The Neurochemistry of Therapeutics:
Levodopa Pharmacodynamics in
Parkinson’s Disease

Parkinson’s disease (PD), the most common neurode-
generative movement disorder, has enjoyed a recent ex-
plosion of treatment options available for its symptom-
atic management. Despite these recent introductions,
PD remains a progressive disorder, with the majority of
patients experiencing significant disability in its more
advanced stages. One aspect of PD leading to disability
is the development of unsatisfactory symptomatic re-
sponses to precursor loading therapy with levodopa
(LD). Typical PD patients respond initially to LD with
a sustained (several hours) improvement in resting
tremor, bradykinesia, and rigidity. This response ini-
tially outlasts the plasma levels of LD and has been
assumed to rely on conversion to dopamine in remain-
ing striatal monoaminergic terminals, with subsequent
storage in and release from synaptic vesicles. In more
advanced PD, the response from an individual dosage
becomes progressively shortened until it closely paral-
lels the plasma LD level. Furthermore, the clinical re-
sponse to LD in advanced PD is often complicated by
unpredictable losses of therapeutic effect and by cho-
reoathetoid dyskinesias at times of peak LD effect.
There is limited mechanistic understanding of these
complications, with attendant controversy surrounding
the relationship of prior medication history to their
risk of development. In the present issue of The An-
nals, de la Fuente-Fernandex et al have applied
positron emission tomography (PET) to the investiga-
tion of levodopa pharmacodynamics in PD patients
with regard to the subsequent development of end-of-
dosage “wearing off” of LD effect.

The studies reported by de la Fuente-Fernandez et al
are based mechanistically on prior investigations from a
number of laboratories that have identified apparent ef-
fects of endogenous neurotransmitter on the in vivo
binding of dopamine D,-type receptor antagonist ra-
dioligands® * (see Laurelle® for a recent review). Initial
studies suggesting an effect of endogenous dopamine
on binding of D, antagonists such as [”C]raclopride
(RAC) and ['*’Tiodobenzamide employed interven-
tional challenges with the dopamine releaser amphet-
amine. Paired, within-subject studies demonstrated sig-
nificant reductions in RAC binding after intravenous
amphetamine compared to baseline in normal subjects.
Detailed investigations of this effect in nonhuman pri-
mates indicate that the magnitude of the PET binding

reduction correlated with the magnitude of dopamine
release, as assessed by in vivo microdialysis.®” Further
evidence in support of the role of endogenous dopa-
mine as the mediator of the effect is the observation
that it is abolished by prior dopamine depletion.®

Human patient studies employing the amphetamine
challenge paradigm indicate potential presynaptic do-
paminergic abnormalities in neuropsychiatric disorders.
Several investigators have examined the effect of am-
phetamine on D, receptor binding in schizophrenic
patients.>” In comparison to normal control subjects,
schizophrenics frequently demonstrate exaggerated re-
sponses (greater reduction of D, radioligand binding
after amphetamine), suggesting increased presynaptic
dopamine stores or abnormal regulation of synaptic do-
pamine disposition. In addition, dopamine depletion
after alphamethyltyrosine administration reveals in-
creased D, radioligand binding in schizophrenics that
exceeds that in normal subjects, suggesting increased
D, receptor occupancy at baseline in unmedicated
schizophrenia.'® Although findings are only prelimi-
nary, the possibility of altered presynaptic dopaminer-
gic regulation in Tourette syndrome is supported by
exaggerated amphetamine response in D, radioligand
imaging studies as well."'

