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ABSTRACT: Unimolecular reaction systems in which multiple isomers undergo simultaneous
reactions via multiple decomposition reactions and multiple isomerization reactions are of
fundamental interest in chemical kinetics. The computer program suite described here can be
used to treat such coupled systems, including the effects of collisional energy transfer (weak
collisions). The program suite consists of MultiWell, which solves the internal energy master
equation for complex unimolecular reactions systems; DenSum, which calculates sums and
densities of states by an exact-count method; MomInert, which calculates external principal
moments of inertia and internal rotation reduced moments of inertia; and Thermo, which
calculates equilibrium constants and other thermodynamics quantities. MultiWell utilizes a
hybrid master equation approach, which performs like an energy-grained master equation at
low energies and a continuum master equation in the vibrational quasicontinuum. An adap-
tation of Gillespie’s exact stochastic method is used for the solution. The codes are designed
for ease of use. Details are presented of various methods for treating weak collisions with
virtually any desired collision step-size distribution and for utilizing RRKM theory for specific
unimolecular rate constants. � 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 232–245, 2001

INTRODUCTION

The purpose of this article is to describe the theoretical
basis for the MultiWell computer program suite [1],
which was designed for chemical kinetics calculations
that involve complex coupled unimolecular reaction
systems. Many chemical systems are characterized by
the presence of multiple isomers that interconvert via
unimolecular isomerization reactions while undergo-
ing fragmentation reactions to form multiple sets of
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products. These systems are even more complex if ex-
cited species are produced via recombination reactions
or chemical activation. In all of these cases, energy
transfer involving weak collisions plays a role, and the
resulting phenomenological reaction rates and branch-
ing ratios are functions of temperature, pressure, and
the activation mechanism. MultiWell has been de-
signed to simulate such systems.

The MultiWell suite of computer programs in-
cludes MultiWell, which solves the master equation,
and several tools. The tools consist of DenSum, which
calculates sums and densities of states; Thermo, which
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uses statistical mechanics formulas to calculate equi-
librium constants and other thermodynamic quantities;
and MomInert, which calculates principal moments of
inertia and reduced moments of inertia for internal ro-
tations. These computer programs are available from
the author and from a Web site as free source code
and makefiles for compiling on several platforms [1].
Example input and output files are available on the
Web site. Note that the MultiWell package can be
downloaded and examined in conjunction with this
article.

In the following article (Article II) [2], the
MultiWell suite has been utilized to calculate reaction
rates and product distributions for the 2-methylhexyl
free radical isomerization/fragmentation system,
which is comprised of six isomers connected via 15
reversible isomerization reactions [3]. Each isomer can
decompose via C—C and C—H bond fission to pro-
duce a total of 14 distinct sets of fragmentation prod-
ucts [4]. In toto, there are 49 unimolecular reaction
channels, all of which are treated specifically by using
MultiWell. Examples are presented in Article II for
chemical activation and shock-induced reactions. The
results presented there illustrate some of the features
incorporated in MultiWell.

In this article, the theoretical basis for MultiWell is
summarized. Inevitably, various approximations and
assumptions must be adopted due to computational
limitations and to the absence of physicochemical
knowledge. The numerical approximations are de-
scribed so that program users can better assess
MultiWell’s limitations and strengths. The principal
assumptions made in formulating the master equation
are reviewed.

In the next section, the master equation is described
formally. In subsequent sections, the stochastic meth-
odology is described along with a brief discussion of
some of the merits and limitations of the hybrid master
equation approach relative to other methods. Methods
for computing microcanonical unimolecular reaction
rates and energy transfer step sizes are described, fol-
lowed by a description of various initial conditions
that can be selected as options. Finally, the calculation
input and output are outlined.

THE INTERNAL ENERGY MASTER
EQUATION

The current version of MultiWell is based on the one-
dimensional master equation, in which internal energy
is modeled, but it is planned that future extensions will
explicitly include angular momentum (the two-dimen-
sional master equation [5–13]). The master equation

provides the fundamental theoretical basis for model-
ing systems in which both energy transfer and chem-
ical reaction can occur [14–17]. It comprises a set of
coupled integro-differential equations that describe the
rates of production and loss of chemical species at
specified energies.

Internal Energy and Active Degrees of
Freedom

Throughout this article, the internal energyE is as-
sumed to be fully randomized among the active de-
grees of freedom. The internal energy for a particular
species (stable molecule or transition state) includes
the energy (measured from the zero-point energy) that
resides in the internal modes (vibrations, torsions, and
internal rotations) and an active external rotation.Non-
linear polyatomic species have three external rota-
tional degrees of freedom characterized by moments
of inertiaIA, IB, andIC. The usual pragmatic approach
[15] is to assume the molecule can be approximated
as a symmetric top with two of the moments of inertia
equal to one another (IA � IB), producing a degenerate
two-dimensional external rotation. The third external
rotor is associated with the symmetric top figure axis
and is sometimes termed the K-rotor. The K-rotor is
assumed to exchange energy freely with the other in-
ternal degrees of freedom, while the degenerate two-
dimensional external rotation is assumed to be inactive
[14,15,17,18]. (More sophisticated treatments of ro-
tations can be utilized in the present version of
MultiWell by calculating specific rate constants (k(E))
externally and then providing them in data files read
by MultiWell.)

Sums and Densities of States

The MultiWell suite of computer codes includes
DenSum, which utilizes the Stein-Rabinovitch [19]
version of the Beyer-Swinehart algorithm [20] for ex-
act counts of states for species comprised of separable
degrees of freedom. The present version of DenSum
can accommodate harmonic oscillators, Morse oscil-
lators, and free rotors. The K-rotor is included with
the internal degrees of freedom when calculating the
sums and densities of states. There are two options for
the treatment of rotations. The usual option is to use
the convolution method developed by Astholz et al.
[21], which is computationally efficient and accurate
for rotors with small rotational constants. The second
method is to use exact counts of rotational states. The
second method is preferred if the rotational constant
is larger than�5 cm�1. DenSum produces an output
file that is subsequently used as an input file by
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MultiWell. The inactive two-dimensional external ro-
tation is specified in the general MultiWell data file.

