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SUMMARY

We examine the structural bias for established estimators of vaccine e*ects on susceptibility and for
newer estimates of vaccine e*ects on infectiousness. We then propose and analyse new bias corrections
for vaccine e*ect estimators of both susceptibility and infectiousness, as well as their combined e*ect
on infection transmission. Each estimator is evaluated empirically with computer simulations. Of the
estimators examined in this paper, those with the least bias and root mean squared error are computed
by adding one to the positive count in the placebo population. We also identify a source of bias for a
standard Bayesian estimator of risk ratios. Copyright ? 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

Vaccination programmes have proven to be an e*ective intervention for many infectious dis-
eases. One important vaccine e*ect is to prevent the reproduction of a infectious agent so that
a vaccinated individual is no longer susceptible to infection, regardless of how many times
exposure occurs. This is a model II vaccine e*ect on susceptibility, in the nomenclature of
Smith et al. [1], that imparts complete immunity to infection for a fraction of vaccine recip-
ients. However, there are several other vaccine e*ects that may also reduce the transmission
of infectious agents in a population as well. The induced immune response may keep agents
from reaching a niche where they can reproduce in a way that reduces the probability infection
per exposure [2; 3], known as a model I [1] vaccine e*ect on susceptibility. Alternatively,
the vaccine induced immune response can slow agent reproduction, lower the level of agent
generated, and thus decrease the contagiousness of the host. This reduces the probability that
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a vaccinated, infected individual may transmit infection to others, an infectiousness e*ect that
reduces the rate of secondary infections. The oral polio vaccine, H. in1uenzae type b vaccine,
and the malaria transmission-blocking vaccine demonstrate the importance of measuring these
di*erent vaccine e*ects [4; 5]. Additionally, HIV vaccines may need to rely on infectiousness
e*ects to slow the HIV epidemic [5; 6], as HIV-1 viral load is an important risk factor in
heterosexual transmission [7].

There is therefore great interest in obtaining accurate estimates of vaccine e*ects for suscep-
tibility (VES) and infectiousness (VEI), as well as their combined e*ect (VER) on the basic
reproduction number [8] of the infectious agent. Several trial designs have been proposed to
estimate those e*ects using maximum likelihood techniques [5; 6; 9].

Vaccine e*ect estimators, however, may be biased for a number of reasons, including sam-
ple selection bias, observer bias, confounding between vaccination and exposure, population
heterogeneity, dependencies between exposure risks and infection experience in trial subjects,
lack of speciGcity in the case deGnition for disease, and the use of an incorrect statistical
model [10–16].

Although the standard vaccine e*ect estimators are consistent, they are biased because they
are non-linear functions of other estimators [17]. This leads to a systematic underestimation of
vaccine e*ects, in expectation, even if other sources of bias are completely eliminated. While
the bias may be negligible in phase III trials with many thousands of individuals enrolled
in each trial arm, numerical experiments below indicate that the error may be non-negligible
when there are under 1000 participants per trial, corresponding to small or intermediate size
[18] or phase IIb challenge [19] trials. The bias may also be large when an appropriate subset
of the data is used to estimate vaccine e*ects for a speciGc cohort. Jewell [20] provides a
simple bias correction for relative risk and odds ratio estimators. His result applies directly
to model II VES estimators, because the model II VES is the risk ratio subtracted from 1.

Standard estimators for model I VES, VEI and VER also have structural bias, because they
are non-linear functions of estimators for risk in the placebo and vaccinated populations.
However, the structural bias of those estimators has not yet been studied.

This paper evaluates the structural bias of several vaccine e*ect estimators. Some known
bias corrections for model II susceptibility e*ects are presented along with new bias correc-
tions for model I VES, VEI and VER estimators. Both frequentist (Section 2) and Bayesian
(Section 3) estimators are considered. Section 4 evaluates both the bias and root mean squared
error (RMSE) of each estimator. Simulations indicate that bias corrections are appropriate
when estimating risk ratios or vaccine e*ects for a cohort with an appropriate subset of the
data, for phase IIb, small or intermediate size trials, when the trial produces less data than
expected from participants dropping out, or when the number of observed infections is less
than anticipated during trial design.

2. FREQUENTIST VACCINE EFFECT ESTIMATORS

This section presumes that data from an appropriate vaccine trial design [4–6; 9] is available
to estimate VES, VEI and VER. We Grst describe frequentist statistical issues for both model I
and model II e*ects for susceptibility (VES), then discuss VEI and VER. Known bias correc-
tions are reviewed and then new ones are proposed.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:1609–1624
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Figure 1. The magnitude of the Grst-order bias for model II VES as a function of the number np = nv of
individuals in each arm, the actual vaccine e*ect (VES = 0:3 and 0:6), and the probability of infection

pp for a placebo recipient during the trial.

