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Summary: To enhance preventative and therapeutic strategies for metabolic bone diseases and bone fragility 
disordcrs. we began to explore the physical properties of bone tissue at the cellular level. Proximal femurs 
were harvested from 27 cadavera (16 male and 11 female) for in vitro measurement of  the mechanical prop- 
erties. We measured the variations in lamellar-level elastic modulus and hardness in human bone as a function 
of age and gender to identify microstructural properties rcsponsible for age and gender-related reductions in 
the mechanical intcgrity. The lateral femoral necks were examined, and age. gender, height, body mass. and 
body mass index wcre not found to correlate with lamellar-level elastic modulus or hardness. This result was 
consistent for osteonal, interstitial, and trabecular tissue. These data suggest that increased bone inass main- 
tenance, known to occur in heavier individuals, is not accompanied by increases in the lamellar-level elastic 
modulus or hardness. The independcnce of elastic modulus and hardness from age and gender suggests that 
age and gender-related decreases in mechanical integrity do not involve alterations in elastic modulus or hard- 
ness of the extracellular matrix. Lamellar-level ultimate. fatigue, and fracture toughness properties should also 
be investigated. Other factors, such as tissue mass and organization, may also contribute to age and gender- 
related decreases in the mechanical integrity 

To enhance preventative and therapeutic strategies 
for metabolic bone diseases and bone €ragilily dis- 
orders. we began to explore the mechanical proper- 
ties of bone at the cellular level. Quantifying the 
properties of bone extracellular matrix is essential to 
defining the ctiology and pathogenesis of several 
skeletal maladies, such as osteoporosis, osteomalacia. 
osteogenesis imperfecta. and age or gender-related 
increases in bone fragility. Numerous investigators 
have explored the influence of macroscopic bone ar- 
chitecture and material properties on failure; how- 
ever, they have been unable to identify specific 
mechanisms that lead to increases in age and gender- 
related fragility (9,13,22). 

Beginning with large volumes of bone tissue, many 
researchers have characterized age-related reductions 
in trabecular (31,39,43,44) and cortical (1 0,16,19,25, 
30,32,41-43) bone material properties and found that 
more microscopic properties, such as mineral content, 
failed to consistently explain declining ultimate prop- 
erties of cortical bone (30) or trabecular bone strength 
(44) with age. These results suggest that other factors, 
such as trabecular architecture. lamellar-level me- 
chanical properties, or ultrastructural organization. 
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may also play an important role in age-related de- 
creases in whole-bone mechanical properties. 

Superimposed on these lexicons of age-dependent 
measurements are substantial data detailing gender 
variations in mechanical, architectural, and matrix 
characteristics (7,8,10,20,30,32,33,38,44). For exam- 
ple, cortical bone porosity (30.33) and microcrack 
density (38) have been demonstrated to increase 
more rapidly in women with age. These data suggest 
that age-dependent alterations in lamellar-level me- 
chanical properties may be distinct in men and 
women. 

Recently, nanoindentation has been used to mea- 
sure lamellar-level bone elastic properties (24,28,35, 
36,47). To our knowledge, the lamellar-level elastic 
properties of fresh human bone as a function of age 
and gender have not been examined. We hypothe- 
sized that the constitutive properties of bone matrix 
at the lamellar level may decline with age and differ 
between genders. The purpose of our study was to 
measure variations in the lamellar-level elastic modu- 
lus in human bone as a function of age and gender to 
identify microstructural properties that may be re- 
sponsible for age and gender-related reductions in 
mechanical integrity. 

MATERIALS AND METHODS 
All of the specimens used in the present study were obtained 

through the University of Michigan Anatomical Donations Pro- 
gram. Cadavera were fresh frozen and screened for arthroplasty. 
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FIG. 1. Schematic diagram ol the NanoIndenter 11 and the custom irrigation system 

osteosarcoma. paralysis, and metabolic bone disorders. The bone coniinodate nonlinear unloading behavior and incorporated 
specimens were obtained from 16 male cadavera, 40-85 years old King's modifications (27) for indenters of diffcrcnt cross sections. 
at  death, and 11 lemale cadavcra, 27-93 years old at death. Given The initial unloading stiffness. S. i s  related to thc clastic modulus 
the prevalence of fragility fracturcs of the proximal femur, Cemo- as follows: -~ 
ral neck tissue was selectcd as an area with properties that might 
be of clinical interest (13,29). 

Two separate comparisons were made. Agc and gender effects 
were evaluated in the complete sample o f  27 cadavcra and in an 
age-matched subset of 19 cadavera (11 male and eight fcmale 
[postmenopausal]) at least 60 years old. 

