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ABSTRACT

This paper considers the rescheduling of operations with release dates and multiple
resources when disruptions prevent the use of a preplanned schedule. The overall strategy is
to follow the preschedule until a disruption occurs. After a disruption, part of the schedule
is reconstructed to match up with the preschedule at some future time. Conditions are
given for the optimality of this approach. A practical implementation is compared with
the alternatives of preplanned static scheduling and myopic dynamic scheduling. A set of
practical test problems demonstrates the advantages of the matchup approach. We also
explore the solution of the matchup scheduling problem and show the advantages of an
integer programming approach for allocating resources to jobs.
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1. Introduction

Much of the research in scheduling considers environments with one or more of the
following assumptions: a single required resource (a machine), identical resources, all jobs
available at the same fixed time, or known and fixed future conditions (see, e.g., Graves
[1981] and Rinnooy Kan[1976]). These conditions are seldom the case in actual produc-
tion facilities. In this paper we consider a method for adapting a preplanned schedule
(or preschedule) to a changing scheduling environment. The problem includes multiple
resources with some degree of processing compatibility, varying times at which jobs are
available and costs associated with finishing a job early or completing it late. This frame-
work models two actual manufacturing facilities in the automobile industry that are used

in testing the approach.

Few previous studies have considered the possibility for disruptions such as machine
breakdowns. When disruptions are considered (see Glazebrook [1984], e.g.), the mod-
els have limiting conditions. Models without disruptions assume a common deadline
(Root [1965]), identical processors (Dogramaci and Surkis [1979]), or unit processing times
(Blazewicz [1979]). The objectives studied include minimizing maximum completion time
(Bratley, et al [1975], Nichols, et al. [1978]) or maximum tardiness (Nunnikhoven and
Emmons [1977)).

We model a general multiple resources system with disruptions and assume that the
preschedule can be followed if no disruptions occur. The scheduling strategy in this paper
follows this preschedule until a disruption occurs and then reschedules part of the presched-
ule to accommodate the disruption. We reschedule to match up with the preschedule at
some time in the future, that is, reschedule so that the completed jobs and inventory po-
sitions are identical to what would have occurred in the preschedule. Were the problem
formulated as a dynamic program, the state reached by the revised schedule is the same

as that reached by the original schedule.

In the matchup method, existing schedules are revised at disruptions as in Chang, et
al. [1984], Donath and Graves [1985] and Filip, et al. [1983]. Our matchup method differs
in that it seeks to match up with the preschedule.
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We use a set of real problems to demonstrate the effectiveness of this procedure com-
pared with pushing back a preschedule and list processing, dynamic scheduling. We also
present heuristic procedures for solving the matchup problem and compare them on the

problem set.

The general matchup method is described in Section 2, where we show the optimality
of the matchup approach under certain conditions. The implementation of this theory
appears in Section 3. Experimental results appear in Section 4. Section 5 summarizes our

results and conclusions.

2. Matchup Scheduling Strategy

In the extremes, scheduling systems may be run continuously, as in the dynamic
algorithms of Baker and Kanet [1983] and Rachamadugu [1987], or very infrequently as in
the static algorithms of Lageweg, et al. [1977] and Bratley, et al. The matchup method fits
between these common approaches. It responds to disruptions as in a dynamic algorithm,
yet considers future information as in a static algorithm. Under certain conditions the

matchup approach leads to an optimal schedule following a disruption.

The theoretical basis for the matchup strategy is an extension of economic turnpike
results (see McKenzie [1976]). In Bean and Birge [1985], it was shown that a scheduling
model could fit the framework of McKenzie’s model for the asymptotic stability of optimal
solutions. We extend these results below by providing a general scheduling model that

yields asymptotic stability under fairly general conditions.

2.1 Problem Definition

Most scheduling models assume a finite number of jobs. In most real problems, as
jobs are completed, other jobs are introduced. Failure to recognize the ongoing nature of
the problem constitutes a significant simplification. To model the indefinite time horizon
of realistic scheduling problems we consider a discrete time infinite horizon optimization
problem. While there may be an infinite number of jobs in the system over infinite time,

at any finite time we assume a known upper bound.
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Assumption 1: The number of jobs active in the system is uniformly bounded by n.

Since n may by large, this assumption has little effect on our ability to model real
problems. For notational convenience, we assume that jobs appear in job channels, indexed
: =1,2,...,n. When a new job is introduced to the system, it flows into an empty job
channel. By Assumption 1, n can be chosen large enough to make this possible. The fact
that two jobs appear in the same channel has no consequence. At timet =0,1,..., we are
in state z; € R2", where z, is a vector giving the inventory of each current job and current
setups. For ¢ = 1,...,n, z,(2) gives the inventory, measured in periods of processing, of
the job in channel i. Hence, addition to inventory is bounded above by one in any period.
At each due date, the inventory position of the corresponding job channel is reduced by
the amount due. If the job is not completed, the inventory position becomes negative and

tardiness is charged until inventory is again positive.