Master Equation for the Vibrational
Quasicontinuum

At high vibrational energies, a quasicontinuum of vi-
brational states exists and intramolecular vibrational
redistribution (IVR) is rapid. Experiments show that
IVR is slow at low energy, exhibits multiple time
scales, and becomes rapid at energies where the vibra-
tional state density is of the order of 102–103 states/
cm�1 [22]. At these state densities, some vibrational
states overlap significantly within their natural widths
as governed by infrared spontaneous emission rates.
At state densities greater than�107 states/cm�1, most
states are overlapped within their natural widths. The
onset of “rapid” IVR is a convenient marker for the
onset of the vibrational quasicontinuum. However,
this criterion leaves some uncertainty because IVR ex-
hibits multiple time constants and thus some modes
remain isolated even at higher vibrational state den-
sities [22]. In the vibrational quasicontinuum, individ-
ual quantum states cannot be resolved and the master
equation can be written:

dy(E�,t)
dE� � f (E�,t)dE�

dt
�

� dE[R(E�,E)dE�y(E,t)]�
0

�

� dE[R(E,E�)dE�y(E�,t)]�
0

channels

� k (E�)y(E�,t)dE�� i
i � 1 (1)

wherey(E�,t)dE� is the concentration of species with
vibrational energy in the rangeE� to E� � dE�,
R(E,E� ) is the (pseudo-first-order) rate coefficient for
VET from energyE� to energyE, f(E�,t)dE� is a source
term (e.g., chemical or photoactivation), andki(E� ) is
a unimolecular reaction rate constant for molecules at
energyE� reacting via theith channel. Terms involv-
ing radiative emission and absorption have been
omitted.

In MultiWell, initial distributions are posited and
the master equation is integrated to obtain time-depen-
dent population distributions, reaction yields, and so
on. Initial distributions appropriate for several com-
mon phenomena are discussed later. In the current ver-
sion of MultiWell, the source termf(E�,t)dE� on the
right-hand side of Eq. (1) is not considered.

If the rate coefficientsR(E,E� ) do not depend on
the initial quantum states of the collider bath mole-
cules, they can be written as the product of thetotal

vibrationally inelasticcollision frequency (�) multi-
plied by the “collision step-size distribution,”P(E,E� ),
which expresses the probability that a molecule ini-
tially in the energy range fromE� to E� � dE� will
undergo an inelastic transition to the energy rangeE
to E � dE:

�

R(E,E�)dE � R(E,E�)dE�
0

R(E,E�)dE
, (2a)� ��� R(E,E�)dE0

� �P(E,E�)dE (2b)

The second factor on the right-hand side of Eq. (2a),
the integral over the rates of all inelastic transitions
from initial energyE�, is the frequency of inelastic
collisions,�. Usually, the collision frequency is cal-
culated from the expression� � kcoll[M], wherekcoll
is the bimolecular rate constant for inelastic collisions
(which in general may depend onE) and [M] is bath
gas concentration. The first factor (in curly brackets)
on the right-hand side of Eq. (2a) isP(E,E� )dE. It is
important to emphasize that the factorization of
R(E,E� ) in Eq. (2) is merely for convenience and that
kcoll andP(E,E� ) never occur independently of one an-
other. Furthermore,P(E,E� ) is only a proper proba-
bility density function when� is exactlyequal to the
inelastic collision rate constant. Under this assump-
tion, P(E,E� ) is normalized:

�

P(E,E� )dE � 1 (3)�
0

Note that collision step-size distributions for activating
and deactivating collisions are connected via detailed
balance:

P(E,E� ) �(E) E � E�
� exp � (4)� �P(E�,E) �(E� ) k TB trans

where�(E) is the density of states at energyE, Ttrans
is the translational temperature, andkB is the Boltz-
mann constant. The relationships amongP(E,E� ), kcoll,
and the normalization integral are further discussed
later.

Multiple Species (Wells) and Multiple
Reaction Channels

Here we consider chemical species that can be iden-
tified with local minima (wells) on the potential energy
hypersurface. These species are distinct from transi-
tion states, which are located at saddle points. In
MultiWell, each well is assigned an arbitrary index for
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identification and reactions are conveniently labeled
with two indices: one to designate the reactant and the
other to designate the product. For simplicity in no-
tation, one or more of these indices are omitted in
some of the following discussion.

A master equation such as Eq. (1) can be written
for each well, and the equations are coupled via the
chemical reaction terms. Each reaction channel is as-
sociated either with another well or with fragmentation
products. Each isomerization is reversible, and the
transition state is the same for the corresponding for-
ward and reverse reactions. In principle, the existence
of isomers leads to splitting of vibrational levels, as in
the inversion doubling of ammonia, but if tunneling is
negligible, the wells can be considered independently
[23]. Thus, each well has its own vibrational assign-
ment, molecular structure, and corresponding density
of states.

Two technical problems arise when using an en-
ergy-grained master equation [14,15,17,24] to simu-
late multiple-well systems. First, the number of cou-
pled differential equations can grow prohibitively as
the energy grain size (�Egrain) is reduced, making the
numerical solution very difficult or impossible. Sec-
ond, because each well has its own zero of energy and
reaction threshold (critical) energies, it is difficult to
match the energy-grain boundaries. The reaction
threshold energies for forward and reverse reactions
are tied to one another. For accurate numerical results,
it is necessary to match the energy grains of the cou-
pled wells. The matching of energy grains at one re-
action threshold may lead to mismatches at other
thresholds and to artificially shifted energies of the
wells, relative to one another. These energy shifts pro-
duce anomalous results for large grain sizes. This
problem can be neglected if the energy grains are very
small, but small energy grains lead to very large sets
of coupled equations. In all cases, the calculations
should be repeated with successively smaller energy
grains until the results are independent of�Egrain: Con-
vergence must be achieved.

When a continuum master equation is used, energy
mismatching and anomalous shifts never create prob-
lems. However, the sparse density of states regime at
low energies within wells and for transition states near
reaction thresholds is not well represented by a con-
tinuum model. This difficulty is minimized in
MultiWell by using a hybrid master equation ap-
proach.

