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Modelling tumour biology–progression relationships
in screening trials
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SUMMARY

There has been some recent work in the statistical literature for modelling the relationship between
tumour biology properties and tumour progression in screening trials. While non-parametric methods
have been proposed for estimation of the tumour size distribution at which metastatic transition occurs,
their asymptotic properties have not been studied. In addition, no testing or regression methods are
available so that potential confounders and prognostic factors can be adjusted for. We develop a uni�ed
approach to non-parametric and semi-parametric analysis of modelling tumour size-metastasis data in
this article. An association between the models considered by previous authors with survival data
structures is discussed. Based on this relationship, we develop non-parametric testing procedures and
semi-parametric regression methodology of modelling the e�ect of size of tumour on the probability
at which metastatic transitions occur in two situations. Asymptotic properties of these estimators are
provided. The proposed methodology is applied to data from a screening study in lung cancer. Copyright
? 2005 John Wiley & Sons, Ltd.
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BACKGROUND

There has been a rich literature existing on statistical models for tumour progression [1–3]
in which the phenotype considered was size of the tumour. Solid cancers develop through
a process in which tumours originate as a progenitor cell, which grows to a local lesion
that shed cancer cells into the lymphatic system and=or blood stream [4]. Some of these
cells are transported to distant organs and lead to the development of metastases. In most
oncology settings, cancers where metastases have developed are more likely to be associated
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with worse clinical prognosis. It is thus of vital scienti�c interest to understand the relationship
between tumour size and probability of detectable metastases. This also has implications for
the development of screening programs.
Most of the work in this area has focused on non-parametric estimation of the distribution

function of tumour size at which metastatic transitions occur. By metastatic transition, what
we are really referring to is the transition to metastasis that would be detectable at diagnosis.
As Kimmel and Flehinger [1] write, ‘pragmatically, we consider the point at which metastases
�rst become detectable by techniques standardly used in the medical community as the point
of metastatic transition.’ The data that typically exist in these settings are the sizes of tumour
samples and an indicator of presence of detectable metastases. Since the data are collected
cross-sectionally, the distribution function of tumour size at which metastatic transitions occur
is non-identi�able. Under certain assumptions made by previous authors [1–3], this quan-
tity becomes identi�able. In this work, we focus primarily on the proposal of Kimmel and
Flehinger [1], who developed various non-parametric estimation procedures for the distribution
function of the tumour size at which detectable metastases occur. However, the asymptotic
properties of these estimators have not been studied.
A limitation of the methods described in the previous paragraph is that they do not allow

for adjustment of covariates. In the cancer setting, covariates such as the tissue of origin of the
tumour or age of the patient can a�ect the relationship between tumour size and probability
of detectable metastases. Knowing if there exists such a di�erence might lead to di�erent
treatment and=or follow-up regimens. It would thus be desirable to have semi-parametric
regression models for analysing such data. However, no such models currently exist.
In this article, we develop a comprehensive approach to the analysis of data on tumour

size and metastases. More generally, the methods described in this paper can be used to study
the relationship between biological properties of tumours and clinical progression in screening
studies. A crucial step in our methodology is the demonstration of the relationship between
the observed data structures with those from survival data analysis. Based on the formulation,
we can use existing results to derive asymptotic results for previously proposed estimators
in the literature and formulate hypothesis testing methods and regression generalizations for
analysing data on tumour size and metastases that incorporates other covariates. The structure
of the paper is as follows. We �rst consider the model assumptions in Reference [1] about
tumour size and progression and relate it to data structures in survival analysis. We then
present two scenarios in which the distribution function of tumour size at which detectable
metastatic transition occurs is identi�able. Asymptotic results for the one-sample distribution
function estimators are then provided. We also develop hypothesis testing procedures and
regression models and estimation procedures for the two scenarios. The proposed methodology
is illustrated with an example from a lung cancer data screening study. Finally, we conclude
with some brief discussion.