2.1. Model II susceptibility e*ects

The model II vaccine e*ect for susceptibility model presumes that a fraction � of the vacci-
nated population is completely protected from all further exposure to infection, and that the
remainder of the vaccinated population is una*ected.

Suppose that pp is the probability of infection over some deGned time interval for a placebo
recipient, and that pv is the corresponding probability for a vaccine recipient. The relative
risk is �=pv=pp, and the model II VES is deGned as

VES , 1− pv=pp

We recall three estimators for VES. Let np be the size of the uninfected placebo population,
and let xp be the number that become infected during the trial. Let nv and xv be the correspond-
ing quantities for the vaccinated population. Assuming conditionally independent Bernoulli
trials, Haber et al. [2] estimates VES as

V̂ES =1− p̂v

p̂p
= 1− xv=nv

xp=np
(1)

The MLE V̂ES is consistent, but biased because it is non-linear in the MLE p̂p for pp.
A standard bias correction b̂S; a:n: can be derived using a Taylor series expansion [17]

ˆ̂VES = V̂ES + b̂S; a:n:

= V̂ES +
(1− p̂p)p̂v

npp̂p
2 (2)

Figure 1 illustrates that the magnitude of this Grst-order bias changes as a function of the
number np = nv of individuals per arm, the actual vaccine e*ect (VES =0:3 and 0:6), and the
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probability pp of infection for a placebo recipient during the trial. Doubling either np or VES

halves the bias, and the bias worsens as pp approaches 0.
Jewell [20] presents a bias correction for the relative risk that is computed as if an extra

positive outcome were observed in the placebo population. That correction has an urn model
interpretation [21] and determines a third model II VES estimator

N̂VES =1− xv=nv
(xp + 1)=(np + 1)

(3)

Both bias corrections increase the original estimate.

2.2. Model I susceptibility e*ects

Model I vaccine e*ects on susceptibility change the probability of infection per exposure.
We recall an existing estimator for model I susceptibility e*ects, and introduce two new bias
corrections. Assume now that the outcome is infection and that infection status is only known
at a speciGed follow-up interval. Further assume that exposure events occur with rate 	 for
an individual in either the placebo or vaccinated population, and that pp is the probability of
infection per exposure in the placebo population. Let pv be the corresponding probability for
the vaccinated population. The model I VES is deGned to be

VES , 1− pv=pp

Over an elapsed time 
, the number of exposures has Poisson distribution with mean 	
, so
that the probability of infection during the trial is 1− exp[−	
pv] for vaccinated individuals.
The MLE for the attack rate in the vaccinated population is ÂRv = xv=nv. Similar results hold
for the placebo arm. The MLE V̂ES for the vaccine e*ect is determined by substituting the
MLE for the attack rates (example, ÂRv =1− exp[−	
pv])

V̂ES =1− ln(1− ÂRv)

ln(1− ÂRp)
(4)

Haber et al. [2] derives this estimator with a di*erential equation model.
The Grst new bias correction b̂S; lk for model I susceptibility e*ects is obtained from the

low-order terms of the Taylor series expansion (see the Appendix). This gives the model I
e*ect estimator analogous to the model II e*ect estimator of equation (2)

ˆ̂VES = V̂ES + b̂S; lk

= V̂ES − ÂRv

2nv(1− ÂRv) ln(1− ÂRp)
+

ÂRp(1− V̂ES)(ln(1− ÂRp) + 2)

2np(1− ÂRp)(ln(1− ÂRp))2
(5)

The second new bias correction for model I vaccine e*ects for susceptibility is obtained
by estimating the attack rate estimate in the placebo population by adding one to the positive
count in the placebo population, as with the estimator in equation (3)

N̂VES =1− ln(1− xv=nv)
ln(1− (xp + 1)=(np + 1))

(6)

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:1609–1624



BIAS OF VACCINE EFFECT ESTIMATORS 1613

2.3. Vaccine e*ects on infectiousness

Vaccination may reduce the per-contact transmission probability from an infected individual.
Several vaccine trial designs [4–6] measure vaccine e*ects on infectiousness (VEI) in terms
of the probability of transmission per contact from infected placebo and vaccine recipients to
uninfected, unvaccinated individuals. Let �p be the transmission probability from an infected
placebo recipient to an uninfected, unvaccinated individual, and let �v be the corresponding
probability from an infected vaccine recipient. Then

VEI , 1− �v=�p
If the number of transmission opportunities during a given partnership between a vaccinated
infected individual and an unvaccinated uninfected individual is unknown and assumed to be
a Poisson random variable whose mean is the same in both trial arms, VEI can be estimated
as with VES in Section 2.2. Section 5 discusses potential violations of this assumption.