Fori=1,...,n, 0 < z4(n+1) <1 gives the setup information corresponding to the
job in channel 7. For the job in channel ¢, the processing possible during period ¢ will be
limited by z¢(n +1). If z4(n + 1) = 1, then a full period of processing is possible. A value
of z4(n +¢) < 1 means that setup occurs during the period or that the job is setup on an
inefficient machine. In either case, less than a full period of processing is possible. If a

machine is not set up to produce job ¢ in period ¢, () is constrained to be zero.

The sequence of states over time is z € £°°, that is, a sequence of vectors in R2" where
element values are uniformly bounded. The decision at time ¢ is to choose the machine
setups and amount of processing on each job in period ¢. This decision corresponds to
choosing a state, z¢41, to enter at time ¢ + 1. Each decision has cost fi(zs,z¢41), defined
below. Feasibility is enforced by infinite costs as in Rockafellar [1970]. That is, any

infeasible sequence is assigned a cost of +00. The objective is to find

TEL>®

inf 3 fi(ze,aem). (P)
t=0

Under certain assumptions, we will show problem P to be a convex optimization
problem. The objective may not, however, be finite for any =z € £°. We avoid this

difficulty by defining a policy z* = {zo,z},...} as weakly optimal, as in McKenzie, if z*
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is not overtaken by any other policy, that is, if there does not exist ! = {z¢,z1],...} such

that

r

limsup Z(ft(x%’xb'l) - ft(xzaxr-{-l)) S —¢, (1)

T—00 t=0

for some € > 0. The following well known technique gives us a finite valued problem. By
the construction of f;, we know that the objective terms are bounded for each feasible
(24, 441). We can formulate an equivalent problem by subtracting the period ¢ value of
the optimal solution from all f; in each period. This altered problem has the same optimal
solutions as the original problem and is finitely valued for any weakly optimal policy.
Therefore, we can assume without loss of generality that P has a finite optimum obtained
by z € £*. For the remainder of the paper, the term optimal means weakly optimal in

this transformed problem.

Define F*(z) = inf Y oo, fr(¢r,2r41). The transformed problem has F*(z) < oo for
all t. Our problem can be restated as finding F°(zo).

Due to the infinite horizon nature of the problem formulation, each job channel consists
of an infinite sequence of requests involving processing requirements, p(¢, k), release dates,
r(i, k), early dates, e(7,k), and due dates, d(7,k), for channel : = 1,2,...,n and request
k=1,2,.... We assume that r(¢,k) < e(z,k) < d(z, k). Release dates are considered hard

constraints, that is, a job cannot be started before its release date.

While the theory below applies to a broader class of problems, we assume an objec-
tive which minimizes the weighted sum of earliness and tardiness. This specific objective
function is common in real scheduling problems such as the automobile manufacturing
problems that motivated this work. If a job is started before its early date, a penalty,
u(z) > 0, is incurred for each unit of early processing. If a job is finished after its due date,

a penalty, w(z) > 0, is incurred for each unit of late processing.

The availability of resources such as machines, tools and setup crews determines which
state transitions are feasible. Let G; be the set of all possible decisions, (z¢,z¢41), that
are feasible in resource usage and setup. For a transition, (z¢,z:+1), let

5(53t,$t+1)= {0 if (:I:t,xH_l)th‘

oo if not



The formulated objective function, f;, has two components, ft and 8. The f; com-
ponent contains job channel separable costs such as earliness and tardiness penalties and
production feasibility (z:4+1 — ¢ < e, a vector of ones). The objective function is then
th (z¢(3), ze41(3))

fi(ze, Te41) + 6(zt, Te41)-

Note that, although we are not allowing explicit costs for setting up machines, to do so is

a straightforward extension.

Below we construct f;, and show, under certain conditions, that it is a piecewise

linear, convex function of (), for each feasible z44;(2).

If the current time is a due time for some current job, t = d(z, k), then we automatically
deduct the necessary processing, p(z, k), from the inventory position of job ¢. If job ¢ is
not completed, i.e., z4(¢) < p(¢, k), this will result in a negative inventory, or backlogged,
position at time ¢ + 1. In this case, for one or more future periods, we will be charged a

tardiness penalty. If z4(:) < 0, we are charged penalty —w(¢)z(¢) > 0.

If d(z,k) is the next due date for job ¢ and () > p(z,k) then we have already
completed the processing due at d(i, k). If we are beyond the early time, e(z, k), then there
is no penalty. If the current ¢ < e(3, k), then we incur an earliness penalty for each unit of
overproduction equal to u(z)(z¢(¢) — p(¢, k)).

These procedures for accounting tardiness and earliness are not standard. However,
with appropriate selections of weights, they deliver the same values. Hence, we will retain

these terms.

Feasible inventory transitions to the next period are

—p(i, k) < z441(2) — z¢(3) <1 —p(3, k)

if t is a due date; 0 < z441(2) — 24(7) < 1 if ¢ is not a due date and some production run
in channel ¢ is beyond its release date; and z441(¢) — z4(2) = 0 if all jobs in channel ¢ are
inactive (completed or prerelease). Any transition from z4(z) to z+41(¢) that is not feasible

by these rules leads to an infinite cost.



2.2 Convexity of Objective Function

In general we must assume that
Assumption 2: fi(z¢,z¢41) is convex in z; and T441.