NOTATION AND PRELIMINARIES

Data structure and model assumptions

Let V denote the size of the tumour at detection, Z a p-dimensional vector of covariates and
� be an indicator of tumour metastasis (i.e. �=1 if metastases are detected when the primary
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tumour is diagnosed, �=0 otherwise). We observe the data (Vi; �i; Zi), i=1; : : : ; n, a random
sample from (V; �; Z). In much of the literature previously described in the Background, only
(Vi; �i) (i=1; : : : ; n) were available. We will now state the model assumptions utilized in
Reference [1]:

(a) Primary cancers grow monotonically, and metastases are irreversible.
(b) We will let Y be the random variable for the tumour size at which transition to

detectable metastasis occurs. Let the cdf of Y be denoted by FY .
(c) Let �1(x) denote the hazard function for detecting a cancer with metastasis when the

tumour size is x. Let �0(x) denote the hazard function for detecting a cancer with no
metastases when the tumour size is x. Assume that �1(x)¿�0(x).

This is also the general framework utilized by Xu and Prorok [2, 3]. Based on assumptions
(a)–(c), FY is in general non-identi�able. However, there are two conditions in which FY

becomes identi�able. The �rst situation is when cancers are detected immediately when the
metastasis occurs. The second is when detection of the cancer is not a�ected by the presence
of metastases. We will refer to these situations as case I and case II, respectively. Under these
two situations, non-parametric estimators of FY were developed in Reference [1]. However,
no asymptotic results regarding these estimators were given.

Equivalences with censored data structures

We now recast the problem in terms of failure time data structures. In survival analysis,
the focus is on modelling the distribution to time to event. Let us de�ne T to be the time
to detectable metastatic transition (i.e. the time at which the tumour goes from being non-
metastatic to metastatic and can be detected by standard diagnostic methods). We will take
the starting point of T to be the initiation of the tumour. The assumptions in the previous
section allow Y to be treated as a failure time variable. What this implies is that the tumour
size will de�ne an alternative time scale relative to that de�ned by T . The time scale de�ned
by Y will measure progression on a non-linear scale relative to that de�ned by T . We might
be scienti�cally interested in the time scale de�ned by Y in and of itself; that is the position
taken in this paper.
Note that another key assumption is that we are referring to data collected from a screening

trial. Thus, we are testing asymptomatic individuals in a population for presence of a disease.
The framework de�ned in the previous setting might not work in other clinical settings. For
example, let us consider prostate cancer. Typically, men receive hormone therapy after being
biopsied for prostate cancer; the entire tumour is then resected during surgery (this is referred
to as radical prostatectomy). If the tumour sizes of the individual subjects are measured at
this time, then assumption that tumour size can be treated as a failure time variable would
be questionable because of the fact that the tumours were subject to treatment.
Under the case I scenario (i.e. cancers are detected immediately when the metastasis occurs),

we can treat the data structure (V; �; Z) as a right-censored data structure. For this situation,
V=Y ∧C, where C is a random monitoring size, and �=I(Y6C), where a∧b is the minimum
of two numbers a and b and I(A) is the indicator function of the event A. Note that under this
observation scheme, there is positive probability of Y being observed. What this also means
is that the standard methodology for right-censored data [5] can be applied to these data in
the case I situation.
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For the case II scenario, we consider the observed data under the assumption that the
detection of the cancer is not a�ected by the presence of metastases. In this situation, Y is
never directly observed. Instead, V is always observed, which represents a monitoring size;
thus, (V; �; Z) has a structure analogous to that of current status data [6]. Now the de�nition
of � is � ≡ I(Y6V ). Note that the de�nition of � will change depending on whether we are
talking about the case I or case II scenarios; the appropriate choice of � should be evident
from the context. Because Y is never directly observed for the case II situation, there is
inherently less information available about the distribution of Y than in the case I scenario.
This will a�ect the asymptotic results for the non-parametric estimators of tumour size at
which metastatic distributions occur.