Hybrid Master Equation Formulation

Effectively, this formulation uses a continuum master
equation in the quasicontinuum at high vibrational en-
ergies and an energy-grained master equation at low

energies, where the state density is distinctly discon-
tinuous. This is accomplished by using Eq. (1) for the
continuum master equation throughout the entire en-
ergy range but discretizing the state density, popula-
tion, and transition rates at low energy. Athighenergy,
Multiwell employs interpolation to determine the den-
sity of states and specific rate constants (k(E)). Values
of �(E) andk(E) are stored in ordered arrays at specific
values ofE, and intermediate values are determined
by interpolation. Atlow energies, ordered arrays of
�(E) and k(E) are stored at smaller energy spacing
(�Egrain) and interpolation isnot used: The array en-
tries nearest in energy are utilized directly. The two
ordered arrays used for each energy-dependent quan-
tity (�(E), k(E), etc.) are combined in “double arrays,”
which are discussed in the next section. At all energies,
numerical integration is carried out with the trapezoi-
dal rule, which introduces an energy grain in the low
energy regime (where state densities are sparse) but
gives good continuum results at high energy (where
the state densities are smooth).

If a stochastic trial (see later) calls for a transition
from the continuum space to an energy in the discrete
space, the energy is aligned with the discrete energy
grain. At low energy, many energy grains do not con-
tain states (�(E) � 0) and transitions are not allowed
to those states in MultiWell. As a result, population
only resides in energy grains that contain states and
collisional transitions low on the energy ladder can
only take place with relatively large energy changes,
due to the sparse density of states.

Energy Grain in the Hybrid Master
Equation

Through the use of double arrays, high-energy reso-
lution is achieved in densities and sums of states at
low energy and near reaction thresholds. By default,
the double arrays have 500 elements (the dimensions
can be changed, if desired). The low energy portion of
the array is specified according to�Egrainand the num-
ber of array elements assigned to the low energy por-
tion of the double array. The high-energy portion is
specified only according to the maximum energy.
Thus, the number of array elements used in the high-
energy portion and the energy grain in the high-energy
portion both depend on how many array elements re-
main after assigning the low energy portion. The same
specifications are used for all double arrays, including
arrays for densities of states (�(E)), sums of states
(G‡(E � E0)), specific rate constants (k(E � E0)), etc.
The discretization of these quantities is the natural re-
sult of exact-count algorithms.

An example of a double array for the density of
states�(E) is shown in Figure 1 for benzene (vibra-
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Figure 1 Density of states for benzene (including vibra-
tions and one active external rotation). Solid line: density of
states from exact count (�Egrain � 10 cm�1); solid dots: el-
ements of double array (see text for details).

tions [25]� K-rotor). In this example, the density of
states was calculated using an energy grain of�Egrain

� 10 cm�1 and exact counts up to an energy of 85,000
cm�1, although only energies up to 10,000 cm�1 are
shown in the figure. In this example, the low energy
regime was defined as the first 250 elements of a dou-
ble array and thus covered the range from 0 to 2490
cm�1. The remaining 250 elements of the double array
overlap the low energy portion and cover the range all
the way from 0 to 85,000 cm�1 (the high energy re-
gime) with an energy grain of 341.4 cm�1. In Figure
1, �(E) calculated with�Egrain � 10 cm�1 is shown as
the thin solid line and the double array elements are
shown as the solid dots. The upper energy boundary
for the low energy range was chosen to fall within the
vibrational quasicontinuum, as evidenced by�(E) �
100 states/cm�1 and by the relative smoothness of the
plot of �(E). When�(E) is sufficiently smooth, rela-
tively little error is introduced by interpolating be-
tween the double array points.

In principle, convergence tests should be carried
out for each simulation. Tests for convergence as
�Egrain is reduced reflect several simultaneous effects:
The �(E) grain size is varied for every well, the
G‡(E � E0) grain size is varied for every reaction, and
the energy range covered by the low energy portion
of every double array is varied. Because several at-
tributes are affected by�Egrain, the variation of results
with grain size cannot be interpreted precisely without
extensive tests. However, as long as the energy range
covered by the low energy portion of the double arrays
is sufficient, smaller grain sizes will produce more ac-
curate results and the results are seen to converge at
small�Egrain, as illustrated in Figure 4 of Article II [2].

Typical convergence tests [2] show that 250 bins
with �Egrain� 10 cm�1 are usually suitable for the low
energy portion of the double arrays. The upper energy
bound for the high energy portion is typically 85,000
cm�1 to 100,000 cm�1, depending on the temperature
range and activation method being simulated. The
small grain at every reaction threshold gives accurate
results for the unimolecular reaction rates. The small
grain at low energy within each well gives a good
representation of the sparse density of states regime in
every well. To achieve comparable numerical results
by the matrix solution [17] of an energy-grained mas-
ter equation for just a single well would require finding
the eigenvalues of a matrix with 8500�8500 ele-
ments—a difficult task. The hybrid master equation
approach has a distinct advantage in this regard.

STOCHASTIC METHOD

Gillespie’s Exact Stochastic Method

Gillespie showed that a stochastic method gives the
exact solution to a set of ordinary differential equa-
tions in the limit of an infinite number of stochastic
trials [26,27]. The algorithm has been described in the
context of chemical kinetics [28,16]. If a Markovian
system is in a given state and can make transitions to
other states via a set of transition rate coefficients, then
for a given step in a stochastic simulation, Gillespie’s
algorithm gives a prescription for (a) finding the du-
ration of the time step and (b) selecting the transition
from among the choices. This algorithm is repeated
step-by-step as long as desired and as long as transi-
tions are possible.

Gillespie’s method can be applied to both linear and
nonlinear systems [28]. Equation (1) is linear iny(E,t),
which leads to a particularly convenient result that is
described later. If Eq. (1) contained nonlinear terms
to describe energy pooling; for example, the terms
would contain factors such as the product
y(E,t) � y(E�,t). To solve this system numerically re-
quires using an energy-grained master equation with
a swarm of stochastic trials and storing an evolving
vector of populations as a function of energy. Here,
the number of stochastic trials can be identified with
a number of pseudomolecules that initially are placed
in a set of energy grains. At each time step, a pseu-
domolecule is moved from one energy grain to an-
other, as described by Gillespie, and the swarm of
pseudomolecules maps out the evolving energy distri-
bution. This approach has been used by Veerecken et
al. [29] to simulate unimolecular and recombination
reactions, and it can in principle be extended to non-
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linear systems. The difficulties in this approach are
associated with the energy-grained master equation
(see earlier) and with the requirement for storage of
the entire vector ofy(E,t) at every time step. Given the
current availability of inexpensive computer memory,
the latter is not a serious limitation for single-well re-
action systems. When several wells are involved, the
bookkeeping is cumbersome. Moreover, the memory
requirements of this technique can become prohibitive
in the future if the one-dimensional master equation
is to be extended to two dimensions by explicitly
including angular momentum. MultiWell is designed
so that the future extension to two dimensions will be
feasible.