In this subsection we show the convexity of the earliness plus tardiness objective. We may

prove Assumption 2 valid in this special case if we have

Assumption 2': Penalties and setups are charged continuously. Jobs can be preempted

(resume).

That is, if 90% of the job is completed at the due date, it is shipped. Only the
remaining 10% will be charged the tardiness penalty. This assumption is reasonable if the
job consists of many parts. If, however, it consists of one large part, this assumption may

invalidate our conclusions.

We also assume that setups are continuous. Realistically, setups are binary; a machine
is setup for a job, or it is not. For convexity, we need 0 < z4(n +¢) < 1. We interpret
z(n + 1) as the maximum amount of production of the job in channel i, in period t. If

0 < z¢(n +1) < 1, then the machine is set up midperiod, or on an inefficient machine.

Note that we will set §(z¢,2441) = 00 if 2441(¢) > Teq1(n +1), ¢ = 1,...,n, or if the
number of setups on similar machines exceeds the available machines. Since ¢ is a function
of both z; and x4, it can also be set to +o00 if the set of new setups for period t + 1

requires more than the available setup crews.

We also must allow jobs to be preempted, resuming where they were left off when
processing continues. Since such preemption would lead to more setups, we let the indirect
costs of additional setups deter the system from frequent preemption. As with the con-
tinuous penalty assumption, preempt resume is reasonable if the job is made up of many
small parts. If the job is one large part, it may or may not make sense technologically to

preempt.

The specific f; defined above is a piecewise linear, convex function of z4(i) for each

feasible z¢41(¢). Since the set of feasible ;41 (i) is convex, f; is a convex function. Since
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§ is also convex, fi =Y. fi + 6 is convex.

The fundamental assumption of our model is that the theoretical requirement of con-
tinuous penalties and setups does not fundamentally alter results from the discrete events
that occur in practice. Similar assumptions have been used in a wide variety of operations
research models, such as the work of Maimon and Gershwin [1988], on control theoretic
approaches to loading and scheduling automated manufacturing systems. As scheduling

systems become more flexible, Assumption 2 becomes more valid.

2.3 Supporting Prices

To obtain results on the stability of solutions, we first present conditions for a sup-
porting price system. Recall that we can alter P to have finite optimal costs. For price
development, we define the set of feasible states at time t, X;, as all states which can be

continued over the infinite horizon at finite cost.

The attainable states at ¢t are

Yy = {z4|fi-1(z¢-1,2¢) < 00 for some z;—; € X1}

At time t, the states that the optimal path could pass through must be both attainable,

and have a feasible continuation, that is, be a member of X; NY;.

The next theorem expands on McKenzie’s results for price supports by using specific

properties of the objective functions, f;.

Theorem 1: If z* is optimal in (P) with initial state ¢ and any of the following hold,

(a) (interiority) zg is in the relative interior of Xo (2o € r¢(Xo)) and the interior of
(X NY;) is nonempty (int(X; N Y;) # 0) relative to the affine hull of (X; NY})
(aff( X, U Yy)); or,

(b) (slack time) for any t,z; € X; NY; there exists {r¢41,Z142,...} and T > ¢ such
that

Fi(ze) =inf Y fr(er,2r41)
T=t

and the resources required for any set of parts are slack at T (current resource

usage strictly less than capacity); or
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(c) (asymptotic penalty free schedule) for any t,z; € X; NY;, there exists T >
T-1
t, {Zh41r Tipas - - -} such that fole, 24y )42 01 oyy fr(2h,274,) <00, fr(ar,20yy) =

Oforall 7> T;or

(d) (decreasing fixed matchup cost) there exists a feasible solution to P,

.’II’ = {zlt+1,z;+2, .o .}

such that for any t,z; € X; NY;, T, K = 1,2,...; Tk < Tk+1, such that
Tk -1
Z fr(zr, zrp1) + fTK(xTx’x,TK+1) <00

r=t
and img oo fTy (2T, T 41) = 05
then there exists p;,t = 0,1,... such that
(i) F'(z}) - pia; < FY(z¢) —piag forall z, € X4, t =1,2,...

(i) fe(zf,atyy) —Pies +Pip1%ir < fe(@e, Teg1) — pree + Pip 1 Te4a, for all (z¢, e41)

such that fi(zs,ze41) < 00.

Proof: See Appendix.

2.4 Solution Convergence

The asymptotic stability of solutions follows again from the structure of the objec-

tive function. The following theorem states that optimal solutions from varying initial

conditions asymptotically approach each other. That is, the tail of the optimal path is

insensitive to the initial conditions. Let Z} be the set of solutions (z¢, z¢+1) such that

ft(wi,wi‘ﬂ) - piT; +P:+1$:+1 = fi(z¢, 2¢41) — Pt 24 +P:+12t+1-

Then Z} is the set of optimal states at time ¢. Our result is that all optimal solutions

approach Z; regardless of initial condition.