STATISTICAL METHODOLOGY

In this section, we describe the appropriate statistical methodology for the case I and II
scenarios. As noted before, the tumour size for these situations can be treated as survival
times, so existing methodologies for the analysis of survival data can be applied to the tumour
size. We now develop non-parametric and semi-parametric procedures for modelling tumour
size-metastasis data in the case I and case II scenarios.
Before proceeding, we make two comments. The �rst is regarding regression models. The

standard regression model for the analysis of failure time data is the proportional hazards
model [7]

�(y|Z) = �0(y) exp(�′
0Z) (1)

where �(y|Z) is the conditional hazard function of Y given Z , �0 is a p-dimensional vector
of unknown regression coe�cients, and �0(y) is an unspeci�ed baseline hazard function. In
model (1), � has a relative risk interpretation on a logarithmic scale, and estimation of �
has been well-studied for both right-censored data [7, 8] and for interval-censored data [9].
However, for simplicity of computation, the additive risk model [10, pp. 53–57] is used here

�(y|Z) = �0(y) + �′
0Z (2)

where �0 is a p-dimensional vector of unknown regression coe�cients. We comment on the
use of the proportional hazards model (1) in the discussion.
The second comment deals with the issue of non-measured tumours. In the framework

of Reference [1], there was the possibility that there were tumours, both with and without
metastases, for which the tumour size was not measured. In the framework presented earlier,
this corresponds to observations with missing observed failure time measurements. In this
article, we assume that the proportion of non-measured tumours relative to the total num-
ber of tumours is asymptotically negligible. This will imply that the limiting distributions
of the estimators proposed here with those proposed in Reference [1] will be equivalent. In
order to develop estimation procedures with non-measured tumours, some type of imputation
method [11] would be required. While Kimmel and Flehinger [1] use an imputation method for
incorporating information on non-measured tumours, it requires a missing at random assump-
tion that we believe may not be valid. It seems reasonable to assume that whether a tumour
was measured would depend on the size of the tumour, which then becomes a non-ignorable
missing data mechanism. How to account for this is beyond the scope of the paper.
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Procedures for the case I scenario

We �rst consider the case I situation. In this case, we can treat V as a right-censored version
of Y . For non-parametric estimation of the survival function corresponding to FY , say SY ,
the Kaplan–Meier method can be used. Let v(1)¡v(2)¡ · · ·¡v(m) denote the sorted tumour
sizes. Then the Kaplan–Meier estimator is given by

ŜY (y) ≡ �
i:v(i)¡y

(
1− di

ni

)

where di is the number of tumours with metastases with size v(i), and ni is the number of
tumours of size at least v(i), i=1; : : : ; m. An alternative estimator of SY can be derived using
the exponentiated Nelson–Aalen type estimator

S̃Y (y)= exp

(
− ∑
i:v(i)¡y

di
ni

)

Asymptotically, the di�erence between ŜY and S̃Y will be negligible. The estimator ŜY is
the estimator proposed in Reference [1] and is asymptotically equivalent to the estimator of
Reference [2] in the case where C=1 (in their notation).
Before proving asymptotic results about the estimator ŜY , we introduce some notation. Let

Ni(t)= I(Vi6t; �i=1) and Ri(t)= I(Vi¿t), i=1; : : : ; n. The following result can be proven by
standard survival analysis techniques [5]:

Theorem 1
Assuming the usual regularity conditions, n1=2(ŜY − SY ) converges weakly to a mean-zero
Gaussian process with covariance function

�(s; t) = SY (s)SY (t)
∫ s∧t

0

d�(u)
�(u)

where �(t) is the cumulative hazard function corresponding to FY , and

�(t) = lim
n→∞ n

−1 n∑
i=1
Ri(t)

The covariance function in Theorem 1 can be estimated consistently using empirical quanti-
ties. A similar result to Theorem 1 can be proven for the limiting distribution of n1=2(S̃Y −SY ).
Suppose that p=1 and that Z is a discrete covariate taking values (1; : : : ; K), where K¿1.

