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ABSTRACT

This paper presents a sorting type heuristic for the single machine total (or average) tardiness
sequencing problem. The algorithm has one to two per cent errors, on average, for 46 test prob-
lems. The algorithm logic is designed to fit as a module in a hierarchical system for larger, more
complicated, due date driven scheduling systems. A variation is presented with errors less than

one percent at the expense of the sorting structure.
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1. Introduction

The single machine sequencing problem to minimize total tardiness (or equivalently, average
tardiness) involves a set of tasks each having a known processing time, p;, and due date, d;. The
tardiness of job j is defined as T; = max(0, C; — d;), where C; is the completion time assigned
to job 7. This problem is important in some large scheduling problems (Bean, Birge, Mittenthal
and Noon [1984]). Though actual objectives in such problems are much more complicated, total

tardiness is sometimes used as a surrogate.

It is not known whether or not the single machine problem to minimize total tardiness is NP-
complete. A pseudo-polynomial algorithm has been presented in Lawler [1977]. Other effective
approaches to optimally solving this problem include Schrage and Baker [1978], and Fisher [1976].
Heuristic approaches to the total tardiness problem include Wilkerson-Irwin [1971] and Montagne
(1969].

The potential impact of the single machine total tardiness problem lies in its use as a module
within large hierarchical syvstems. To be useful in such a hierarchical system, it is desirable for the
single machine logic to schedule jobs singly and forward in time. For efficiency it is desirable to
schedule in a greedy manner, using only local information. These so called dispatching rules are

discussed in Baker and Kanet 1983! and Baker [1984].
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This paper presents heuristics for the single machine total tardiness problem designed for this
use. The logic of the Basic Algorithm is equivalent to that in Baker and Bertrand [1982]. This
paper goes beyond that by testing the algorithm against optimal solutions, presenting a modification
with better accuracy, and giving theoretical justification for the performance. Section 2 presents
the Basic Algorithm and the Augmented Algorithm. Section 3 presents justification and motivation

for the algorithms. Section 4 contains computational results.

2. The Algorithms

These algorithms contain much of the intelligence of both Emmons [1969] global dominance
criteria and the local interchange from Wilkerson-Irwin [1971]. It is this combination that results

in the efficiency and efficacy described in Section 4. Following is a statement of the algorithms.

Basic Algorithm
Step 0 : Set 7 = 0. Go to Step 1.
Step 1 : For each unscheduled job calculate z; = max(p;,d; — 7). Let 7~ = arg min; z;. Go to
Step 2.
Step 2 : Put ;7 next in the sequence. Update 7 to 7 + p;~. If jobs remain unscheduled, then
go to Step 1. Otherwise, stop.
This is a sorting type algorithm which places individual jobs by minimizing the simple statistic
z;. It is not a true sorting algorithm since the comparison of two jobs requires knowledge of
the current fime, 7. This algorithm does, however, meet the desired characteristics of scheduling

forward in time with local information.

As discussed in Section 4, this algorithm performs surprisingly well on a large set of test
problems taken from the literature. However, a slight modification improves its accuracy with

little cost in computation. The algorithm with this modification is:

Augmented Algorithm
Step 0 : and Step 1: are the same as in the Basic Algorithm.
Step 2 : Put ;7 next in the sequence. Update 7 to 7 - p;-. Go to Step 3.

Step 8 : For each job currently scheduled, construct a trial schedule with that job removed
from its current position and placed last. If the best of such trial schedules has lower
total tardiness than the current schedule, consider it the current schedule. If jobs remain

unscheduled, then go to Step 1. Otherwise, stop.

The augmentation of this algorithm with Step 3 allows an incorrectly placed job to be freed

to a later position in the schedule. This algorithm is still very fast. but it loses the forward,

)
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local information chaxjacteristics of the Basic Algorithm. The accuracy of this algorithm could be

improved further by checking the local optimality from Lemma 1 after Step 3.