For linear master equations, a different strategy
[16] is possible using Gillespie’s algorithm. Instead of
using a swarm of stochastic molecules and storage of
y(E,t) at every step, stochastic trials are run one at a
time and snapshots ofE and other variables are stored
at convenient time intervals. The vectory(E,t) does not
need to be stored. A “snapshot” simply records the
energy and other properties of a single stochastic mol-
ecule as it progresses through a stochastic trial. The
snapshot has no effect on the physics of the trial. Since
the system is linear, the averaged result of an ensemble
of stochastic trials gives the same result as a swarm of
stochastic molecules. By retaining only the averaged
results of the snapshots, the memory storage require-
ments are greatly reduced.

For a linear master equation, the loss terms can be
expressed as first-order iny(E,t) with first-order rate
coefficientsAj for k paths. These rate coefficients can
be identified with the unimolecular rate constants and
the collision frequency in Eq. (1). According to Gil-
lespie’s algorithm, the duration of the next time step
is chosen by using the uniform random deviate (i.e.,
random number)r1:

�ln(r )1� � (5a)
AT

where

k

A � A (5b)T � j
j�1

The transition is selected from among thek paths by
using a second random number,r2:

n�1 k

A � r A � A (6)� j 2 T � j
j�1 j�n

Here, the transition takes place via pathn at time
t � �.

According to Gillespie’s algorithm, the time inter-
vals between stochastic steps are chosen randomly by
Eq. (5a). Thus, the progress of the stochastic simula-
tion is monitored via snapshots, as mentioned earlier.
If collisional activation or deactivation is the result of
a transition, then the next stochastic step is calculated
using rate coefficients appropriate to the new energy.
If isomerization to another well is the result of a tran-
sition, then the next stochastic step is calculated using
the first-order rate coefficients appropriate to the
new well, based onE measured from the zero-point
energy of the new well. The snapshots frommany sto-
chastic trials are averaged. The results include the
time-dependent average fractional populations of the
isomers, the average internal energy of each isomer,
and fractional yields of the fragmentation products,
etc.

The computer time required for any given stochas-
tic simulation depends onNtrials, the simulated time
duration, and on the properties of the system that affect
AT in Eq. (5b). For example, one of theAj terms is the
collision frequency, which is proportional to pressure.
If the collision frequency is the dominant term in Eq.
(5b), then the average stochastic time step is inversely
proportional to pressure, and the number of time steps
(and the corresponding computer execution time) for
the given simulated time duration is proportional to
pressure. Of course, collision frequency is not always
the dominant term in Eq. (5b), but the same qualitative
considerations can help in estimating required com-
puter time.

Note that the effectiveness of Eq. (6) is limited by
the properties of the random number generator. The
characteristics of various random number generators
are discussed elsewhere [30–32], where many poten-
tial pitfalls are described. It is important to use random
number generators that have been thoroughly tested.
Even assuming the random number generator pro-
duces a sequence that has no serial correlations, the
number of random numbers in a sequence is limited,
and this imposes a limitation on the relative magni-
tudes of theAm terms that can be selected according
to Eq. (6). For a 32-bit computer, a typical random
number sequence contains 231 � 1 � 2.1 � 109

equally spaced numbers. Thus, if the ratio of minimum
to maximum values of the rate constants is less than
�0.5� 10�9, then the path with the smaller rate can
never be selected. Thus, the random number generator
places a rigorous upper bound on the dynamic range
of rates that can be selected. Amore serious limitation,
however, is that an extraordinarily large number of
stochastic trials is required in order to sample rare
events with useful precision, as discussed in the next
section.
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Stochastic Uncertainties

The precision of the results obtained using stochastic
methods depends on the number of stochastic trials. In
the systems simulated by MultiWell, several species
coexist and their relative populations sum to unity:

species

1 � f � f � · · ·� f (7)1 2 � i
i�1

The standard deviation in the instantaneous relative
population of theith species is the square root of the
variance calculated according to the multinomial dis-
tribution [33]:

1
� � f (1 � f ) (8)i i iN

q trials

wherefi is the fractional population of theith species
andNtrials is the number of stochastic trials. Note that
the standard deviation is reduced as the number of
trials increases. Also note thatfi and (1� fi) appear
symmetrically in Eq. (8). Thus, the standard deviation
is the same when, for example,fi � 0.01 and whenfi
� 0.99. These standard deviations are calculated and
reported by MultiWell in its general output.

A large number of stochastic trials is needed when
rare events must be simulated with high precision.
Suppose thatfi � 0.01 and the desired precision cor-
responds to a relative statistical error of 1% (i.e.,�i /fi
� 0.01). From Eq. (8), one finds the required number
of stochastic trials:Ntrials �106. For a relative error of
10%, only about 104 trials are needed. Thus, the re-
quired number of stochastic trials places a practical
limit on the precision attainable for minor pathways.

PROCESSES

Unimolecular Reactions

The energy-dependent specific unimolecular rate con-
stant k(E) is given by the RRKM statistical theory
[14,15,17,18]:

‡ ‡ ‡m � g 1 G (E � E )ext e 0k(E) � (9)� 	‡m � g h �(E)ext e

wherem‡ andm are the number of optical isomers
[17]; �ext

‡ and�ext are the external rotation symmetry
numbers;ge‡ andge are the electronic state degenera-
cies of the transition state and reactant, respectively;
h is Planck’s constant,G‡(E �E0) is the sum of states
of the transition state;E0 is the reaction threshold en-

ergy; and�(E) is the density of states of the reactant
molecule. The internal energyE is measured relative
to the zero-point energy of the reactant molecule, and
the reaction threshold energy (critical energy) is the
difference between the zero-point energies of reactant
and transition state. Equation (9) was written by as-
suming that the rotationalexternalsymmetry numbers
werenotused in calculating the sums and densities of
states [17]. It is, however, assumed thatinternal rotor
symmetry numbers are used explicitly in the sum and
density calculations and hence do not appear in Eq.
(9). Note that the quantity set off in square brackets is
the reaction path degeneracy [17].