Theorem 2: Let z* be optimal for (P) with initial condition ¢, price support p* and

facets Z} defined as above. Let z' be optimal in (P) with initial condition z; and

price supports p'. Then, for any € > 0, there exists T' < 0o, such that, for all t > T,

inf Ty, Ty ) — (2,2 <e 9
(2t,2e41)€ZY ||( v t+1) ( ts t+1)” ( )



Proof: See Appendix

2.5 Implementation of the Theory

Theorem 2 is an asymptotic result. However, if implemented decisions are discrete,
Theorem 2 implies exact matchup. Two questions arise: how fast can this matchup take

place, and what happens if additional disruptions occur in the system?

The answer to the first question depends on system parameters. For example, a system
with well distributed ample slack resources can match up quickly. This observation leads
to the important question of how the system and preschedule can be designed to make

rescheduling easier.

The second question results in an assumption.

Assumption 3: Disruptions are spaced far enough apart to allow matchup between dis-

ruptions.

This situation occurs in the real test problems studied below. If this assumption is not
valid, a preschedule will not generally be useful. Full dynamic scheduling is likely to be near
optimal since the system is quite random. In production systems where disruptions occur
too frequently to match up, however, scheduling is most likely not the primary problem in

the facility.

In practice, determining matchup times, and then rescheduling from the disruption to
the matchup time, must be accomplished heuristically. Even rescheduling a single machine
subject to release dates to minimize total tardiness is unary NP hard (Graham, et. al.
[1979]). We describe a matchup heuristic below and then test its performance against
real problem data from the automotive industry. Our goal in this analysis is to see how
well our discrete approximation of the theoretically optimal matchup policy performs in
reality. The empirical data indicate that, despite the approximations necessary for practical
application, the matchup strategy tends to outperform other scheduling procedures and
achieves objective values that, although not always provably optimal, are close to lower

bounds.

The heuristics are designed specifically for the automotive manufacturing problems
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studied. Instead of making decisions on each z; to z:4+; transition in the heuristic, we
follow the standard practice of scheduling complete production units and setups that are
not divisible. For our problems, we define a job as the production of a fixed number of
parts that all have a single due date and release date. Our heuristic assumes that jobs
cannot be subdivided during processing. In our practical examples, a job is a single order

(shipping quantity) of one part type.

Jobs are further consolidated into lots of similar part types that do not require setups
between jobs. This allows some simplification of the resource allocation phase of our
heuristic. In the test problems, the lots are the production quantities that did not require

intermediate setups in the original preschedule.

In our practical examples, processing a job requires two resources, a machine and a
tool. Each resource had finite availability. Tools and machines that can be used together

to produce a job are called compatible with each other and the job.

The objective is to minimize weighted tardiness, summed over all jobs. This corre-
sponds to the hypotheses in Theorems 1 and 2. It supports our search for an early matchup

time.

For our heuristic, we assume that a preschedule has been constructed and imple-
mented. The preschedule is assumed optimal for the theoretical problem. While the
actual preschedule is constructed heuristically, it achieves a lower bound on tardiness in a

majority of the practical problems.

When a disruption occurs, we seek to match up with the preschedule within a cost
threshold. We accomplish this heuristically by fixing an initial matchup point T' = T1
on the disrupted machine(s). We resequence jobs on those machines (without violating
release dates or exceeding tool capacities) to minimize the tardiness costs (COST') before
matchup. If the cost for this matchup exceeds the predetermined threshold, EPS, on any
machine, then we increment the matchup point, T, by DT. We repeat the process until T
exceeds a maximum value, Tpq, for the initial resequencing. In this case, we group jobs
into lots and reallocate lots across machines with T reset to T'1. We then decompose the

lots to jobs and resequence jobs on individual machines. This allocation and sequencing
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part of the heuristic is a common practice, similar to that in Dogramaci and Surkis. The

full matchup heuristic algorithm is given below.

3. The Matchup Scheduling Algorithm (MUSA)

Step 0: For each disrupted machine, set a minimum matchup time, T'1. Let T = T1. Go
to Step 1.

Step 1: On each disrupted machine, resequence all jobs scheduled before T. Evaluate the
schedule COST on each disrupted machine. If COST < EPS on all machines, STOP.
Else, go to Step 2.

Step 2: Let T =T + DT. If T > Thax, go to Step 3. Else, go to Step 1.

Step 3. Expand the set of machines to be rescheduled to include all machines that share
job compatibilities with the current set of disrupted machines. Reallocate lots across

these machines. Go to Step 1.

Note that MUSA implicitly assumes that matchup with the preschedule is eventually
possible within an incremental tardiness cost of EPS on each machine. In practice, the

algorithm runs with a time limit and stops after Step 1 if this time limit is exceeded.

The procedures used for the allocation and sequencing steps are described below and
include the allocation of a finite set of tools. The following subsections describe the alter-

natives implemented for these procedures.

3.1 Single Machine Sequencing

In Step 1, MUSA assumes that all job/machine/tool assignments are fixed. The
algorithm heuristically reschedules jobs on a single disrupted machine. This method must
run quickly in practice to allow implementation of the matchup schedule before the next
scheduling decision must be made. The overall objective is to find a sequence of start times

to minimize tardiness costs without violating release date or tool availability constraints.

Several heuristic ordering rules were attempted in the implementation of this phase
of MUSA. Six different rules were found to obtain optimal solutions in some subset of our

test cases so these rules were selected for inclusion into Step 1 of MUSA. The heuristic
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calculates six feasible schedules based on these ordering rules and chooses the least cost

schedule that is obtained.