Let mp be the number of partnerships between infected individuals in the placebo arm and
uninfected, unvaccinated individuals, and let yp be the number of transmissions due to those
partnerships. In a generic vaccine trial for sexually transmitted infections, mp would represent
the sum of the number of partners reported by each individual in the placebo population. Let
mv and yv be analogous quantities for the vaccine arm. Then ˆSARp =yp=mp and ˆSARv =yv=mv

are the MLEs for the partnership secondary attack rates in the placebo and vaccine arms. This
secondary attack rate refers to a per partnership probability for secondary infection, rather
than a per contact transmission probability. A simple modiGcation of the standard model I
VES estimator leads to the following estimator for VEI e*ects:

V̂EI =1− ln(1− ˆSARv)

ln(1− ˆSARp)
=1− ln(1− yv=mv)

ln(1− yp=mp)
(7)

The Grst-order bias correction leads to the following new estimator for VEI:

ˆ̂VEI = V̂EI + b̂I; lk

= V̂EI −
ˆSARv

2mv(1− ˆSARv) ln(1− ˆSARp)
+

ˆSARp(1− V̂EI)(ln(1− ˆSARp) + 2)

2mp(1− ˆSARp)(ln(1− ˆSARp))2
(8)

A second new bias-corrected VEI estimator has a secondary attack rate estimator for the
placebo population that is analogous to the model I VES estimator in equation (6)

N̂VEI =1− ln(1− yv=mv)
ln(1− (yp + 1)=(mp + 1))

(9)

2.4. Combined vaccine e*ects

The combined e*ect VER of vaccination on the basic reproduction number R0 depends on
both VES and VEI

VER , 1− (1−VES)(1−VEI)

In a homogeneously mixing population, R0 is interpreted as the expected number of new
infections caused by an infected individual in an otherwise entirely susceptible population,
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and VER gives the relative reduction in R0 when everybody is vaccinated. When R0¿1, non-
zero endemic infection levels are observed, and when R0¡1 infections tend to die out. Longini
et al. [4] indicate that the critical fraction f∗ of a homogeneously mixing population that
must be vaccinated in order to eliminate endemic infection by reducing the basic reproduction
number R0 below 1 is f∗=(R0 − 1)=(R0VER).

One estimator for VER is determined by the MLEs for VES and VEI [9; 22]

V̂ER =1− ln(1− ÂRv)

ln(1− ÂRp)

ln(1− ˆSARv)

ln(1− ˆSARp)
(10)

Two new bias-corrected VER estimators are obtained as above with the Taylor expansion

ˆ̂VER = V̂ER + b̂S; lk
ln(1− ˆSARv)

ln(1− ˆSARp)
+

ln(1− ÂRv)

ln(1− ÂRp)
b̂I; lk (11)

and with the modiGed attack rate estimators for the placebo population

N̂VER =1− ln(1− xv=nv)
ln(1− (xp + 1)=(np + 1))

ln(1− yv=mv)
ln(1− (yp + 1)=(mp + 1))

(12)

The biology of a particular vaccine might suggest that the model II VES estimator is more
appropriate for the estimation of VER than the model I estimator considered here. The appro-
priate bias corrections for that vaccine would be derived similarly.

3. BAYESIAN ESTIMATORS

An alternative formulation that is consistent with existing Bayesian biostatistical literature
[23–25] is to consider pp and pv to be independent random variables whose realizations are
to be inferred from vaccine trial data and Bayes rule.

3.1. Bayesian vaccine e*ects formulation

First consider model II susceptibility e*ects. Although any joint prior distribution for pp

and pv is valid, we use independent beta prior distributions for analytical tractability and
consistency with Ashby et al. [25]

Pr(pp)∼ beta(�p; �p) and Pr(pv)∼ beta(�v; �v) (13)

The prior probability density function of pp on the interval [0; 1] is therefore

f(pp | �p; �p)= O(�p + �p)
O(�p)O(�p)

pp
�p−1(1− pp)�p−1

The prior mean is �p=(�p + �p) (if �p; �p¿0) and prior mode is (�p − 1)=(�p + �p − 2) (if
�p; �p¿1). Let E=(xp; np; xv; nv;yp; mp; yv; mv) summarize the vaccine trial outcomes for the
primary and secondary transmissions. The posterior distributions for pp is

Pr(pp |E)∼ beta(�p + xp; �p + np − xp) (14)

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:1609–1624



BIAS OF VACCINE EFFECT ESTIMATORS 1615

The posterior mean p̃p and variance �̃p
2 of the attack rate in the placebo population are

p̃p =
�p + xp

�p + �p + np

�̃p
2 =

(�p + xp)(�p + np − xp)
(�p + �p + np)2(�p + �p + np + 1)

=
p̃p(1− p̃p)

�p + �p + np + 1
(15)

Similar formulae hold for the posterior distribution of pv, and the quantities p̃v and �̃v
2.

For model I susceptibility e*ects, we use a beta prior distribution for the unknown attack
rates ARp;ARv, rather than the per-contact transmission probabilities. Similarly, the partnership
secondary attack rates SARp;SARv are presumed to have beta prior distributions. The posterior
means and variances of these unknown quantities are computed as in equation (15).