For a tight transition state,G‡(E � E0) can be cal-
culated from a vibrational-rotational assignment, and
the reaction threshold energy can be corrected approx-
imately for angular momentum effects by using a
pseudodiatomic model [15,17]. According to this ap-
proximation in thermal systems, the temperature-cor-
rected threshold energyE0

T is given by the following
expression:

IATE � E � k T 1 � (10)0 0 B trans� �‡I A
where IA and are the moments of inertia for the‡I A
external two-dimensional inactive rotations of the re-
actant and of the transition state, respectively.

For loose transition states, more elaborate tech-
niques are needed for calculatingk(E). Such tech-
niques include Variational Transition State Theory
[17,18], Adiabatic Channel Model [34], and Flexible
Transition State Theory [35]. Computer codes have
been published for some of these theories [36,37].
These methods can be used in the current version of
MultiWell by calculating k(E � E0) externally and
then reading the values from a data file.

MultiWell will accept double arrays (from external
files) that specifyG‡(E� E0) (which can be calculated
conveniently using codes like DenSum, part of the
MultiWell suite) or that specifyk(E � E0). Since a
double array is used, the effective energy grain can be
very small near the reaction threshold, where high en-
ergy resolution is important.

Another selectable option in MultiWell is to cal-
culate k(E) using the inverse Laplace transform
method described by Forst [15,38]:

‡ ‡m � g �(E � E )ext e �k(E) � A (11)� 	 �‡m � g �(E)ext e

whereA� andE� are the Arrhenius parameters for the
corresponding high-pressure-limiting thermal rate
constant. Note that the reaction path degeneracy (the
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quantity in square brackets) can be absorbed intoA�

if desired. For added accuracy near the reaction
threshold,E� may be replaced in Eq. (11) byEo, the
threshold energy. This substitution may improve the
threshold behavior, but it introduces a small error in
the calculated high-pressure-limit activation energy.

Regardless of the method for calculatingk(E), the
unimolecular rate constant at the high pressure limit,
k�(Ttrans), is calculated in MultiWell by using�(E) and
k(E):

k (T ) �� trans

�1
k(E)�(E)exp(�E/k T )dE (12)� B transQ(T ) E0trans

whereQ(Ttrans) is the partition function of the reactant
internal degrees of freedom (the degrees of freedom
used to calculate�(E) andk(E)) at translational tem-
peratureTtrans:

�

Q(T ) � �(E)exp(�E/k T )dE (13)�trans B trans
0

The numerical integrations are carried out using the
trapezoidal rule, because�(E) fluctuates wildly at low
energies. Tests show that the numerical integration
produces values fork�(Ttrans) that are accurate within
a fraction of 1% for usual values of�Egrain [2]. The
activation energy is obtained by calculatingk�(Ttrans)
at two closely spaced temperatures:

ln[k (T )/k (T )]� 2 � 1E � �R (14)� �1 �1[T � T ]2 1

From the activation energy and the rate constant at one
temperature, theA-factor (A�) can be calculated. Val-
ues fork�(Ttrans), E�, andA� calculated in this way are
reported (for each reaction) in the general output file.

Collisions

Frequency of Inelastic Collisions.Conventionally, it
is assumed that the inelastic collision frequency is the
same as that experienced by molecules subject to a
Lennard-Jones intermolecular potential. For the Len-
nard-Jones potential,kcoll takes the following form
[24]:

2 (2,2)k � 	� �
 � � * (15)coll

where �
 � is the average speed at the translational
temperature,� is the Lennard-Jones diameter, and

�(2,2)* is the collision integral [39], which depends on
the Lennard-Jones parameters. Since only the product
kcollP(E,E� ) appears in the master equation, ifkcoll is
underestimated, then normalization of the step-size
distribution is not appropriate. If, on the other hand,
kcoll is overestimated, thenP(E,E� ) must include elas-
tic collisions [40]. The inclusion of elastic collisions
in the master equation causes no problems, except to
reduce the efficiency of certain numerical solutions.
However, the fundamental question remains: Is the
frequency of inelastic collisions the same as the Len-
nard-Jones collision frequency?

Lawrance and Knight [41] used single vibrational
level fluorescence and found that the observed total
cross sections for inelastic collisions are in quantitative
agreement with the Lennard-Jones collision frequency
for a moderately high density of vibrational states.
Classical trajectory calculations support this assump-
tion [42,43], but the argument is somewhat circular in
this case since the assumed potential energy functions
are often constructed from pairwise Lennard-Jonespo-
tentials. Very recently, Xue et al. [44] used quantum
beat spectroscopy to investigate a single vibrational
level of SO2 at high vibrational energy and found cross
sections substantiallygreater than predicted by the
Lennard-Jones interaction potential. However, in the
sparse density of states regime at low vibrational en-
ergies it is well known that the inelastic collision cross
section is small [45], and thus the total inelastic col-
lision rate constant is probably smaller thankLJ.

A rigorous upper limit tokcoll is provided by the
total collision rate constantkq, which is based on the
total quantum cross section. Because of concern about
the proper choice ofkcoll and normalization of the step-
size distribution (see later), MultiWell provides an op-
tion for utilizing the total collision rate constant, which
can be estimated from Lennard-Jones parameters [46].
Since it is expected that the fraction of inelastic col-
lisions is small at low energy (see earlier) and cannot
exceed unity at high energies, the following heu-
ristic function has been included as an option in
MultiWell:

k � k {1 � exp[�(E � E )/b]} (16)coll q q

whereEq andb are empirical parameters that regulate
the energy dependence ofkcoll. This option has been
made available in MultiWell, but it has not yet been
investigated thoroughly.

