly shorter than the true lag order interval in the upper panel\
and somewhat shorter in the lower panel[ This evidence is roughly consistent with the coverage
results in Figure 2[ However\ the SIC interval is much shorter than the true lag order interval[
Considering its coverage de_ciencies\ this tendency is evidence that under_tting the lag order
produces intervals that grossly understate the true extent of sampling uncertainty[ For sample
size 059\ the basic pattern of the results is preserved[ The SIC interval is still too short[ In contrast\
the AIC interval has about the same length as the true lag order interval in both panels[ This
pattern is consistent with the results in Table I[ As expected\ AIC intervals are only slightly less
e.cient than the counterfactual intervals based on p9[ Overestimation of p9 evidently is not a
serious problem[

In addition\ similar Monte Carlo experiments were conducted for the HQC and the AICBC[
Since the HQC lag order distribution in Table I is more balanced than the distribution of the
SIC lag order estimate\ one would expect the HQC interval to perform better than the SIC
interval[ Monte Carlo simulation con_rms this conjecture[ For sample size 79\ the coverage rates
of the HQC interval exceed the corresponding SIC rates by up to 9[04 for the smoothly decaying
impulse response function\ and by up to 9[24 for the oscillating impulse response function[ For
sample size 059\ the HQC interval converges rapidly\ and its coverage is at most 9[01 short of
nominal coverage[ The improvement in coverage is consistent with the evidence in Table I that
the HQC underestimates the lag order much less frequently than the SIC[ However\ as expected\
the performance of the HQC interval still falls far short of the AIC interval[ As a _nal check
consider the AICBC interval[ Based on Table I\ one would expect the AICBC interval to be less
accurate in small samples than the AIC interval\ but more accurate than the SIC and HQC
intervals[ Monte Carlo simulation again con_rms that conjecture[ The AICBC interval performs
about as well as the AIC interval for sample size 059\ but has lower coverage for sample size 79
by as much as 9[13[ At the same time\ it clearly dominates the SIC and HQC intervals[ Inter!
estingly\ the fact that the AICBC succeeds in reducing the tendency of the AIC to over_t the
model\ as intended by its creators\ rather than being a virtue\ becomes a liability in the present
context\ as the AICBC is more likely to under_t the model for sample size 79 and to miss the
higher!order dynamics of the impulse response function[

The relative performance of the four lag order selection criteria matches the results for the
point estimates and is consistent with the view that the e}ect of misspecifying the lag order is
strongly asymmetric\ depending on whether the model is under_t or over_t[ Since under_t
models often imply distorted impulse responses\ the coverage accuracy of the intervals is directly
correlated with the probability of underestimating the lag order[ In particular\ for sample size
79\ the AIC interval "with pr"p¼ ³ p9# � 9[15# is most accurate\ followed by the AICBC interval
"9[49#\ the HQC interval "9[56#\ and the SIC interval "9[87#[ For sample size 059\ the AIC interval
"9[90# ranks _rst\ followed by the AICBC interval "9[91#\ the HQC interval "9[01#\ and the SIC
interval "9[62#[

DISCUSSION

Previous Monte Carlo studies usually focused on the question of which lag order selection
criterion is likely to select the true lag order most often "e[g[ Nickelsburg\ 0874#[ Results for the
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lag order distribution may be of theoretical interest\ but they are of limited interest for applied
users interested in VAR statistics such as forecasts\ impulse responses or variance decompositions[
This paper argues that for applied work\ a more useful criterion for comparing alternative lag
order selection criteria is the MSE of the statistics of interest[ Note that the relative frequency
distribution of lag orders for a given process does not allow us to predict a priori which criterion
will imply the smallest MSE for forecasts\ impulse responses\ and other statistics of interest and
how these MSEs will vary with the forecast horizon[ For example\ it is quite possible that
underestimation improves the MSE relative to the model based on the true lag order "see
Lu�tkepohl\ 0874#[ It is also possible that adding extra lags has little e}ect on the MSE of non!
linear functions of VAR slope parameters such as impulse responses[ Unlike Nickelsburg "0874#\
we therefore focus directly on the MSEs of the statistic of interest[

We illustrate our point in the context of impulse response analysis[ The work most closely
related to ours is Lu�tkepohl "0874\ 0880# who\ based on the MSEs of short!run forecasts\
tentatively concluded that the SIC performs best in small samples[ This paper shows that
Lu�tkepohl|s results for short!run forecasts do not necessarily extend to statistics involving higher!
order dynamics such as impulse response functions[ In fact\ overly parsimonious models may
completely miss the higher!order dynamics of the impulse response function and yield severely
misleading con_dence intervals[ In practice\ the reduction in variance from _tting more par!
simonious models is outweighed by the increase in misspeci_cation bias[ As a result\ applied
researchers interested in policy analysis or multi!step!ahead forecasts based on small samples are
better served by less parsimonious criteria\ even if those criteria are not consistent estimators of
the lag order[ A similar point has been made by Ha�rdle and Bowman "0877# in the context of
non!parametric regression[ They _nd that the bandwidth for non!linear and oscillating curves
must be adapted to the local curvature to reduce the bias in curve estimation[ In their regression
model\ excessive smoothing eliminates the higher!order dynamics of the underlying curve[ In the
VAR model\ the lag order plays the role of the bandwidth parameter\ and underestimating the
lag order similarly eliminates the oscillation in the estimates of the underlying impulse response
curve[