In what follows, we use (�p; �p)= (�v; �v)= (1=2; 1=2), a U-shaped, non-informative prior
distribution, as did Ashby et al. [25] in a cancer risk study. Other choices are (1,1) for a
uniform distribution, or to formally let �; �→ 0 to ‘wash out’ the inSuence of the prior.

3.2. Posterior mean for vaccine e*ects

The posterior expectation, conditional on the information E obtained from the trial, is an
important Bayesian point estimator because it minimizes the squared error loss. The expected
model II susceptibility e*ect

E[VES |E]=E[1− pv=pp |E]= 1− p̃v
np

xp − 0:5
(16)

is determined from the distributions in equation (14), assuming that xp ¿ 0:5. The concept
of bias correction is not applied in the standard Bayesian literature, so we do not consider a
bias correction for E[VES |E].

Similarly, the posterior expectation of the VEI and VER are

E[VEI |E]=E
[
1− ln(1− �p)

ln(1− �p)
∣∣∣∣E

]

E[VER |E]=E
[
1− ln(1− pv)

ln(1− pp)
ln(1− �v)
ln(1− �p)

∣∣∣∣E
]

where the posterior distributions for the partnership secondary attack rates �p; �v are analogous
to equation (14). Monte Carlo sampling can be used to estimate E[VEI |E]; E[VER |E] or to
obtain credible sets (Bayesian conGdence intervals).

3.3. Bayesian analogues of frequentist estimators

A second class of Bayesian point estimators are structurally similar to the frequentist estimators
in Section 2, but substitute Bayesian concepts for frequentist ones. One Bayesian analogue
ṼES of the frequentist model II e*ect estimator V̂ES uses posterior means instead of MLEs
for the attack rate estimates

ṼES =1− p̃v

p̃p
(17)

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:1609–1624
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A Taylor series expansion for ṼES (see the Appendix) motivates the bias correction b̃S; a:n:

˜̃VES = ṼES + b̃S; a:n:

= ṼES + �̃p
2 p̃v

npp̃p
3 = ṼES +

(1− p̃p)p̃v

(np + 2)p̃p
2 (18)

A similar analysis applies for estimators of model I VES and VEI, and of VER

ṼES =1− ln(1− p̃v)
ln(1− p̃p)

(19)

The Taylor series bias correction gives the estimator

˜̃VES = ṼES + b̃S; lk

= ṼES − �̃v
2

2(1− p̃v)2 ln(1− p̃p)
+

�̃p
2 ln(1− p̃v)

2(1− p̃p)2(ln(1− p̃p))2

[
1 +

2
ln(1− p̃p)

]
(20)

For the corresponding VEI estimators ṼEI and ˜̃VEI = ṼEI + b̃I; lk, replace the attack rate esti-
mators p̃p; p̃v; �̃p

2; �̃v
2 with appropriate secondary attack rate estimators. For VER

ṼER =1− (1− ṼES)(1− ṼEI) (21)

and the Taylor series expansion bias correction gives

˜̃VER = ṼER + b̃S; lk(1− ṼEI) + (1− ṼES)b̃I; lk (22)

The MLE V̂ES in equation (1) can be formally written 1− E[pv |E]=E[pp |E] in the limit

as �p; �p; �v; �v → 0, and N̂VES can be similarly expressed when �p = 1 and �p; �v; �v → 0.

Jewell [20] notes that the estimator 1 − N̂VES is not invariant to labelling changes (exchange
placebo with vaccine arms). The estimator 1− ṼES is invariant to such changes.

4. EMPIRICAL EVALUATION OF VACCINE EFFECT ESTIMATORS

The bias and root mean squared error (RMSE) of all the above estimators are estimated
empirically over a range of trial population sizes and known vaccine e*ects. The goal is to
identify the situations where the various estimators for each vaccine e*ect perform particularly
well or poorly in terms of bias and RMSE.

The placebo and vaccine population sizes, np; nv, were set to 100, 300 and 1000 to evaluate
the e*ect of study population size on the bias and RMSE. These numbers correspond to small
or intermediate size trials. While a reduction in susceptibility to infection of at least 60 per
cent might be considered to be a substantial e*ect, an intermediate size trial might be designed

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:1609–1624
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Table I. Bias estimates for model II VES estimators (identiGed by bias correction). The symbol ∗ indicates
that trials with undeGned estimators (division by 0) were ignored in the computation.