This corresponds to comparing the distribution function for tumour size at metastatic transi-
tion across K groups. The data can be expressed as {Vij; �ij; i}, j=1; : : : ; ni and i=1; : : : ; K . We
de�ne Nij(t)= I(Vij6t; �ij=1), Rij(t)= I(Vij¿t), Ri·(t)=

∑ni
j=1 Rij(t), Ni·(t)=

∑ni
j=1 Nij(t),

R··(t)=
∑n

i=1 Ri·(t), and N··(t)=
∑n

i=1 Ni·(t). In order to test H0 :F
Y
1 = · · · =FYK , we can uti-

lize the G� family of test statistics proposed by Harrington and Fleming [12]

T = Z ′�Z
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where Z = {Z1(�); : : : ; ZK(�)}, �¿0 is a truncation time assumed to satisfy certain technical
conditions

Zi(t) =
∫ t

0
K(s) dNi·(s)−

∫ t

0
K(s)

Ri·(s)
R··(s)

dN··(s)

K(t)= {ŜY (t)}�I{R··(s)¿0} and � is a K × K matrix with (l; m)th element

	lm =
∫ t

0
K2(s)

Rl·(s)
R··(s)

(
�lm − Rm·(s)

R··(s)

)
dN··(s)

and �lm= I(Zl=Zm= l). Using arguments in Section 5.2 of Reference [8], T converges in
distribution to a 
2 random variable with K−1 degrees of freedom. The choice of � will a�ect
the power of the test and will depend on what type of alternatives one wishes to have high
probability of detecting.
Finally, we can formulate a semi-parametric model for the e�ect of covariates on the hazard

function through equation (2). Estimation in this model has been previously developed [13].
The following estimating function can be used for estimation of � in (2):

U (�) =
n∑
i=1

∫ ∞

0
{Zi − �Z(t)} {dNi(t)− Ri(t)�′Zi dt} (3)

where �Z(t)=
∑n

j=1 Rj(t)Zj=
∑n

j=1 Rj(t). Setting U (�) from (3) equal to zero yields a closed-
form estimator for �0

�̂ =
[
n∑
i=1

∫ ∞

0
Ri(t){Zi − �Z(t)}⊗2 dt

]−1 [ n∑
i=1

∫ ∞

0
{Zi − �Z(t)} dNi(t)

]

where a⊗2 = aa′. By standard martingale arguments [13], the random vector n1=2(�̂−�0) con-
verges in distribution to a p-dimensional normal random vector with mean zero and variance
A−1 BA−1, where

A = lim
n→∞ n

−1 n∑
i=1

∫ ∞

0
Ri(t){Zi − �Z(t)}⊗2 dt

and

B = lim
n→∞ n

−1 n∑
i=1

∫ ∞

0
{Zi(t)− �Z(t)}⊗2 dNi(t)

Procedures for the case II scenario

We now deal with the situation where Y is never directly observed and the observed data
structure mimics that found with interval-censored data. The one-sample problem is �rst con-
sidered. A precise characterization of FY in this situation can be made [5, pp.
38–40]. Let v(1)6v(2)6 · · ·6v(n) denote the observed order statistics for (V1; : : : ; Vn), and
let �(i) (i=1; : : : ; n) denote the corresponding value of �. De�ne v(0) = 0 and �(0) = 0. The
non-parametric maximum likelihood estimator (NPMLE) of FY corresponds to the point x̃ ≡
(x̃1; : : : ; x̃n) that maximizes

f(x1; : : : ; xn) =
n∑
i=1

{�(i) log xi + (1− �(i)) log(1− xi)}
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over (x1; : : : ; xn)∈Rn subject to the constraint

06x16 · · · 6xn61

We derive the NPMLE of FY , F̂Y∗ , through the relationship x̃i= F̂
Y
∗ (v(i)), i=0; : : : ; n. Note

that the NPMLE of FY is de�ned only up to the set of observed times. The solution to this
optimization problem can be characterized in one of two ways. The �rst is using the so-called
‘max–min formula’ [5, p. 40]

x̃m = max
i6m

min
k¿m

∑
i6j6k �( j)
k − i + 1

m=0; : : : ; n. A second representation of the maximizer is more graphical in nature. One plots
the points {i;∑j6i �( j)} (i=0; : : : ; n) and draws the greatest convex minorant of these points,
de�ned as the function H∗ such that

H∗(t) = sup

{
H (t) : H (i)6

∑
j6i
�( j); H (0) = 0; H is convex

}

Then x̃i is the left derivative of H∗ at i=0; : : : ; n. This estimator corresponds to that proposed
in Reference [1] in the case II scenario. They provided no asymptotic analysis of this estimator.
Using the arguments in Chapter 5 of Reference [5], we can prove the following result.