It seems worth emphasizing that the simulation evidence in this paper only applies to impulse
response estimates "and presumably related quantities like variance decompositions or multi!
step!ahead predictions#[ It does not imply that the AIC is a superior lag order selection criterion
for all purposes[ In particular\ the simulation evidence in Lu�tkepohl "0874\ 0880# for some simple
ad hoc data!generating processes suggests that for short!run forecasts the SIC or the HQC may
be preferable[ The evidence in this paper for a data!generating process with much richer and
perhaps more realistic dynamics "judged by the shape of the impulse response functions# is
broadly consistent with Lu�tkepohl|s results\ but it also shows that the potential advantages of
the SIC at very short time horizons tend to be dwarfed by severe distortions at time horizons
beyond _ve periods[

Furthermore\ the results in Table I suggest that the evidence in Lu�tkepohl "0874\ 0880# of the
greater accuracy of the SIC in selecting the true lag order may have been overstated[ Note that
the data!generating processes on which this conclusion has been based are mostly VAR"0# models
"or VAR"1# models with many elements of the coe.cient matrices set to zero or close to zero#[
This assumption greatly favours parsimonious lag order selection criteria like the SIC with a
built!in bias in small samples toward selecting a very low lag order\ regardless of the true lag
order[ This fact largely explains why the lag order estimates in Table I are so much more
favourable to the AIC than previous results[ To the extent that higher!order data!generating
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processes like the one used in this paper are more realistic than previous models\ the _ndings of
this paper seem to be of greater relevance for applied work[ The relatively good performance of
the AIC in our example is no guarantee of success\ however[ There is a tendency for all criteria\
including the AIC\ to under_t the VAR model in small samples\ especially for higher!order data!
generating processes[

The emphasis in this paper on longer time horizons also raises the question of the appro!
priateness of model!selection criteria designed to minimize one!step!ahead prediction error vari!
ances[ While criteria like the AIC seem to work reasonably well in practice\ their motivation for
impulse response analysis seems awkward and alternative designs for model!selection criteria
may yield further improvements[ For example\ one could imagine re!estimating the model with
di}erent lag orders depending on the time horizon of interest or specifying an explicit loss
function for a given time horizon[

It is interesting to contrast the use of information!based lag order selection criteria with the
use of Bayesian priors for the lag structure[ It is common in Bayesian VAR analysis to specify
some rate of decay for the lag order weights with a _nite upper bound[ Leaving aside the question
of where lag order priors come from in practice\ this approach is clearly more ~exible than the
rigid priors implicit in information!based criteria such as the SIC[ For example\ the use of slowly
decaying lag weights in Bayesian analysis allows consideration of higher lag orders and avoids
sharp cut!o} points[ Thus\ from a Bayesian point of view\ lag order estimates based on infor!
mation!based lag order selection criteria may simply re~ect unreasonable priors about the lag
order weights[ They impose either too many or not enough restrictions on the lag structure[ This
does not mean that the results of this paper are of no use for Bayesian analysis[ The basic trado}s
this paper has documented continue to apply in any VAR analysis\ whether the lag order is
selected ad hoc\ based on model!selection criteria\ or based on formal priors[ For example\ by
choosing a rate of decay that is too fast\ a Bayesian lag order prior may oversmooth the impulse
response functions in much the same way that truncating the lag order in classical analysis would[
The di}erence is only a matter of degree[ The same applies to the selection of the upper bound
for the lag structure[ If that prior cut!o} point is chosen too low\ the MSE of the impulse response
estimates will be adversely a}ected much as in the case of the SIC or HQC[

Finally\ it appears that some applied VAR users simply rely on conventional lag order choices
"say\ 3 or 7 lags for quarterly data\ 5 or 01 lags for monthly data# rather than explicitly estimating
the lag order from the data[ The results of this paper suggest that in that case it appears to be
safer to err on the side of including extra lags rather than to truncate the lag order polynomial
too early[ We noted that even the AIC is likely to underestimate the lag order in small samples[
If the AIC lag order estimate appears counterintuitively low\ as is often the case in applied work\
a researcher may be justi_ed in considering even higher lag orders than suggested by the AIC[