Frequentist Bayesian

Set-up MLE Taylor series Jewell Mean (none) Taylor series

nv = np VES V̂ES
ˆ̂VES

N̂VES E[VES |E] ṼES
˜̃VES

100 0.00 −0.190∗ 0.066∗ −0.013 −0.421 −0.180 0.060
0.30 −0.153∗ 0.038∗ −0.009 −0.344 −0.145 0.007
0.60 −0.066∗ 0.031∗ 0.009 −0.201 −0.098 −0.013

300 0.00 −0:043 0.007 0.005 −0:097 −0:041 0.008
0.30 −0.038 −0.001 −0.003 −0.068 −0.043 −0.008
0.60 −0.114 0.007 0.006 −0.050 −0.027 −0.007

1000 0.00 −0.007 0.007 0.007 −0.031 −0.006 0.007
0.30 −0.011 −0.002 −0.002 −0.028 −0.014 −0.004
0.60 −0.006 0.000 0.000 −0.014 −0.010 −0.004

to screen out candidate vaccines with observed eTcacies of 30 per cent or less [18], and
there may justiGcation for studying low-eTcacy vaccines [26]. The simulated susceptibility
and infectiousness e*ects are therefore set to 0.0, 0.3 and 0.6 to see how the bias changes
with the magnitude of the e*ect. The study focuses on the bias and RMSE of the vaccine
estimates, and does not consider issues related to conGdence intervals for standard estimators
that have been treated elsewhere [27].

For each population size and vaccine e*ect, estimates are generated from the sample statis-
tics of 4000 independent trials. In each trial, the simulated vaccine e*ect reSects the assump-
tions of the estimator (for example, model I e*ects are simulated for model I estimators).

For the model II VES simulations, the probability of infection in the placebo population is
0.07, and the probability of infection in the vaccinated population is 0:07× (1−VES). Table I
presents bias estimates for all six all-or-one VES estimators, and the RMSE is presented in
Table II. The standard error ranges from 0:006 − 0:013 when np = nv = 100, and is about
0:0013− 0:0025 when np = nv = 1000.

To aid in reading the tables, we recall that a hat ˆ denotes an MLE, and a tilde ˜ indicates
that Bayesian point estimates of the individual attack rates are used. Two symbols ( ˆ̂ or ˜̃)
denote a Grst-order bias corrected estimator. The symbol N̂ indicates that the attack rate for
the placebo population is estimated by adding 1 to the number of positives. Finally, E[VE |E]
represents the Bayesian posterior expectation of a vaccine e*ect.

The conclusions drawn from the model II susceptibility estimators are equally applicable to
relative risk estimators in general, since they are linear functions of each other. The estimators
N̂VES and ˜̃VES perform better than the other four estimators with respect to the magnitude of the

bias. Their performance is within error for most situations, although N̂VES appears somewhat
better for small populations (np = nv = 100). The Grst-order bias corrections from the Taylor

series expansion improves the bias of the estimators ( ˆ̂VES has less bias than V̂ES, and ˜̃VES

has less bias than ṼES). The estimators V̂ES and ˆ̂VES are undeGned when the number of

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:1609–1624
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Table II. Root mean squared error (RMSE) estimates for model II VES estimators. The symbol ∗ indicates
that trials with undeGned estimators (division by 0) were ignored in the computation.

Set-up Frequentist Bayesian

nv = np VES V̂ES
ˆ̂VES

N̂VES E[VES |E] ṼES
˜̃VES

100 0.00 0:860∗ 0:459∗ 0.637 1.502 0.973 0.864
0.30 0:695∗ 0:365∗ 0.447 1.230 0.574 0.354
0.60 0:389∗ 0:258∗ 0.284 0.639 0.356 0.247

300 0.00 0.345 0.314 0.316 0.357 0.334 0.305
0.30 0.263 0.240 0.242 0.278 0.258 0.235
0.60 0.174 0.162 0.163 0.185 0.173 0.159

1000 0.00 0.166 0.163 0.163 0.168 0.165 0.161
0.30 0.131 0.128 0.128 0.135 0.130 0.127
0.60 0.087 0.085 0.085 0.093 0.087 0.084

positive individuals in the placebo population is 0. The output of trials where that occurs is
ignored, and results based sample averages where some trials are ignored are marked with ∗.

The posterior expectation E[VES |E] of the vaccine e*ect has the worst bias of the six
estimators considered here, and that the bias is signiGcant even with np = nv = 300 individuals
per trial arm. In fact, it has twice the low-order bias of ṼES because E[VES |E] ≈ ṼES−b̃S; a:n:,
whereas ˜̃VES = ṼES + b̃S; a:n: is a low-bias estimator.

We conjecture that the prior distribution in equation (13) for the unknown probabilities
pp; pv may be a culprit. In particular, one reason for implementing a vaccine trial is an a
priori belief that pv ¡ pp, although there may be no e*ect (pv =pp) with a non-zero prob-
ability. Equation (13) implies, somewhat contradictorily, that the two unknown probabilities
are statistically independent and there is 0 probability for no vaccine e*ect. This suggests that
using non-informative prior distributions for vaccine e*ects speciGcally, and for risk ratios in
general, may lead to unintended and undesirable consequences. There appears to be a need for
further work to help decision-makers specify prior distributions for vaccine e*ect estimates
that account for the beliefs about the likely biological e*ects of vaccines.