3. Justification of the Algorithms

As seen in Section 4, these algorithms deliver nearly optimal solutions on the problems tested.
There is theoretical justification for this high degree of accuracy.

The Basic Algorithm contains the local intelligence used by the Wilkerson-Irwin Algorithm.
We know that, for two adjacent jobs j and k, we will locally lower tardiness if they are in earliest due
date order unless 7 +max(p;, px) > max(d;, di), in which case they should be in shortest processing
* time order. This pairwise interchange argument is not guaranteed to lead to an optimal sequence
because the comparison of 7 and k is local.
Lemma 1: At any time, r > 0, max(p;j, d; — 7) < max(pk, d¢ — 7) if and only if j may precede &

according to this interchange rule. '
Proof: Omitted. (consists of several obvious cases)

The Basic Algorithm goes further in that it performs global comparisons. Since the value z
contains data pertaining only to job j, all unscheduled jobs can be considered simultaneously at
each placement. As a corollary of Emmons [1969] classic set of dominance properties for the total

tardiness problem we can see that these global comparisons are commonly optimal.

‘Theorem 2: (Emmons) Let §; be the set of jobs known to precede job j in some optimal sequence.
Let o; be the set of jobs known to succeed job j in some optimal sequence. Finally, let a; be
the set of jobs not represented in a;. If any of the properties a), b) or c) below is satisfied for

two jobs 7 and k, then j precedes k in some optimal sequence.
a) p;<pr 4 < max(dy, pi+ Z;‘eﬁk pi)

b) pi>pr, &< dy, dp+pe> Z’E"‘;’ Pi

c) dy2 Zn’c’:a; Pi.

At time zero, 7 = 0, the comparison rule in Step 1 of the algorithms simplifies to

j° = argmin max(p;.d;).

J

In choosing 7 we hope that for all ¥ # 5~ that j° precedes k in some optimal sequence. By
construction we know that max(p;-, d;-) < max(pg, di). If this fact were sufficient to prove that
7~ precedes k then. bv induction. we could prove that the Basic Algorithm is in fact optimal (see
Emmons {1969}). This is, of course, not the case. However, it is instructive to proceed inbthis
manner. Pointing out the valid parts of such a proof and those that break down suggests a reason

for the algorithms’ accuracy and potential directions for bounding its error.
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The fact that max(p;-, d;-) < max(p, dk) leads to five possible cases. In three of them we can

prove that the decision is in fact optimal. The cases are

p—

i~ < py- < pi

3]

d- < pj~ < dy,  pr < pj-

> W

pi- < d < dy,  pi- < pk

)
)
) P < di- <
)
5)

pi < &= < dy, P < Py

Corollary 3: In cases 1, 3, and 4 above it is optimal to place j~ before k.

Proof: A corollary of Theorem 2 part a).m

Equally interesting is the analysis of cases 2 and 5. In these cases we do not know that in
fact the choice to place ;™ before k is in error. We simply do not have enough information. From
Theorem 2 parts b) or ¢), if Eie o Pi 1s small enough, this choice will be optimal as well. Knowledge
of this value requires knowledge éf the future schedule and global information. The computational

results show how frequently decisions were made in the known optimal cases and the unknown

cases, 2 and 5.

4. Analysis of Computation

4.1 Complexity

Since the Basic Algorithm is not a pure sorting algorithm it cannot be solved by an efficient
(nln n) sorting routine. At some stage of the Basic Algorithm let there be 7 unscheduled jobs. Then
to carry out the next placement we must make ¢ subtractions and ¢ comparisons to calculate the z;,

then another ¢— 1 comparisons to determine j~. Hence the computation for the entire algorithm is -

n

> (3i-1) = 0(n?),

=1
where n is the number of jobs in the problem.

The Augmented Algorithm requires the additional Step 3. The total computation becomes

n

Y 3 - 1= 0(n).

=1

4.2 Computational Results
Computational experiments were carried out on the University of Michigan Amdahl 5860 com-

puter under the MTS operating svstem. All CPU times are given in seconds and exclude data

input.