Can apparent synaptic dopamine changes induced
by interventions other than amphetamine be measured
by the D, receptor radioligand binding competition
paradigm? Amphetamine administration results acutely
in up to 100-fold increases in dopamine release from
nerve terminals compared with baseline levels. Thus, it
is reasonable to question whether more modest stimuli
have detectable effects on the in vivo binding of RAC.
To the affirmative, investigators have demonstrated
similar apparent competitive effects of dopamine re-
uptake inhibitors such as methylphenidate.'” Further-
more, it has been observed that putative trans-synaptic
effects of acetylcholine,13 serotonin,'® and gluta-
mate'>'® modulations lead to altered in vivo RAC
binding, presumed to be mediated by the competitive
effect of endogenous dopamine. Finally, Tedroff et al'’
have demonstrated previously in PD that acute admin-
istrations of LD result in decreased RAC binding (Fig).
It is this specific competitive radioligand-binding par-
adigm that was investigated further by de la Fuente-
Fernandez et al.
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Fig. Schematic diagram of LD effect on in vivo RAC binding
at nigrostriatal synapses. In the baseline state (A), there is lim-
ited occupancy of dopamine D, receptors by DA, and RAC
binding identifies the population of free receptors. After ad-
ministration of LD, there are increased synthesis and release of
DA, lmding to fewer ﬁee D, receptors and then to reduced
RAC binding. Comparison of the pre- and post-LD RAC
binding yields an index of DA effect. DA = dopamine;
RAC = [YClraclopride; D, = dopamine D ,-type receptor.

The study reported by de la Fuente-Fernandez et al
in this issue examined the effects of oral LD on RAC
in PD patients with stable therapeutic responses. The
time course of presumed competitive synaptic dopa-
mine resulting from oral LD was assessed by serial PET
measures before and at 1 and 4 hours after LD dosage.
All  patients had continued therapeutic response
through 4 hours, and none had peak dosage dyskinesias
or end-of-dosage wearing-off phenomena at the time of
PET study. Subsequent 3-year clinical follow-up re-
vealed development of end-of-dosage wearing off in
half of the subjects. Comparison of the subsets with
and without wearing off revealed significant differences
in the LD effect on RAC. Patients who developed
wearing off demonstrated greater reduction of RAC at
1 hour after LD but had return to baseline by 4 hours.
Patients without wearing off 3 years later had smaller
LD effects on RAC at 1 hour but maintained the effect
for 4 hours. Thus, the authors conclude that LD phar-
macodynamics predict the development of wearing off
years before its clinical expression.

Must altered presynaptic LD or subsequent dopa-
mine disposition and metabolism alone account for the
observed PET findings? De la Fuente-Fernandez et al
interpret their findings as indicative of differences in
synaptic dopamine levels and time courses in the two
PD patient groups. While this is a satisfactory explana-
tion, there are alternatives. Additional possibilities are
changes in D, receptor subcellular distribution or cou-
pling. The amphetamine-induced changes discussed
previously, although mediated by endogenous dopa-
mine, display a protracted temporal profile that out-
lasts by hours the induced dopamine release. Converg-
ing evidence now suggests that this is explained by
internalization of the D, receptors after amphetamine,

with reduced affinity of RAC for the internalized D,
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binding sites.” Internalization is not a likely explana-
tion for the present findings, since the effect is of short
temporal duration in the wearing-off subgroup. In ad-
dition, dopamine receptors display multiple affinities
for agonists, reflecting their state of coupling to G pro-
tein second-messenger effectors.'® The observed effect
of LD could preferendially involve high-affinity—state
D, receptors, and this could change in response to the
synaptic dopamine level. Another question regards the
inference that there may be increased initial synaptic
dopamine levels in the wearing-off group versus the
stable LD responders. Again, the authors’ interpreta-
tion is plausible, but differential levels of dopamine
and of dopamine receptors at baseline could also lead
to a similar distinction. Prior studies of Antonini et
al'® indicate increased RAC binding in the striata of
medication-naive PD patients. After initiation of ther-
apy, RAC binding is reduced to or even below the nor-
mal range. These findings have been interpreted as de-
picting denervation-related upregulation of D, receptor
expression in unmedicated PD but could alternatively
be due to removal of the competitive effect of dopa-
mine, as demonstrated in normal control subjects after
dopamine depletion. Thus, the exaggerated LD effect
observed by de la Fuente-Fernandez et al in patients
with wearing off could be related to more severe baseline
depletion of dopamine or to altered D, receptor popu-
lations as well as to the posited change in synaptic LD.
The present report by de la Fuente-Fernandez et al
represents an exciting initial approach to study of LD
pharmacodynamics and sets the stage for future RAC
PET investigations of complex LD responses in PD.
Complications, including both end-of-dosage wearing off
and the more disabling LD-related dyskinesias, may ulti-
mately be mechanistically defined by such studies. Fur-
thermore, it may be possible to employ this new PET ap-
proach as an objective measure of PD evolution and its
possible differential response to therapeutic alternatives.
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