Table II illustrates that the RMSE of all of the model II VES estimators (except E[VES |E])
is roughly the same for larger population sizes, although the estimators with a Taylor series

bias correction ( ˆ̂VES and ˜̃VES) seem to have a slight advantage over N̂VES, which is in

turn somewhat better than the others. That the RMSE for ˆ̂VES is particularly good when
np = nv = 100 is an artifact of the fact that trials with undeGned estimators (division by 0)
were not included in the computation.

The simulations that evaluate the model I VES estimators assume that each trial participant
experiences on average 10 exposures, with a Poisson distribution for the actual number of
exposures. The per-contact transmission probability is set to ln(1− 0:07)=10 ≈ 0:00726 in the
placebo arm to obtain an attack rate of 0:07 in the placebo arm. The per-contact transmission
rate in the vaccinated population is (1−VES) ln(1−0:07)=10. The estimator with the smallest
bias is again N̂VES, and the relative performance of the other estimators parallels that for the
model II estimators, as shown in Table III.
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Table III. Bias estimates for model I VES estimators. The symbol ∗ indicates that trials with undeGned
estimators (division by 0) were ignored in the computation.

Set-up Frequentist Bayesian

nv = np VES V̂ES
ˆ̂VES

N̂VES E[VES |E] ṼES
˜̃VES

100 0.00 −0:216∗ 0:057∗ 0.002 −0:904 −0:170 0.086
0.30 −0:139∗ 0:051∗ −0:005 −0:477 −0:161 0.022
0.60 −0:081∗ 0:028∗ −0:004 −0:327 −0:118 −0:012

300 0.00 −0:051 0.004 −0:001 −0:107 −0:049 0.005
0.30 −0:044 −0:005 −0:008 −0:094 −0:049 −0:011
0.60 −0:025 −0:003 −0:005 −0:061 −0:038 −0:016

1000 0.00 −0:010 0.005 0.004 −0:023 −0:010 0.005
0.30 −0:011 −0:001 −0:001 −0:026 −0:013 −0:003
0.60 −0:007 −0:001 −0:002 −0:015 −0:011 −0:005

Table IV. Bias estimates for VEI estimators. The symbol ∗ indicates that trials with undeGned estimators
(division by 0) were ignored in the computation. Results assume that VES = 0:0 and that each index case

has a mean of 10 partners.

Set-up Frequentist Bayesian

nv = np VEI V̂EI
ˆ̂VEI

N̂VEI E[VEI |E] ṼEI
˜̃VEI

100 0.00 −0:149∗ 0:047∗ −0:001 −0:322 −0:124 0.034
0.30 −0:094∗ 0:030∗ 0.002 −0:255 −0:098 0.001
0.60 −0:056∗ 0:026∗ 0.005 −0:171 −0:080 −0:010

300 0.00 −0:031 0.008 0.004 −0:069 −0:030 0.008
0.30 −0:025 0.002 0.000 −0:051 −0:029 −0:003
0.60 −0:016 0.000 0.002 −0:045 −0:025 −0:010

1000 0.00 −0:011 −0:000 −0:001 −0:019 −0:011 −0:000
0.30 −0:008 0.000 0.000 −0:014 −0:009 −0:002
0.60 −0:006 −0:002 −0:002 −0:014 −0:009 −0:005

Table IV summarizes the bias of the model I VEI estimators. The number of exposures per
susceptible person is assumed to be a Poisson random variable with mean 10. The per-contact
transmission probability is ln(1−0:10)=10 so that roughly 10 per cent of the initially susceptible
population becomes infected. Each new infectee contacts a random number (Poisson with mean
10) of unvaccinated susceptibles, and exposes each contact a random number (Poisson with
mean 10) of times. For these simulations, VES =0. The random number of outcomes for
secondary infections (mp; mv) does not seem to change the relative ordering of the estimators
in terms of their bias characteristics.

The RMSE for the model I VES and VEI estimators (data not shown) are similar to those
for the model II VES estimators, in that estimators with a Taylor series bias correction have
a slight advantage over N̂VES, which is in turn somewhat better than the others.
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Table V. Bias estimates for VER estimators.