The basic procedure is to consider machines in decreasing order of their utilization, to
remove any tool assignments on the selected machines, and to update a time pointer from
the current time through to T by scheduling the first eligible job according to the ordering
rule. This search then includes all jobs that are not scheduled but have been released, can
be processed on the given machine and have an available tool. The time pointer is then
updated to the minimum of the end of the processing of the most recently scheduled job
and the minimum feasible start time among unscheduled jobs. After an initial sequence
is developed, the MUSA heuristic checks for any interchanges of jobs within the horizon

that could lower the total tardiness.

Since these sequencing steps run quickly for all ordering rules, all six_are investigated
on each machine. The resulting lowest cost solution is chosen, tool assignments on that

machine are fixed, and the algorithm proceeds to the next highest utilization machine.

The ordering rules in the heuristic implementation are 1) a shortest processing time
ordering (SPT), 2) an earliest due date ordering (EDD), 3) a modified due date ordering
(MDD), 4) a priority index ordering (API), 5) a ratio rule and 6) the ordering based upon
the current sequence. The MDD rule was taken from the heuristic developed by Baker
and Bertrand [1982]. The API rule was taken from the heuristic developed by Morton and
Rachamadugu [1982]. The ratio rule is based on a comparison of the remaining processing
time of a job to the length of time available until the job is due. The given sequence

ordering rule pushes back the schedule in use at the disruption.

3.2 Multimachine Lot Reassignment

If the best single machine solution results in excessive tardiness costs (COST > EPS)
and the maximum single machine matchup point T,,, is exceeded, then MUSA proceeds
to Step 3, multimachine lot reassignment to redistribute lot to machine assignments. The
focus of the reassignment problem is to determine a feasible lot schedule across several
machines. The multimachine reassignment uses lots in place of jobs for rescheduling to

keep the problem manageable and reduce additional setups. We examined two approaches
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for reassignment: a multiple choice integer program (MCIP) formulation solved using the

technique of Bean [1984], and a priority rule dynamic assignment heuristic.

The reassignment procedure can shift lots across machines to create a feasible multi-
machine schedule without additional setups. The single machine resequencing algorithm

is then reapplied in Step 1 to reduce costs further.

Integer Programming Approach

The decisions for each lot in this resource allocation phase of MUSA are the machines
to which the lot is assigned and the time at which the lot starts processing. We assume
that the lot uses a single tool (as in our practical problems). The resulting problem is
still a difficult mixed integer program, so we further simplify the problem to a multiple
choice, zero one program by only allowing a lot to start at only a finite number of times
within its window, the time interval between its release date and its due date minus its
cumulative processing time. Several choices for these possible start times were tested. Our
implementation uses up to three possible placements, the beginning, center and end of the

window for each lot.

This formulation leads to zero one decision variables, y;;, where i corresponds to a
lot and j corresponds to the machine and starting point of the lot. In our implementation
this definition produces Zf:l 3M; binary variables variable for a problem with £ lots and

M; compatible machines for lot i.

To ensure that lot 7 is scheduled in exactly one place, the logical constraint

yij =1 (5)
=1

is used. The model also adds machine utilization constraints to ensure that the scheduled
processing time does not exceed the available processing time. These constraints are

written

Z Zpikyij(k) < Hy, (6)

i j(k)
where p; is the processing time of lot 7 on machine k, the index j(k) indicates a start on

machine k, and Hy is the available processing time on machine k.
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Additional constraints for feasibility of the lot to machine assignments are needed to
prevent the assignment of more than one lot to one machine simultaneously and to prevent

the use of a single tool on two machines simultaneously.

Given start times, S;;, and finish times, F;;, for placement j of lot z, constraints are
created to avoid the assignment of substantially overlapping lots to the same machine.
Some overlap is allowable for later resolution by single machine sequencing or overtime.
In our implementation, the allowable overlap is denoted, RELAX. This relaxation helps
compensate for modeling the continuous lot start/finish by discrete assignments. Con-

straints are added such that, if lot ¢ in placement j and lot k in placement [ use the same

machine and, if F;; > (S + RELAX), then

Yij + yr < 1. (7)

The final set of constraints prevents the simultaneous scheduling of two lots which
use the same tool. Here, overlaps are not allowed, since this is not resolved by the single

machine sequencing step. If lot ¢ in position j and lot k in position ! use the same tool

and Fj; > Sk and Fy; > S;j, then

Yij + Y < 1. (8)

Other considerations in the program include variable machine production rates and con-

straints on machine utilization to balance machine workload.

Constraints (5),(6),(7), and (8) provide the basis for the multimachine reassignment
program. With this foundation, the problem’s objective can take on a number of forms.
We tested two alternatives: minimize the number of lot to machine assignment changes,
and maximize the sum of squared processing times scheduled. A weighted combination of

these objectives produced the best results.

Priority Rule Approach

An alternative approach for reassigning lots to machines is a priority rule strategy.