APPLICATION] THE EFFECTS OF MONETARY POLICY

The Monte Carlo evidence presented above suggests that the choice of lag order selection criterion
can have important e}ects on statistical accuracy[ To establish that these statistical di}erences
may be important enough to a}ect the economic interpretation of the estimated VAR model in
real!life applications requires additional evidence[ This section presents one such real!life appli!
cation based on Eichenbaum "0881#[ Eichenbaum studies the e}ects of monetary policy on the
US economy based on impulse responses for a variety of VAR models\ including a four!variable
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VAR with intercept based on monthly data for 0854]0Ð0889]0[ The ordering of the variables is
industrial production\ consumer prices\ M0\ and the Federal Funds rate[ All data but the interest
rate are in logs[ For both lag order selection criteria the upper and lower bounds on the lag order
were speci_ed as 0¾ p¾ 01[ The SIC selects a lag order of two\ whereas the AIC selects a lag
order of eight[

Figure 4 plots the 84) con_dence intervals "upper panel# and 57) con_dence intervals "lower
panel# for selected responses to an unanticipated rise in M0[ To avoid notational clutter\ only
the con_dence intervals based on the AIC and SIC are shown[ As the sign of the impulse response
estimate is primarily determined by the _rst!order autoregressive coe.cients\ one would expect
the SIC and AIC intervals to typically move in the same direction[ However\ the SIC can be
expected to ignore the higher!order dynamics of the impulse response[ As a result\ SIC intervals
will be smoother and typically tighter than AIC intervals[ These di}erences are important\
because often analysts are interested in the magnitude of impulse responses in addition to their
direction[ For example\ in the upper panel the response of M0 to a monetary expansion is highly
persistent according to the SIC\ but one cannot reject that it decays quickly according to the
AIC[ Similarly\ the response of the price level is signi_cantly positive under the AIC\ but not
signi_cantly di}erent from zero under the SIC[ In general\ AIC intervals are much wider\
especially at higher time horizons\ indicating substantially higher sampling uncertainty about the
e}ects of monetary policy[ In fact\ the interval width somewhat obscures the di}erences between
the SIC and AIC in the upper panel[ The lower panel of Figure 4 therefore plots the corresponding
57) intervals for the same responses[ Note that the response of M0 now is strongly signi_cant
and highly persistent according to the SIC\ but still insigni_cant for time horizons of two years
or higher according to the AIC[ In contrast to the earlier _ndings\ the response of output to a
monetary expansion is signi_cantly negative based on the AIC\ but not based on the SIC[ This
_nding is important\ because the negative response of output was one of the key reasons which
led Eichenbaum to reject this particular model[ Other signi_cant di}erences between the SIC and
AIC arise for the responses of the price level and the Fed Funds rate[ For example\ the response
of the price level to a monetary expansion remains signi_cant for almost twice as long according
to the AIC compared to the SIC[ These results show that despite the increase in interval width\
using the AIC rather than more parsimonious criteria does not render VAR impulse response
analysis futile[ Moreover\ the AIC may convey a quite di}erent picture of which responses are
signi_cant and at what time horizons[

The evidence in Figure 4 does not tell us which method is more reliable in this particular
model[ That question could only be answered by a Monte Carlo study "the computational cost
of which is likely to be prohibitive#[ However\ Figure 4 illustrates the great practical importance
of _nding reliable lag order selection criteria for inference based on VAR model estimates[

CONCLUSION

The paper provides evidence of the trade!o}s between four commonly used information!based
lag order selection criteria] the SIC\ HQC\ AICBC\ and AIC[ It is widely believed that strongly
consistent lag order selection criteria such as the SIC and the HannanÐQuinn Criterion are better
suited for VAR analysis than less parsimonious criteria such as the AIC\ if the true lag order is
_nite[ In contrast\ the AIC is regarded as more reliable for in_nite!order autoregressions[ The
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novel conclusion of this paper was that even in _nite!order VAR models in many cases of practical
interest the AIC is likely to be preferable to the SIC or HQC[

The paper emphasized the fact that the e}ects of model misspeci_cation in small samples are
strongly asymmetric depending on whether the model is under! or over_t\ if interest centres on
VAR statistics involving higher!order dynamics such as impulse response functions\ variance
decompositions\ measures of predictability\ or long!term forecasts[ In terms of the MSE\ one
would therefore expect less parsimonious criteria like the AIC to result in more accurate estimates
and inference than strongly consistent lag order selection criteria like the SIC and HQC that
have a stronger tendency to underestimate the lag order in _nite samples[ A Monte Carlo study
illustrated the potential quantitative importance of this point[ It was found that the MSEs of
impulse response estimates based on the AIC tend to be substantially lower than for estimates
based on more parsimonious criteria[ Similarly\ impulse response con_dence intervals based on
the AIC lag order estimate tended to be by far the most accurate intervals[ In contrast\ the SIC
estimates typically missed the higher!order dynamics in impulse response functions and often
resulted in severely misleading and spuriously tight interval estimates\ even for fairly large
samples[