Collision Step-Size Distribution.Many step-size dis-
tribution models have been used in energy transfer
studies, and there is still considerable uncertainty
about the appropriate collision model and functional



240 BARKER

JCK(Wiley) LEFT INTERACTIVE

short
standard
long

form of P(E,E� ) [47,48]. Note thatPd(E,E� ) for de-
activating collisions is expressed in terms of an un-
normalized function,fd(E,E� ), and normalization fac-
tor N(E):

1
P (E,E� ) � f (E,E� ), for E� 	 E (17)d dN(E� )

To offer a wide selection, MultiWell includes ten dif-
ferent optional functional forms forfd(E,E� ), including
biexponential, Gaussian,Weibull distribution, etc. The
best information currently available suggests that a
generalized exponential function is most appropriate
for deactivation steps [48,49]:

f (E,E� )d

�E� � E
� exp � , for E� 	 E (18)� �
 

(E� )

where
(E) is a linear function of vibrational energy
and� is a parameter that ranges from�0.5 to�1.5.
The corresponding expression for activation collisions
is obtained from detailed balance Eq. (4). When the
parameter� is less than unity, the wings of the step-
size distribution have enhanced relative probabilities
that qualitatively resemble the biexponential distribu-
tion. When� � 1, Eq. (18) gives the venerable ex-
ponential model.

Normalization. When kcoll is the exact rate constant
for inelastic collisions, the step-size distribution func-
tion is normalized:

�

P(E,E� )dE � 1 (19)�
0

The normalization factor can be partitioned into sep-
arate terms for activating (Na(E)) and deactivating
(Nd(E)) collisions:

E

N(E) � f (E,E� )dE� d
0

�

� f (E,E� )dE � N (E) � N (E) (20)� a d a
E

wherefd(E,E’) was defined earlier. The unnormalized
function for activating collisions, (fa(E,E’)), is calcu-
lated with the aid of the detailed balance expression
Eq. (4). For convenience in the Monte Carlo selection
of step sizes, both the normalization factor,N(E), and
the probability of an activating collision, [Na(E)/N(E)],
are stored in double arrays for each well.

At low state densities,P(E,E�) exhibits random

fluctuations and some energy grains may contain no
states, while the function is quite smooth at high en-
ergies. Since it is desirable to be able to use arbitrary
functions for the collision step-size distribution, it is
not feasible to employ analytic expressions for the in-
tegrals in Eq. (20), which would allow much shorter
computer execution times. In fact, several approximate
analytical expressions were tested, but none was suf-
ficiently accurate in the sparse density of states regime.
For this reason, normalization is carried out numeri-
cally using the open-ended trapezoidal rule, which is
a particularly robust algorithm [32]. For low energies,
the energy step size is set equal to that used in the
lower energy portion of the double arrays (�Egrain). At
higher energies, the energy step size is set equal to a
fraction (typically 0.2) of the magnitude of a charac-
teristic energy transfer step:

�1d(ln f (E, E�))d�E � , for E� 	 E, (21a)d 
 
dE

�1d(ln f (E�, E))a�E � , for E� � E, (21b)a 
 
dE

wherefa(E,E� ) and fd(E,E� ) were defined earlier. For
the exponential model,�Ed is equal to
(E), which
varies with internal energy. In general, both the char-
acteristic energy length and the integration step size
vary with energy.

Monte Carlo Selection of Step Size.Two random
numbers are used for selecting the collision step size.
The first random number selects activating, or deac-
tivating, collisions by comparison to the up-transition
probability,Pup(E):

P (E) � N (E)/N(E), up-transition probabilityup a

(22)

0 � r � P (E), activating (23a)3 up

P (E) � r � 1, deactivating (23b)up 3

To select the step size, the second random number is
used with the cumulative distribution forP(E,E� ) to
find the final energyE, given initial energyE� [16]:

E1
r � f (x, E�)dx, activating (24a)�4 aN (E�) E�a

E1
r � f (x, E�)dx, deactivating (24b)�4 dN (E�) E�d
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The integrals are evaluated by the trapezoidal rule,
just as described in the preceding section, until the
equalities in Eq. (24) are satisfied. In the high energy
regime, this is accomplished by integrating step-by-
step until an integration step gives a value for the right-
hand side of Eq. (24) that is larger thanr4. Linear
interpolation is then used to find the value of final
energyE that satisfies the equality. In the low energy
regime, the integration is carried out step-by-step to
find the energy step that gives the best agreement be-
tween the LHS and right-hand side of Eq. (24). Note
that the normalization integrals in the low energy re-
gime are stored in the lower energy portion of the dou-
ble arrays. In the high-energy regime, the normaliza-
tion integrals are found by interpolation of values
stored in the high-energy portion of the double arrays.
Occasionally, the normalization integrals are overes-
timated due to imperfect interpolation, and thus the
equalities in Eq. (24) cannot be satisfied. In such a
case, the integral is evaluated step-by-step until the
additional partial sum is less than a selected relative
error (typically 10�6). This procedure yields an ex-
plicitly calculated value for the normalization integral.
The interpolated normalization integral is then re-
placed with this new value, and the energy step selec-
tion process is repeated. This procedure is somewhat
cumbersome and computationally intensive, but it was
found to produce numerically accurate thermal distri-
bution functions.

Other Processes

Additional processes can be incorporated into
MultiWell calculations by using the capability of read-
ing rate constants from external data files. For exam-
ple, Moriarity and Frenklach [50] have usedMultiWell
for assessing several complicated reaction paths that
may lead to aromatic ring formation in combustion
systems. They found that certain vibrationally excited
intermediates persist for relatively long periods and
thereforebimolecularreactions between energized ad-
ducts and gaseous partners may need to be included
in future calculations. In fact, such processescan be
included in MultiWell, if the gaseous partner is in ex-
cess, so that the pseudo-first-order approximation can
be invoked and a pseudo-first-order rate constant (kI)
can be defined. The pseudo-first-order rate constantkI

can be introduced as an irreversible unimolecular re-
action and read from a data file. This is particularly
simple to implement if it can be assumed thatkI is
independent of vibrational energy. The vibrational en-
ergy dependence of the bimolecular reaction rate con-
stant in principle can be included by using microca-
nonical transition state theory [51–54].