The alternative we describe is similar to the approach in Dogramaci and Surkis. This
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procedure is also used for lot reallocation to test the value of the MCIP solution in Step

3. The procedure follows the basic pattern of the single machine resequencing heuristic.

All compatible machines are considered and a time pointer is updated to the first
time on any of these machines when some job may be scheduled. The highest ranking
job according to the ordering rule is chosen from the set of unscheduled and released jobs
that are compatible with that machine and do not violate previous tool commitments.
Several ordering rules are used to develop alternative schedules. The alternative with

lowest tardiness cost is again accepted for implementation.

A different set of rules from the single machine sequencing rules appeared optimal
in our testing and is used in our implementation. These ordering rules are earliest due
date (EDD) and modified due date (MDD), as in the single machine heuristic, plus least
window slack (LWS) which ranks jobs according to their window lengths. A comparison

of the performance of these ordering rules is given in the next section.

4. Experimental Results

The matchup scheduling algorithm (MUSA) including the alternatives for lot alloca-
tion and job sequencing was coded in FORTRAN and implemented on an IBM 4381 com-
puter. The program was applied to a set of problems with real production data supplied
by an automotive manufacturer. The data represented two facilities that the manufacturer
considered representative of the types of plants in its organization. The first facility had a
small number of machines producing a relatively large number of parts on each machine.
The second facility consisted of many compatible machines which produce a relatively

small number of parts on each machine.

In the implementation, we set T1 = T,,,,. The value for T'1 is chosen so that the

system has sufficient slack to absorb the disruption.

4.1 Test Problem Description

The problem set consisted of eight disruption scenarios from a facility with two ma-
chines, and five disruption scenarios from a facility with ten machines. Facility 1 included

58 lots (250 jobs) scheduled over two fully compatible machines with an average utilization
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of 76%. Facility 2 consisted of 25 lots (293 jobs) scheduled over ten partially compatible
machines with an average utilization of 46%. The disruptions were chosen by the manu-
facturer to represent common difficulties which render a preschedule infeasible: machine
breakdowns, tool unavailabilities, release or due date changes, and order quantity increases.
The preschedules were developed by the manufacturer and contained some unresolvable
tardiness before the disruptions were added. This was due to earlier disruptions that forced
ready times plus processing times to be greater than due dates. This inherent tardiness
was a lower bound on the total tardiness. Tables 1a and 1b identify the type of disruption

and give the inherent tardiness lower bounds.

The solution horizons generally included about 70 percent of the lots and were chosen
so that the cumulative idle time was at least twice the average lot processing time. In
Facility 1, the earliest starting horizon that achieved this was 111 on Machine 1 and 125
on Machine 2. The longer horizon values implicitly consider the type of disruption to
guarantee a feasible matchup point. The corresponding matchup values and utilization are
given in Table 2. The matchup point is given as a pair, (¢1,¢2), where t1 is the matchup
time on Machine 1 and #2 is the matchup time on Machine 2. In Facility 2, the initial
horizon chosen (150) with the first set of compatible machines allowed enough flexibility to
match up with the preschedule without excessive additional tardiness costs. The number
of compatible machines and the utilizations on these machines in each of the scenarios are

given in Table 3.

4.2 Analysis of Test Results

The testing of MUSA using the real data of Section 4.1 had two goals.

Goal 1: to validate our theoretical model by observing whether the MUSA heuristic
produced good results suggested by the theory. We measured this performance by
obtaining lower bounds on tardiness values and comparing MUSA tardiness values

with these lower bounds.

Goal 2: to determine whether MUSA outperformed other alternatives that are often

used in scheduling practice. The alternatives we considered were simple static and
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dynamic approaches and the use of our reallocation and resequencing methods without

attempting to match up.

The role of machine utilization and matchup horizon lengths can also be observed in
Tables 2 and 3. In these tables, incremental tardiness is defined as tardiness in the new
schedule less inherent tardiness. In general, the effectiveness of MUSA, as measured by

incremental tardiness, decreases as machine utilizations and matchup horizons increase.

Furthermore, the incremental tardiness was less than .20 hours per job per problem.
On this basis, we conclude that the MUSA heuristic produced nearly optimal schedules in
these 13 real test problems.

To investigate Goal 2, four strategies for rescheduling were evaluated. The alternatives

tested were:

Strategy 1 (pushback) gives a static solution as in standard deterministic scheduling.
When a disruption occurs, the machine assignments and job sequences stay the same,

only the job start and finish times are shifted to accommodate the disruption.

Strategy 2 (dynamic) gives a fully dynamic myopic solution using the Priority Rule
Approach of Section 3.2. The same horizon, T'1, is used.

Strategy 3 (total reschedule) represents full rescheduling over all known jobs. It uses the
subroutines in MUSA but ignores preschedule assignments. That is, it does not seek to
match up with job placements of the preschedule. For this strategy, the multimachine
reassignment problem is modeled as an MCIP to solve the reallocation problem over
horizon T'1. The single machine resequencer then obtains further penalty reductions.

Compared to Strategy 2, this Strategy attempts more optimization.

Strategy 4 (matchup) is an implementation of MUSA using the MCIP to reallocate lots
with the preschedule job assignments included in the formulation. MUSA differs from

Strategy 3 by seeking to maintain the preschedule assignments as far as possible.