The aim of this paper has been to raise the awareness of applied researchers of the implicit
trade!o}s in the use of lag order selection criteria and to re!open the debate over model selection
by demonstrating that parsimony is not necessarily a virtue[ It was demonstrated that applied
researchers need to give careful thought to the lag order choice because in many practical
applications parsimony of the model may obscure the true dynamics[ There are several directions
for future research[ First\ the choice of model!selection criterion involves an implicit tradeo}
between location "or bias# and scale "or variance# e}ects[ This tradeo} may di}er depending on
the sample size\ the forecast horizon\ and the statistic of interest[ Further research is needed to
identify these tradeo}s in model selection for other statistics\ models\ and time horizons[

Second\ an important extension would be to generalize the results to autoregressive models
with possibly in_nite lag order[ The common assumption that the true model is contained among
a set of _nite order VAR models is clearly unrealistic[ While the results in this paper only apply
to _nite lag order processes\ in practice\ one would not expect fundamental di}erences in results
between higher!order VAR"p# and in_nite order VAR models\ as the former may be viewed as
an approximation of the latter[ Some preliminary work on lag order selection in in_nite!order
processes has been presented by Berkowitz\ Birgean\ and Kilian "0888#[

A third extension would be to allow for the e}ects of lag order uncertainty in inference[ This
paper has documented that coverage rates of con_dence intervals may drop drastically if the lag
order is unknown and has to be estimated from the data[ Part of the problem is that standard
inference ignores the uncertainty associated with the lag order estimate in _nite samples "see
Po�tscher\ 0880#[ Kilian "0887b# examines a modi_ed bootstrap algorithm which accounts for the
fact that the lag order is determined based on the same data set used for the estimation of the
VAR model[ This modi_cation can be shown to substantially enhance the coverage accuracy of
bootstrap con_dence intervals in many cases[

APPENDIX] THE NON!PARAMETRIC BIAS!CORRECTED BOOTSTRAP
ALGORITHM OF KILIAN "0887a#

Let C�E"b
−b# �b"b
#:T¦O"T−2:1#\ where b
 denotes the OLS estimate of b "see Pope\ 0889#[
Given the assumptions of the second section of this paper\ under some regularity conditions\ a
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bias!corrected bootstrap con_dence interval for this impulse response estimate may be con!
structed as follows]

, Step 0a] Determine the lag order p by an appropriate model selection criterion such as the AIC
and _t a VAR"p¼# model to the data "yt#[ Estimate b
and calculate the _rst!order bias C
 � b"b
#:T
using the closed!form solution given in Pope "0889#[

, Step 0b] The companion matrix is the autoregressive coe.cient matrix obtained by expressing
the N!dimensional VAR"p# process as an N p!dimensional VAR"0# process "see Lu�tkepohl\
0880\ p[ 00#[ Calculate the modulus of the largest root of the companion matrix associated with
b
[ Denote the modulus by m"b
#[ If m"b
# − 0\ set b	�b
 without any adjustments[ If m"b
# ³ 0\
construct the bias!corrected coe.cient estimate b	�b
−C
 [ If m"b	# − 0\ let C
0 �C
 and d0 �0
and de_ne C
 i ¦ 0 � diC
 i and di ¦ 0 � di−9[90[ Set b	�b	i after iterating on b	i �b
−C
i for
i�0\ 1\ [ [ [ \ until m"b	i# ³ 0[ By changing the grid for d\ one can make m"b	# arbitrarily close to
unity[ The purpose of this stationarity correction is to avoid pushing stationary impulse response
estimates into the non!stationary region[ The adjustment has no e}ect asymptotically and does
not restrict the parameter space of the OLS estimator\ since it does not shrink the OLS estimate
b
 itself\ but only its bias estimate[

, Step 1a] Using standard non!parametric resampling techniques\ generate R bootstrap rep!
lications "y�t # of "yt# based on the recursion]

y�t �B	0y�t−0 ¦B	1y�t−1 ¦[ [ [¦B	p¼y�t−p¼ ¦u�t

For each bootstrap replication "y�t #\ _t a VAR"p¼# to "y�t#[ Estimate b
� and s¼�u and construct
the _rst!order bias estimate C
�� b"b
�#:T[

, Step 1b] Calculate the bias!corrected estimate b	� from b
� and C
� following the instructions in
step 0b with the obvious changes in notation[

, Step 2] Read o} the a and 0−a percentile interval endpoints of the distribution of the bootstrap
impulse response estimate ukl\i"b	�\s
�\ p¼#[
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