Several processes have been neglected in the

present version of MultiWell. For example, sponta-
neous infrared emission [55] by the vibrationally ex-
cited species, which is particularly important at low
pressure [56], has not been included. Similarly, stim-
ulated emission, which is important in laser-induced
chemical reactions [57,58], has also been neglected.
Future versions of MultiWell may include these pro-
cesses, especially if the kinetics community expresses
an interest in them.

INITIAL CONDITIONS

At the start of each stochastic trial, initial conditions
must be specified. MultiWell selects the initial energy
via Monte Carlo selection techniques that are based on
the cumulative distribution function corresponding to
a selected physical process. It is assumed that the re-
actant is at infinite dilution in a heat bath and thus there
are no temperature changes due to reaction exotherm-
icity or energy transfer. For most laboratory experi-
ments, this is an acceptable approximation.

Monte Carlo Selection of Initial Energies

Monte Carlo selection of the initial internal energy is
carried out by equating random numberr5 to the cu-
mulative distribution functionY0(E) corresponding to
a given initial energy density distributiony0(E� ):

E

r � Y (E) � y (E�)dE� (25)�5 0 0
0

whereE� is the integration variable. In MultiWell,
Y0(E) is found by trapezoidal integration, and the val-
ues are stored as a function of initial energy in a linear
array. For the default array dimensions, 500 array el-
ements are used to cover the relevant energy range.
For a thermal distribution (see later), the relevant en-
ergy range is assumed to be�20kBT.TheMonte Carlo
selection is carried out by interpolating in the stored
array to find the value ofE at whichY0(E) � r5. In-
terpolation in this fashion is much more computation-
ally efficient than calculating the integral in Eq. (25)
for each stochastic trial.

Optional Initial Energy Density
Distributions

The initial energy density distributions that are in-
cluded as options in MultiWell are described here. In
addition to these choices, there is also a provision for
providing a user-defined double array ofY0(E) values
and for a delta function (which does not requireMonte
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Carlo selection). Examples of user-defined functions
include prior distributions [29,59] and energy distri-
butions that are the result of bond fission [60].

Thermal Activation. In an ordinary thermal unimo-
lecular reaction system that takes place at infinite di-
lution, the translational and vibrational temperatures
are equal and do not change during reaction (Ttrans�
Tvib). For shock wave simulations, it is assumed that
Ttrans changed instantaneously when the shock oc-
curred and therefore is elevated att � 0 but Tvib re-
mains at the temperature that described the thermal
system prior to the shock. Subsequent vibrational en-
ergy transfer collisions cause the internal energy to
increase. The only difference between shock tube and
isothermal simulations is that in the former, the two
temperatures are unequal. In both cases, the initial in-
ternal energy distribution function is a Boltzmann dis-
tribution characterized byTvib. The probability of the
initial energyE falling in the range betweenE and
E � dE is given by the probability density function

�(E)exp(�E/k T )dEB vib(therm)y (E)dE �0 �

�(E�)exp(�E�/k T )dE�� B vib
0

(26)

Single Photon Photoactivation.The energy distri-
bution produced by absorption of a single photon is
assumed to be described by the thermal population at
the ambient vibrational temperature added to the en-
ergy of the photon (h
). Hence, the probability density
function for photoactivation is given by Eq. (26), and
the selected thermal energy is then increased byh
.

Chemical Activation and Recombination Reac-
tions. Chemical activation is the process by which a
single vibrationally excited species (C) is produced
from the bimolecular reaction of two precursor species
(A and B):

A � B : C(E) (27)

whereE is the vibrational energy. The chemical acti-
vation distribution function is obtained from the re-
verse reaction by using detailed balance [14,15,17,24].
The reverse reaction is the unimolecular decomposi-
tion reaction with rate constantki(E) that produces the
product set A� B. The indexi specifies the particular
unimolecular reaction channel. The resulting density
function is a thermal distribution weighted byki(E).
The probability density function and corresponding
Monte Carlo selection expression are as follows:

(ca,i)y (E)dE0

k (E)�(E)exp(�E/k T )dEi B vib� ,
�

k (E�)�(E�)exp(�E�/k T )dE�� i B vib
E0

for E � E0 (28)

E�
(ca,i)r � y (E)dE (29)�5 0

E0

where the lower limits in Eqs. (28) and (29) are equal
toE0, the unimolecular reaction threshold energy. The
trapezoidal rule is used in the selection procedure, as
described earlier for thermal activation.

A recombination reaction produces a recombina-
tion product, which is a chemically activated species.
The chemically activated recombination product C(E)
can react via the reverse of reaction (27), and possibly
by other unimolecular pathways, in competition with
collisional energy transfer. Several quantities may be
of interest, including branching ratios, net rates of re-
action to produce specific final products, and so on. In
all cases, the first step is to simulate the reactions of
the chemically activated recombination product C(E)
under the desired conditions of temperature and pres-
sure. The results of the simulation can be used in
various ways to find the quantities of interest (see
Article II).

The total rate constant for the recombination reac-
tion at the high-pressure limit is obtained fromdetailed
balance by using the equilibrium constantK(Ttrans) at
translational temperatureTtrans:

k � k /K(T ) (30)rec,� uni,� trans

wherekrec,� andkuni,� are the high-pressure-limiting re-
combination and unimolecular decomposition rate
constants, respectively; the latter of these is calculated
and reported in the MultiWell standard output. The
equilibrium constantK(Ttrans) is calculated using the
program Thermo (part of the MultiWell computer pro-
gram suite), which employs standard statistical me-
chanics formulas [61,62] for the partition functions of
the reactants A and B. For the partition function of C,
Thermo utilizes Eq. (13) and the same densities of
states employed by MultiWell to calculate the partition
function given by Eq. (13).