Set-up Frequentist Bayesian

nv = np VES VEI VER V̂ER
ˆ̂VER

N̂VER E[VER |E] ṼER
˜̃VER

300 0.00 0.00 0.00 −0:074 −0:067 −0:001 −0:115 −0:070 −0:060
0.30 0.30 −0:055 −0:050 −0:004 −0:087 −0:057 −0:050
0.60 0.60 −0:032 −0:029 −0:003 −0:055 −0:040 −0:036

0.30 0.00 0.30 −0:055 −0:050 −0:004 −0:099 −0:061 −0:063
0.30 0.51 −0:040 −0:037 −0:005 −0:070 −0:050 −0:052
0.60 0.72 −0:023 −0:021 −0:002 −0:049 −0:035 −0:036

0.60 0.00 0.60 −0:033 −0:029 −0:004 −0:073 −0:050 −0:064
0.30 0.72 −0:022 −0:099 −0:002 −0:057 −0:039 −0:049
0.60 0.86 −0:034 −0:033 −0:023 −0:055 −0:051 −0:057

1000 0.30 0.30 0.51 −0:011 −0:011 −0:002 −0:021 −0:015 −0:016
0.60 0.72 −0:008 −0:008 −0:003 −0:015 −0:013 −0:013

0.60 0.30 0.72 −0:008 −0:008 −0:003 −0:018 −0:014 −0:017
0.60 0.86 −0:022 −0:022 −0:019 −0:028 −0:027 −0:029

Table VI. Estimate of the RMSE of VER estimators.

Set-up Frequentist Bayesian

nv = np VES VEI VER V̂ER
ˆ̂VER

N̂VER E[VER |E] ṼER
˜̃VER

300 0.00 0.00 0.00 0.4362 0.4247 0.3873 0.5760 0.4225 0.4032
0.30 0.30 0.3254 0.3183 0.2895 0.4637 0.3173 0.3041
0.60 0.60 0.2064 0.2017 0.1841 0.2755 0.2035 0.1952

0.30 0.00 0.30 0.3329 0.3251 0.2963 0.4465 0.3257 0.3154
0.30 0.51 0.2494 0.2433 0.2218 0.3312 0.2462 0.2385
0.60 0.72 0.1559 0.1526 0.1404 0.2302 0.1565 0.1533

0.60 0.00 0.60 0.2336 0.2305 0.2141 0.3783 0.2337 0.2348
0.30 0.72 0.1703 0.1673 0.1543 0.2510 0.1726 0.1744
0.60 0.86 0.1105 0.1086 0.1005 0.1556 0.1145 0.1162

1000 0.30 0.30 0.51 0.1162 0.1158 0.1131 0.1456 0.1162 0.1158
0.60 0.72 0.0775 0.0768 0.0748 0.1020 0.0775 0.0775

0.60 0.30 0.72 0.0806 0.0800 0.0781 0.1044 0.0812 0.0819
0.60 0.86 0.0539 0.0539 0.0529 0.0721 0.0548 0.0548

The simulated trials for VER e*ects use the same assumptions used for the VEI simulations,
except that both VES and VEI are varied. Adjusting the bias of the attack rates by ‘adding’ a
positive observation to the placebo population ( N̂VER) again gives the best bias characteristics
for the vaccine settings considered here, as supported by the bias estimates given in Table V.
Unlike the other studies, however, the low-order Taylor series bias correction does not seem
to appreciably improve the bias of the estimators. Table VI indicates that N̂VER exhibits the
lowest RMSE. For a given VER, the RMSE is slightly but consistently larger when VES
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is larger. If np = nv = 1000, for example, the RMSE of N̂VER is 0:170 when VES =0:6 and
VEI =0:3, but is 0:155 when VES =0:3 and VEI =0:6.

The bias and RMSE of each estimator generally decrease as either or both of VES and VEI

change from 0.0 to 0.3 to 0.6. The notable exception is a moderately increased bias when
VES =VEI =0:6, so that VER =0:84. When vaccine e*ects are nearly one, the bias increases
because fewer secondary infections are observed.

Additional simulations (results not shown) indicate that increasing the probability of be-
coming infected during the trial from 0.07–0.10 to 0.3 reduces the bias and RMSE, and
reducing the probability of becoming infected during the trial to 0.05 increases the bias and
RMSE, but the relative performance of the estimators does not appreciably change. When the
simulation parameters are modiGed so that 45 infections are expected in the control arm, as
has been suggested for some intermediate-size trials [18], the bias is somewhat improved with
the Jewell-like estimators, but there is not a large improvement in the RMSE. These shifts
are fully anticipated, as a somewhat increased probability of becoming infected during the
trial leads to a smaller relative error in the attack rate estimators.

5. CONCLUSIONS

There are several vaccine e*ects of interest in the control of infectious diseases, and many
reasons why estimators of vaccine e*ects may be biased. This study examines the bias that
result from the non-linear structure of risk ratios.

Of six estimators for each of a variety of vaccine e*ect estimators (several permutations of
model I or model II e*ects for susceptibility, infectiousness or combined e*ects), including
several new estimators, numerical results indicate that the estimator with the best bias and
RMSE characteristics is computed by adding one to the count of positive outcomes in the
placebo population. Although implementing this bias correction might seem to ‘corrupt the
data’, doing so reduces both the bias and RMSE of standard vaccine e*ect estimators.

The bias corrections above are most valuable when estimating risk ratios or vaccine e*ects
for a cohort with an appropriate subset of data, when the trial size is limited due to economic
constraints, when the trial produces less data than expected from participants dropping out, or
when the number of observed infections is somewhat less than anticipated during trial design.
The structural bias is negligible, however, for large phase III trials.