The tardiness results for the four strategies are also displayed in Tables la and 1b.
MUSA (Strategy 4) obtains the best results on ten of the 13 problems. On two that it

does not, the difference between Strategy 4 and the best performance is negligible. These
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results again validate the use of the continuous processing and setup theory on practical

problems that do not exactly fit these conditions.

The tardiness results for Strategy 1 illustrate the penalties incurred when machine
compatibilities are not utilized during rescheduling. When the preschedule is pushed back
to accommodate the disruption, only the jobs on the disrupted machine are affected.
Although this strategy preserves the preschedule sequence and machine assignments, it is

limited since jobs may not be offloaded to compatible machines.

In Strategy 2, among the three selection rules tested, EDD, MDD and LWS, the
LWS rule had the lowest average tardiness, however, it did not significantly outperform
the others. The tardiness comparison between Strategy 2 and Strategy 3 is mixed. The
partial lookahead approach of Strategy 3 performed better on the Facility 1 problems but
markedly worse on the Facility 2 problems. This is due to MCIP’s difficulty, without the

matchup objective, in finding a feasible schedule across the many machines of Facility 2.

As stated above, Strategy 4 yielded the least tardiness for both facilities among all
strategies. By including the preschedule assignments in the MCIP formulation, the model
switched job/machine assignments only as needed to correct for the disruption. The

preschedule assignments then served as a good completion to the solution schedule.

Evaluation of rescheduling approaches must also consider machine assignment changes
and computation times. Table 4 displays the number of lot/machine assignment changes
for Strategies 2, 3 and 4. Since the simple preschedule pushback approach of Strategy
1 does not move lots across machines, no values are given. For the Facility 1 problems,
Strategy 2 yielded a significantly higher number of lot changes than Strategies 3 or 4. This
is to be expected since the reassignment heuristic does not attempt to maintain original
assignments as the MCIP does. All three strategies had few lot/machine changes for the

Facility 2 data since many lots had only one compatible machine.

Table 4 also displays the computation times for Strategies 2, 3 and 4. The time for
Strategy 1 was negligible and, hence, omitted. The Strategy 2 heuristic has the advantage
of being very fast when compared to the MCIP run times of Strategies 3 and 4. The latter

strategies require the solution of MCIP’s with up to 225 variables and several hundred
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constraints. As the number of lots increases, the CPU times for Strategies 1 and 2 can
be expected to increase approximately linearly while those of Strategies 3 and 4 can be

expected to increase more sharply.

Table 4 includes the final RELAX values for Strategies 3 and 4. This represents the
amount of job overlap that had to be allowed before a feasible integer solution could be
found by the MCIP. The Strategy 3 RELAX averages are higher than those of Strategy 4
indicating greater difficulty in finding a feasible solution. The matchup objective not only

resulted in lower RELAX values, but also lower average run time.

5. Conclusions

This paper presents a framework for scheduling production facilities when disruptions
invalidate preplanned schedules. It is shown that, if disruptions are sufficiently spaced
over time, the optimal rescheduling strategy is to match up with the preschedule. The
theory, however, assumes that processing and setup times can vary continuously and that
an optimal matchup schedule can be found. In practice, processing and setups are discrete

events, and optima cannot be found in reasonable times.

To validate the use of the theoretical principles in practical problems, heuristics were
designed to approximate optimal continuous matchup. These heuristics were implemented
and tested on a practical set of test problems from an automobile manufacturer. The
results supported the theory by showing that matchup scheduling costs were close to lower
bounds. In addition, the results were significantly better than results from pure static
and dynamic strategies that are often used in practice. The experiments also indicated the
advantage of an MCIP integer programming solution for allocating production to machines

when utilizations are high.
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APPENDIX

Proof of Theorem 1: McKenzie [Lemma 1, 1976] proves the result given (a). This
condition does not cover scheduling problems with zy € 0X,, the boundary of X;. Also,
the interiority of X;NY; may be difficult to verify. Conditions (b), (c) and (d) are reasonable
assumptions that may be more readily verified. We show that each implies (i) and use (i)

and the structure of f; to show (ii).

Condition (b) implies that there is sufficient slack in the schedule that, at some fu-
ture time, all resources will be utilized under capacity. We wish to show that F(z;) is

subdifferentiable at z;.

Consider z; € X;NY;. Let {z,,7 >t} minimize F*(z;) so that

(o <]

Ft(xt) = Zfr(xr,xr+l)'

r=t

Let z} = z¢ + v where v is a vector of perturbations. To show subdifferentiability, we
show that there does not exist a 7y such that the one sided directional derivative of F'* with
respect to v is —oo (Theorem 23.3, Rockafellar [1970]). For this, is is sufficient to show
that F*(z}) > F'(z,)— K||z} —z:||, where K is a constant. If F*(z}) > F!(z;), the result is
trivial. If F*(z,) > F*(z}), note that F*(z;) is bounded above by the cost of the following
path. Carry out exactly the decisions used by {z.} from ¢ to T. Hence, z1 = 27 + . By
the slackness hypothesis, we can feasibly alter processing in z7 to match up with 27 ;.
The only subtlety here is job channels where z7(z) > z75(¢). In this case, channel ¢ must
have a due date in the future. Match up in that channel at the greatest T. Follow the
path {z!} from here. The difference between the optimal path from z} and the path just
described is limited to the first T — t periods. The cost of this difference is bounded by
K < (T -1t)5 1 max{w;,u;} < co. Hence, Fi(z}) > F'(z;) — K||z} — x| for this K,
and F! is subdifferentiable.