Theorem 2
De�ne G(t)=Pr(V6t). Let z0 be such that 0¡FY (z0)¡1 and 0¡G(z0)¡1. Assume that FY

and G are di�erentiable at z0 with strictly positive derivatives fY (z0) and g(z0), respectively.
Then n1=3{F̂Y∗ (z0)− FY (z0)} converges in distribution to the random variable CZ , where

C =
[
4FY (z0){1− FY (z0)}fY (z0)

g(z0)

]1=3

and Z ≡ argmin{W (t) + t2}, and W is two-sided Brownian motion starting from zero.

Note that the limiting distribution presented in Theorem 2 is much di�erent than that in
Theorem 1. This is because in the case II scenario, Y is never directly observed. This leads
to the slower convergence rate and the more complicated limiting distribution.
A 95 per cent con�dence interval for FY (z0) is then given by

{F̂Y (z0)− n−1=3 Q̂0:975; F̂
Y (z0) + n−1=3 Q̂0:975}

where Q̂0:975 is a consistent estimator of Q0:975, the 97:5th percentile of the limiting random
variable CZ . But Q0:975 is simply C × 0:99818 where 0:99818 is the 97:5th percentile of Z ,
where the quantiles of Z are from Reference [14]. Since C involves the unknown parameters
G(z0), h(z0), and g(z0), we estimate C by

Ĉn =

[
4f̂Y (z0)F̂Y (z0){1− F̂Y (z0)}

ĝ(z0)

]1=3
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where f̂Y and ĝ are estimates of fY and g. An asymptotic 95 per cent con�dence interval is
then given by {

F̂Y (z0)− n−1=3 Ĉn × 0:99818; F̂Y (z0) + n−1=3 Ĉn × 0:99818
}

Based on Theorem 2, constructing con�dence intervals for FY (z0) requires consistent esti-
mation of fY and g. While g can be estimated consistently using non-parametric regression
methods, it is much more di�cult to estimate fY because Y is never directly observed. We
estimate g using kernel density methods, while fY is estimated using a numerical derivative
based on a smoothing spline-based estimate of FY [15].
Proceeding as in the case I situation, we now consider the problem of testing the equality

of the distribution function of Y across K groups. A simple test in this situation is found by
modifying the method of Reference [16]. For simplicity, assume that the distribution of S is
equal across the K groups. In this case, Z is K−1 dimensional. De�ne the counting process
Wi(t) ≡ I(Yi6t). A test of the null hypothesis H0 :FY1 = · · ·FYK is given by the statistic

T̃ =
n∑
i=1
(Zi − �Z)Wi(Vi)

where �Z = n−1∑n
j=1 Zj. It is shown in Reference [16] that under the null hypothesis, n

−1=2T̃
has a limiting normal distribution with mean zero and covariance matrix which is consistently
estimated by n−1∑n

i=1 (Zi − �Z)2W 2
i (Vi).

We now consider estimation in the regression formulation (2) in the case II scenario. Lin
et al. [17] proposed a procedure for estimation of �0 in model (1) based on the partial
likelihood using the counting process Ñ1i(t) ≡ (1− �i)I(Si6t), i=1; : : : ; n. Let dHi(t) denote
this hazard corresponding to dÑ1i(t), the increment in Ñ1i(t), i=1; : : : ; n. Lin et al. [17] show
that under model (2), the following model for dHi(t) (i=1; : : : ; n) is induced

dHi(t) = dH0(t) exp{�′
0Z

∗
i (t)} (4)

where dH0(t)= exp{−�0(t)} d�S(t), �S(t) is the cumulative hazard function of S, �0(t)=∫ t
0 �0(u) du, and Z

∗
i (t)=−tZi. The model in (4) has a form identical to that of the proportional

hazards model [6]. We can estimate �0 using the partial likelihood score function

U (�) =
n∑
i=1

∫ �

0

{
Z∗
i (t)− S(1)(�; t)

S(0)(�; t)