Our analysis also highlights a systematic bias for a standard Bayesian treatment for risk
ratios. The posterior expectation of vaccine e*ects has twice the low-order bias of the MLE
when independent non-informative prior distributions are used for the attack rates in the
placebo and treatment populations. We conjecture that less bias might be achieved with prior
distributions that better reSect the reasonable belief that a trial is being performed because
a treatment has the potential of a beneGcial e*ect, although a potential for no e*ect exists.
Elicitation methods for appropriate prior distributions are an area for future work.

The assumption in Section 2.3 that the number of exposures is a Poisson random variable
with common mean may not always be applicable. Partner tracing for sexually transmitted
infections may provide more precise contact counts between each partner. In that case, part-
nership secondary attack rates can be estimated by conditioning on the number of reported
contacts between infected participants and susceptible partners [28], then using group test
statistics [29]. If the number exposures per partner has a Poisson distribution with known
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means that vary in di*erent population subgroups, limiting dilution assay statistics are appro-
priate [30; 31]. Standard vaccine e*ect estimators are readily adapted to these situations by
using the most appropriate secondary attack rate estimator. Still, reliable contact data may be
diTcult to obtain. Longini et al. [4] therefore provide alternative vaccine eTcacy estimators
based on data from multiple populations. Bias reductions for vaccine e*ect estimators based
on group tests, limiting dilution assays, and estimators of Longini et al. [4] are not proposed
here.

In many trials it is important to assess vaccine e*ects as a function of multiple covariates.
The development and analysis of bias corrections for those vaccine e*ect estimators is an
area for future research.

APPENDIX

Low-order bias correction for frequentist estimators in Section 2

Each vaccine e*ect estimator is a ratio of functions of probabilities subtracted from 1. Let
pp and pv be probabilities to be estimated from np and nv outcomes of Bernoulli trials, and
let

VE=VE(pp; pv)=1− f(pv)
g(pp)

The Grst few terms of the Taylor series expansion for V̂E=VE(p̂p; p̂v) about (pp; pv) are

V̂E=VE− (p̂v − pv)
f′(p̂v)
g(p̂p)

+ (p̂p − pp)
f(p̂v)g

′(p̂p)
g(p̂p)2

+
1
2
(p̂v − pv p̂p − pp)


 −f′′(pv)

g(pp)
f′(pv)g′(pp)
g(pp)2

f′(pv)g′(pp)
g(pp)2

f(pv)
g(pp)2

[g′′(pp)− 2g′(pp)2

g(pp)
]


(p̂v − pv p̂p − pp)T + · · ·

The low-order bias depends on the matrix of second derivatives

E[V̂E]≈VE− var[p̂v]
f′′(pv)
2g(pp)

+ cov[p̂v; p̂p]
f′(pv)g′(pp)
g(pp)2

+var[p̂p]
f(pv)
2g(pp)2

[
g′′(pp)− 2g′(pp)2

g(pp)

]

Since infection outcomes are assumed conditionally independent, given pp; pv, we have
cov[p̂p; p̂v]= 0. Since the proportions are estimated with Bernoulli trials, var[p̂p]=
pp(1− pp)=np and var[p̂v]=pv(1− pv)=nv. This suggests the Grst-order bias adjustment

ˆ̂VE= V̂E +
p̂v(1− p̂v)f

′′(p̂v)
2nvg(p̂p)

− p̂p(1− p̂p)f(p̂v)
2npg(p̂p)2

[
g′′(p̂p)−

2g′(p̂p)
2

g(p̂p)

]

For a model II e*ect, f(pv)=pv and g(pp)=pp, so that f′ = g′ =1, and f′′ = g′′ =0.
This leads to the bias correction in equation (2). For a model I e*ect, f(pv)= ln(1−pv) so
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that f′ = − 1=(1 − pv), and f′′ = − 1=(1 − pv)2. The derivatives of g(pp) are similar. This
leads to the bias correction in equation (5) and equation (8). The above analysis together
with the derivative rule for products of functions lead to the bias correction in equation (11).

Low-order correction for Bayesian point estimators

The low-order bias correction in the Bayesian model II susceptibility estimator in Section
3.3 is derived like the above classical estimators, except that one uses: (a) the Taylor series
expansion for VE(pp; pv) around the posterior means (p̃p; p̃v), rather than the expansion for
VE(p̂p; p̂v) around (pp; pv); (b) expectations with respect to the posterior distribution of
(pp; pv), rather than with respect to the conditional distribution of p̂p; p̂v, given pp; pv; and
(c) the posterior variance �̃p

2 for pp in equation (15), rather than var[p̂p]=pp(1 − pp)=np
(similarly for pv). The other bias corrections in Section 3.3 are handled similarly.
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