To calculate the overall rate constant for producing
the ith product, the relative population (fraction)fi of
that species at the end of the simulation is multiplied
by krec,�:

k � f k � f k /K(T ) (31)i rec,� i uni,� trans
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INPUT

Major Options

Densities of States:�(E). Densities of states for the
wells can be provided in either of two ways. They can
be calculated internally according to the Whitten-Ra-
binovitch approximation [63,64], or they can be pro-
vided in an external file (in the form of a double array).
The second approach is preferred, because the sums
and densities can be calculated externally by an exact-
count algorithm, which is much more accurate than
the Whitten-Rabinovitch approximation. DenSum is
provided as a tool to calculate sums and densities of
states according to the Whitten-Rabinovitch approxi-
mation or according to the Stein-Rabinovitch method
[19] of exact counts. Molecular assignments for use in
the current version of DenSum can be expressed in
any combination of separable harmonic oscillators,
Morse oscillators, and free rotors. For nonseparable
degrees of freedom, other approaches will be needed
(see [65] for an example). The moments of inertia
needed for calculating rotational constants are evalu-
ated with the program MomInert. This code requires
Cartesian coordinates for the molecular structure.
Such structures can be calculated with good accuracy
by using quantum chemistry programs.

Specific Unimolecular Rate Constants: k(E).
Specific rate constants are needed for each reaction.
There are three ways to provide rate constants: (a)
They may be calculated internally via the inverse La-
place transform method, (b) the sums of states can be
provided in an external file, and (c) thek(E) values can
be provided in an external file. Data provided in an
external file is in the form of a double array with en-
ergy origin at the reaction threshold energy. The dou-
ble array allows high energy resolution near the re-
action threshold where it is most important. For most
purposes, it is most efficient to use DenSum, which
calculates sums of states (G‡(E � E0)) and generates
an external file suitable for input into MultiWell. How-
ever, Densum is only suitable for fixed transition states
with separable degrees of freedom and therefore other
methods must be used to calculateG‡(E � E0) or
k(E � E0) for nonseparable and flexible transition
states. If the reaction is a reversible isomerization re-
action, MultiWell uses the same external data file to
calculatek(E � E0) for both forward and reverse re-
actions. By using the same external file for both for-
ward and reverse reactions, the reversible isomeriza-
tion rates are internally self-consistent.

Properties of Wells and Transition States

Energies (e.g.,�Hf� at 0 K) are required for all wells
and transition states in order to establish the relative
energies of isomers and reaction thresholds. Moments
of inertia are needed for the inactive degenerate two-
dimensional external rotation. Energy transfer param-
eters are needed for each well, and MultiWell does not
require that they be the same for all wells. One would
expect the energy transfer parameters for a cyclic spe-
cies to differ from those of a linear isomer. However,
to the best of my knowledge the energy transfer pa-
rameters are not known for more than one isomer in
any system. Until additional information becomes
available, it is pragmatic to assume that all isomers
have the same energy transfer parameters.

OUTPUT

MultiWell generates several output files that summa-
rize the input data and the calculation results.

MultiWell.OUT: This general output file summa-
rizes the input parameters, thermochemistry, high-
pressure-limit rate constants for each reaction,
time-dependent average fractional populations
(with standard deviations from Eq. (11)), and av-
erage vibrational energies. The time-dependent
quantities are the instantaneous (snapshot) values
averaged overNtrials stochastic trials; they are not
averaged over the time interval, as was done in pre-
vious master equation codes from this laboratory
[16,66,67].

MultiWell.RATE: This file stores the time-depen-
dent output of average unimolecular rate “con-
stants” (which vary with time in non-steady-state
systems) for every reaction pathway:

Ntrials1
�k (t)	 � k (E (t)) (32)j � j iN i�1trials

wherej designates the reaction channel. Many trials
are needed to accumulate good statistics. To im-
prove statistics, the binned results correspond to the
number of visits to the bin (which can be many
times larger thanNtrials) and thus are averaged over
the time duration of the bin. Note that that this av-
eraging method differs from the snapshot method
described earlier, where the number of snapshots is
equal toNtrials. In an equilibrium thermal system,�k�
is independent of time and equal to the average un-
imolecular rate constantkuni(T). In nonequilibrium
systems,�k(t)� varies with time and relaxes to a con-
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stant value as the system itself undergoes relax-
ation. As relaxation takes place, some reactions
achieve steady state, which is apparent as�k(t)� ap-
proaches a constant value. Thus, this output file is
useful for several purposes, including monitoring
relaxation and the approach to steady state (see Ar-
ticle II).

MultiWell.FLUX: This file stores the average time-
dependent chemical “flow” along each reaction
path:

�F(t)� � f �k(t)� (33)react

wherefreactis the time-dependent average fractional
concentration of the reactant species and�k(t)� is
the average unimolecular rate constant described
earlier. When two reactions come into pseudoequi-
librium with one another, their fluxes are equal.
Thus, this output file is useful for several purposes,
including monitoring the evolution toward equilib-
rium and diagnosing pseudoequilibriumconditions.

MultiWell.DIST: This file stores time-dependent
vibrational distributions within each well. Only the
nonzero array elements are tabulated. Many trials
are needed to accumulate good statistics, and thus
the binned results correspond to the number of vis-
its to the bin (which can be many times larger than
Ntrials) and are averaged over the time bin. To limit
the size of this file, each (default) time bin is set at
ten times that of the time bins used for the other
time-dependent output.

MultiWell.ARRAY: This file tabulates all energy-
dependent input data, including densities of states,
specific rate constants for every reaction, collision
up-transition probabilities and normalization fac-
tors, and initial energy distributions.

CONCLUDING REMARKS

MultiWell calculates time-dependent concentrations,
yields, vibrational distributions, and rate constants as
functions of temperature and pressure for unimolecu-
lar reaction systems that consist of multiple stable spe-
cies and multiple reaction channels interconnecting
them. Users may supply unimolecular reaction rates,
sums of states and densities of states, or optionally use
the inverse Laplace transform method. For weak col-
lision effects, users can select different collision mod-
els for down-steps, including exponential, biexponen-
tial, generalized exponential, and so on, and
user-defined functions.

The code is intended to be relatively easy to use. It
is designed so that even the most complicated uni-
molecular reaction systems can be handled via the data
file without restructuring or recompiling the code.

MultiWell is most suitable for time-dependent non-
equilibrium systems. The real time needed for a cal-
culation depends mostly upon the number of collisions
during a simulated time period and on the number of
stochastic trials needed to achieve the desired preci-
sion. For slow reaction rates and precise yields of mi-
nor reaction products, the code will require consider-
able computer time, but it will produce results. For
long calculation runs, we often just let the simulation
run overnight or over a weekend.
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