}
dÑ1i(t) (5)

where S(k)(�; t)= n−1∑n
j=1 Rj(t)Z

∗
j (t)

⊗k exp{�′Z∗
j (t)}; k=0; 1; 2, a⊗0 = 1 and a⊗1 = a. The con-

stant �¿0 is a truncation time chosen to satisfy certain technical conditions; in practice, we
can choose it to be the largest monitoring time. Let �̂ be the solution from setting U (�) in
(5) equal to zero. Using martingale theory, n1=2(�̂−�0) converges in distribution to a normal
random vector with mean zero and variance I(�0) ≡ limn→∞ n−1I(�0), where

I(�) =
n∑
i=1

∫ �

0

{
S(2)(�; t)
S(0)(�; t)

− S(1)(�; t)⊗2

S(0)(�; t)2

}
dÑ1i(t)

This variance can be consistently estimated based on empirical quantities.
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NUMERICAL EXAMPLE

In this section, we consider data from a screening trial involving lung cancer and reported in
Reference [1]. The lung cancer data was collected on a population of male smokers over 45
years old enrolled in a clinical trial involving sputum cytology. There are two types of lung
cancer diagnosed, adenocarcinomas (cancers that originate in epithelial cells) and epidermoid
cancer (cancers that originate in the epidermis). For the adenocarcinomas, they were detected
by radiologic screening and by symptoms; the epidermoids were detected by sputum cytology
or by chest X-ray. Presence or absence of metastasis was determined using available staging,
clinical, surgical and pathological readings. There are 141 adenocarcinomas, of which 19
have metastases; of the 87 epidermoid cancers, 6 have metastases. The raw data are shown
in Figure 1.
The proposed techniques are now applied. First, the tumour size and metastases data are

analysed under the case I situation, i.e. metastases occur at the time of detection. In this
instance, we can treat the tumour size as a right-censored variable. The estimated survival
functions for the size distribution and pointwise 95 per cent con�dence intervals for the ade-
nocarcinomas and for the epidermoid cancers are given in Figures 2(a) and (c), respectively.
Next, di�erences in the size distribution between the two types of tumours was tested using the
Fleming–Harrington G� class of statistics. Results for various values of � are given in Table I.
We �nd that there is slight evidence of a di�erence in size distributions between the two types
of lung tumours. Finally, we analysed the data using additive risk model (2) in which there
is one covariate Z , a binary indicator for tumour site (0=1 = adenocarcinoma=epidermoid).
The estimated regression coe�cient was 0:0215, with an associated standard error of 0:0150.
Based on the Wald statistic, we have a p-value of 0:15, which again suggests a marginal
association.
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Figure 1. Box plot of tumour sizes for lung cancer screening data. For the horizontal axis, 0 denotes
adenocarcinoma and 1 represents epidermoid.
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Figure 2. (a) Distribution of survival function for tumour size under case I scenario for lung adeno-
carcinoma data (solid line) and 95 per cent pointwise con�dence intervals (dashed lines). (b) Dis-
tribution of survival function for tumour size under case II scenario for lung adenocarcinoma data
(solid line) and 95 per cent pointwise con�dence intervals (dashed lines). (c) Distribution of sur-
vival function for tumour size under case I scenario for lung epidermoid data (solid line) and 95
per cent pointwise con�dence intervals (dashed lines). (d) Distribution of survival function for tu-
mour size under case II scenario for lung epidermoid data (solid line) and 95 per cent pointwise

con�dence intervals (dashed lines).

Next, we analysed the data using the case II scenario; here, the tumour size is now an
interval censored random variable. First, we plot the survival functions for the tumour size
distributions and associated pointwise 95 per cent con�dence intervals; these graphs for the
adenocarcinoma and epidermoid lung cancers are given in Figures 2(b) and (d), respectively.
In testing for a di�erence in tumour size distributions between tumour type (adenocarci-
noma versus epidermoid), the method of Reference [16] yields a test statistic of 1:60 and an
associated p-value of 0:11. Finally, the estimation procedure for the semi-parametric additive
hazards model of Reference [17] with Z as a binary indicator for tumour site yields an es-
timated regression coe�cient of 0:16 and standard error of 0:10. The Wald statistic gives a
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Table I. Hypothesis testing results for lung screening
data. Note that � denotes the weight function used
in the Harrington and Fleming (1982) procedure.