Test problems were taken from Baker [1974] and Fisher [1976]. In all, 46 problems were run
ranging from 8 to 50 jobs. Table 1 shows the averages of runs in four problem sets using the Basic
Algorithm. The same information for the Augmented Algorithm is in Table 2. The first set of
problems is comprised of the 16 problems in Baker [1974]. Sets two, three, and four are subsets of
the 20, 30, and 50 job problems in Fisher [1976]. The column labeled “% 1,3,4” in Table 1 is the
fraction of decisions made under the optimal cases in Corollary 3. The column labeled “MEAN

ERROR?” displays the arithmetic average of

heuristic value ~ optimal value

optimal value

for the problems in that set. In Table 2 the column “# OPT” presents how many of the problems
in that set were solved optimally. These results are the same as for the Basic Algorithm and, hence,

are not included in Table 1.

6. Summary and Conclusions

This paper presents low order polynomial algorithms for the basic single machine sequencing
problem with objective to minimize total tardiness. The Basic Algorithm has the characteristics
that jobs are scheduled forward in time using only local information. Hence, the logic of the
algorithm may be useful as part of a hierarchical system to solve due date driven scheduling
problems. The algorithms have negligible computation times for problems up to 50 jobs. The error
is on the order of one to two per cent.

Of the two algorithms presented here, the Augmented Algorithm has better accuracy for the
total tardiness problem. This does not indicate, however, that it should be the algorithm of choice
in an application situation. As mentioned earlier, the objective to minimize total tardiness is usually
a surrogate for the actual, more complex, objective. Hence, we should look generally at the quality
of solutions generated by the algorithms. In particular we will look at the distribution of tardiness

in the solutions.

Table 3 compares the maximum tardiness and mean tardiness over tardy jobs for the solutions
from the Basic Algorithm, the Augmented Algorithm and the optimal solution. For each problem
the secondary values for the Basic Algorithm were considered the reference points. The results
from the Augmented Algorithm and the optimal solution were normalizea by these values and the
averages reported.

Keeping in mind that the Basic Algorithm displays average error in total tardiness of under two
per cent. it appears to have a distinct advantage in the other measures over both the Augmented
Algorithm and any optimal algorithm. In many cases, going too far towards the total tardiness

optimal produced schedules with particular jobs that were very tardy. Overall, our experience
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with practitioners indicates that the Basic Algorithm delivers more usable solutions than either the
Augmented Algorithm or any optimal algorithm.

The structure of this algorithm is simple enough that obvious changes could be made to handle
ready times and sequence dependent set-ups. Some extensions are discussed in Baker and Bertrand
(1982]. Job shop adaptations are in Baker and Kanet [1983] and Baker [1984]. These and other

extensions are currently being investigated.
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TABLE 1: Computational Results for the Basic Algorithm
MEAN MAX MEAN MAX

SOURCE # JOBS # PROBS CPU CPU ERROR ERROR % 1,34
Baker 8 16 .002 .002 .004 053 68
Fisher 20 13 .002 .002 022 118 73
Fisher 30 10 .004 004 012 .060 69
Fisher 50 7 .008 .009 .025 .055 78

TABLE 2: Computational Results for the Augmented Algorithm
MEAN MAX MEAN MAX

SOURCE # JOBS # PROBS # OPT CPU CPU ERROR ERROR
Baker 8 16 14 002 .002 004 049
Fisher 20 13 7 007 ©.008 010 066
Fisher 30 10 7 016 020 .006 024
Fisher 50 7 1 066 072 .009 017

TABLE 3: Secondary Objective Considerations ‘
BASIC BASIC AUG. AUG. OPT. OPT.

4 JOBS Trmax T30 Trmax Tr0 Trnax Tr.50
8 1.000 1.000 1.012 1.000 1.041 1.058
20 1.000 1.000 1.162 1.142 1.195 1.140
30 1.000 1.000 1.000 1.075 1.021 1.065
50 1.000 1.000 1.057 1.178 1.040 1.204