A similar argument is used if (c) holds by noting that only a finite number of costs

are reduced in optimal paths from z} and z;. This again implies subdifferentiability.
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Condition (d) can be interpreted as a generalization of (c), in which a finite cost
path is eventually obtainable from every feasible path at decreasing cost. Note that
ETK Y r(@g Tgr) + fr (2T, 27, 1) has a finite number of terms, each with bounded

slope, and is hence subdifferentiable. Hence, there exists p/¢ and path {z} 1,2/}, ... z7. )

such that
Tk -1
Z fr(xnl'rﬂ)+fTK($TK,~T'TK+1) _ptht
=t
Tk—1
Z fr(e?s 27 41) + e (2 S pn) — PE Y, (7)

for all 2} € X, . Rewrite (7) as

T -1 Tk -1
pt xt _xt 2 f‘r 1-+1 Z fr $r>mr+1
fTK(mZI”K7x{TK+1) - fTK(wTK’x&‘K-f-l)‘ (8)

Note that |F*(z;)| < oo and |F*(z}/)| < oo. Hence pX has a limit point, p;, and by (d)
pe(ey — z¢) S Fi(ay) = Fi(a), (9)

for all z}' € X;. Hence, F* is subdifferentiable at z;.

To show conclusion (ii), consider the function, g(z}) defined by

g(zy) = fm1(ei_y, €7) + Fi(2}) — pj_ 77—,
- ft—l(w;—l,f”;) +P:—1I;—1 (11)
< Fi(z}),

for any (zy_,,z}) such that f;—;(z}_;,2}) < co. Note that g is also subdifferentiable for
zy € Y;. Hence, there exists p} such that

9(xt) = piy < g(a7) = piai < F'(ay) - piat, (12)
for all z{ € X;NY;. Now, let z} =z}, and p} = p} to obtain

ft-l(wi‘_l,w?) —p?_lw?-l - ft—l(wé—ux;) +P:—-1$It—1 —pi‘w’t < —p?w?, (13)
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for all (z}_,,z}) feasible, proving (ii).m
Proof of Theorem 2: We want to show

o e (24 2t41) = (26, 201l <. (14)

Let 2’ have supporting prices p’. Let vi(z}) = (p} — p})(z} — z; ). By summing inequalities
(ii), for all T,

T

Pry1(Trgs — TT41) 2 Z fi(z?, i) = fe(2 Th41)) — Po(20 — Zg), (15)
t=0
and
T
Pr1(TTgs — Try1) 2 Zﬁft(fum;ﬂ) — fi(}, 2¥41)) — po(2o — o) (16)
t=0

From the finiteness of F°(z{) and F°(z}), both right hand sides in (15) and (16) are

uniformly bounded from below for all T'. Hence, we know
'Ut(SE:) Z K> —00, (17)

for all ¢ and 7.

Now, if (14) does not hold, there exists ¢ > 0 and a sequence of times, {t;} — oo,
with

inf . —z. ]| > e 18
o T T =51 (19)

By boundedness, Z;"J. is compact and the infimum in (18) is attained, for example, at 2*.

Then, by the structure of f;,
fi; (25 24, 41) — PE 28, + Ph 42441

< fy (xijaxéjﬂ) —P:,- x;j +P:j+1$;,~+1 - ’Y||(Z:,~,Z:j+1) - (x;j,xlt,-ﬂ)n (19)

where v > min(w(7),u(7)) > 0. By definition of Z{, for any (z},z7,)

fe(z?,2ipq) —Pizr + piixier = fi(2), 2041) — Pi 2t + Piv1%e41- (20)

23



From (19) and (20), we have for any T, with T; = max{t; : t; < T},

T

fi(zg,ziy) - th($;a$;+1)

t=0

R

T
< (ps - pb)(2h — 73) — (% — P2 — o) = Y vll(=5 s 25 40) = (@ 2 )l (21)
j=1

By (17), if (14) does not hold, then the right-hand side of (21) approaches —oo as
T approaches co since the normed term exceeds e infinitely often. This contradicts the

finiteness of F°(zy).m
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Table 2. Matchup Points, Utilization and Incremental Tardiness on Facility 1

Problem Matchup Point (hrs) Utilization (%) Incremental Tardiness
1.1 (144,150) 84.5 89
1.2 (127,125) 76.2 20
1.3 (111,125) 79.8 29
14 (127,125) 76.2 5
15 (127,125) 76.2 30
16 (111,125) 75.6 15
1.7 (127,125) 76.2 20
1.8 (111,125) 78.7 22

Table 3. Compatible Machines, Utilization and Incremental Tardiness on Facility 2

Problem Number of Machines Utilization (%) Incremental Tardiness
21 4 43.5 0
2.2 ) 42.2 0
2.3 4 56.4 31
24 6 51.4 119
2.5 3 41.6 9
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