� p-value

0 0.167
0.25 0.164
0.5 0.163
0.75 0.163
1 0.163

corresponding p-value of 0:11, which again suggests a marginal association between tumour
type and hazard of tumour size detection. A di�erence in metastatic distributions between
lung cancers from the two sites of origins suggests that there may be di�erent biological
mechanisms that dictate the progression to metastasis. This in turn might lead to di�erent
treatment regimens for lung adenocarcinomas versus lung epidermoids.
We now highlight the di�erences between our analysis with that in Reference [1]. First,

we have ignored the tumours on which there were missing measurements, while Kimmel and
Flehinger [1] use a reweighting scheme to impute information from these tumours. We discuss
the appropriateness of the reweighting in the Discussion. However, the graphs in Figure 2 are
not qualitatively that di�erent from those in Reference [1]. In addition, our theory allows for
such standard errors, while no standard errors were derived in Reference [1]. In addition, the
testing and regression results presented here are completely new for this problem.

DISCUSSION

In this article, we have laid out a framework for the analysis of data on tumour size and
metastases with covariates. The key step in the development of procedures was the equivalence
of the observed data structure with those from the �eld of survival analysis. This relationship
allowed us to characterize non-parametric maximum likelihood estimators of the distribution
function for tumour size at which metastatic transitions occur and their associated asymptotic
properties. In addition, we have been able to develop testing and regression procedures with
such data.
Two cases were considered in the paper. They represent the extremes as to how much

information is available in the data about the tumour size at which metastasis detectable at
diagnosis occurs. Case I corresponds to the right-censored case in which there is a positive
probability of observing the quantity, while case II is the situation where it is never directly
observable. Thus in some sense, case I corresponds to the most optimistic analysis, while
case II is the least optimistic analysis, where optimality is de�ned in terms of the amount
of the available information. This explains why the standard errors are bigger in case II
than in case I. Interestingly, however, the testing and regression procedures gave very similar
inferences. One explanation for this result is that even for the case II situation, the standard
n1=2 asymptotics apply to �nite-dimensional parameters such as regression coe�cients. This
issue is one that needs to be addressed in future work. In terms of plausibility of whether
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case I or case II is more plausible, from a point of view of conservatism, we prefer the
latter. A more crucial assumption is the existence of Y , the tumour size at which transition
to metastasis detectable at diagnosis happens. The methods and theory in this paper are based
on that random variable.
In terms of regression methodologies, we have primarily focused on the additive hazards

model. However, extension to the proportional hazards model for the case I and II situations
is straightforward by applying existing methodologies [7–9].
The major contribution of this paper is to provide a new means to thinking about biological

data from screening studies. Provided that one can assume that assumptions similar to those
made by Kimmel and Flehinger [1] can hold, we can model biological data as failure time
variables, subject to various censoring mechanisms. This would allow the importation of
existing survival analysis techniques, as well as potential generalizations. For example, if the
biological response variable modelled was bivariate, then one might entertain multivariate
survival analysis techniques for analysing the data. However, a key point is the monotonicity
described earlier; this allows for the equivalence with survival data structures. If subjects are
given treatment, then the assumption of treating the tumour size as a failure time variable
becomes suspect.
As mentioned before, in many cancer screening studies, some tumours are not measured.

A next logical question is whether one can incorporate information from these tumours into
estimation of the distribution function for tumour size when metastasis can be diagnosed. In
Reference [1], they are incorporated using a reweighting scheme that is valid when the miss-
ingness of tumour size occurs at random. However, the missing at random seems implausible,
as one might expect sizes of smaller tumours to be more di�cult to measure. How to adjust
for this is an area we are currently pursuing.
Much of the literature in the area of cancer screening has focused on mechanistic models for

tumour progression [18]. Such models tend to be parametric in nature and potentially have
identi�ability issues, while the methods we have proposed here are less parametric. These
procedures proposed in the paper could serve as an exploratory device in order to determine
what parametric models can be utilized.
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