The femoral neck was scctioned with an irrigaled diamond 
band saw (Exakt Instruments, Oklahoma City, OK. 1J.S.A.) trans- 
verse to its anatomical axis. bcginning proximal to the greater tro- 
chanter. Samples, 1 cm2 cach. were removed from thc lateral 
portion of the section with a scalpel. The samples contained a tra- 
bccular interior bordered on one edge by a compact bonc cortcx. 

All of the sections werc 3 mm thick, less the lhickness of the 
blade (200 pm). The tissuc samples were embedded in a mildly 
exothermic epoxy (PL-I; Photoclastic Division, Measurcmcnts 
Group, Raleigh. NC, U.S.A.), secured to polycarbonate platens. 
and rehydrated. The epoxy filled pores between trabeculae but 
did not penetrate lamellar tissue. The specimens werc surface- 
polishcd with progressive grades of S ic  paper, h i shcd  with a 
0.25-pm diamond slurry, and washed in an ultrasonic water bath 
for 15 minutes. 

The NanoIndenter I1 syskm (Nano Instruments. Oak Ridgc, 
TN, U.S.A.) was used to measure the elastic modulus of bone la- 
mellae. Nanoindentatioii is similar to traditional hardness-testing 
but incorporates depth-sensing technology to measure elastic 
modulus. In nanoindenlation. a diamond probe is prcssed into a 
tesl matcrial and retracted, leaving a permanenl impression. Load 
and depth are recorded with 0.3-pN and 0.16-nm resolutions, re- 
spectively. Modifying the Sneddon solution (40) to indentation of 
an elastic half-space with a rigid. axisymmetric indenter, Doerncr 
and Nix (18) modeled nanoindentation as a deformable cylinder 
indenting an elastic half-space. Thcy related the initial unloading 
stiffness to clastic modulus under the following assumptions: the 
Poisson ratio is known, the material is isotropically elastic with 
rate-independent plasticity, and contact is maintained during iiii- 
tial unloading. Olivcr and Pharr (34) rcfined this approach to ac- 

where P is thc load. h is the depth, and dP/& i s  the initial slope 
during unloading of the force-displacement curve. /i is an empirical 
factor to distinguish different indentor shapes. and A, is the pro- 
jected area of contact. E, is the reduced modulus, and it accounts 
for the finite sliClness of the indenter: 

1/E, = (1 - vhZ)/Ei, + (1 ~ v,')/E, (Eq. 2). 
Eh and Y~ are the elastic modulus and the Poisson ratio for bone. 

FIG. 2. A 500-nni-deep indentation adjacent to an ostcocyte cell 
body (lacuna) in interstitial tissue. The thickness of each lamella is 
indicated by a double-headcd arrow. Scale bar = 5 pni, 
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I I I I I I I male and nine femalc) with availablc weight and height data was 
used for the hcight and body mass indcx study. 

- A '  AA % Hardness was transformed to logarithms before analysis be- 
cause the distribution of hardness was skewed to the right. For AA 

0 A 0 -  each cadaver, the mean values for elastic modulus and trans- 
A ~ formed hardness were calculated for each microstructure. For 

each microstructure, these values were then used as the obser- 
vations in a general linear regression model. We first fit elastic 
modulus and transformed hardness for all of the cadavera to a 
model containing age, agez, and gender. We then restricted the 
data to only cadavera that were at  least 60 years old at death. 
Next, we fit the data for all of the cadavera using a model con- 

mass index and height. To test whether elastic modulus and hard- 
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RESULTS 

ness differ between microstructures, we fit the data for all three 

rcspcctivcly. E, and v, are the same quantities for the indenter. The 
projcctcd arca of contact is determined by the contact depth and is 
calculated on the basis of thc arca-to-depth function of the in- 
denter. Given that indcntcr gcometry can vary substantially from 
manufacturer to manufacturcr, thc cross-sectional area as a func- 
tion of depth is derived empirically for each indenter. The ex- 
perimental model for nanoindeiitatioii and thc calibration of the 
indenter shape have been carefully validated for aluminum, quartz, 
sapphire, fused s k a ,  soda lime glass, and tungstcn (34). 

Hardness. H .  is defined as the maximum force, P,,,,,, dividcd by 
the projected area of contact and may also tic calculated from the 
load-displacement data and the area-to-depth function: 

H = P,,,/A, (Eq. 3) .  

The NanoJndenter I1 is equipped with a pyramidal Berkovich 
diamond indenter, a microscope, and a coordinate tablc, all of 
which are located on a vibration-isolation platform within a pro- 
tective cabinet. Load and depth are controllcd with an inductive 
load-cell and a capacitive displacement gauge, respectively. Cus- 
tom irrigation was designed to maintain tissue moisture with an 
antibacterial solution of 0.5 pgiml gentamicin (Life Technologies, 
Grand Island, NY, U.S.A.) (Fig. 1). 

TJsing a light microscope, wc selected locations for the iii- 
dentations on the basis of thc histological morphology of the mi- 
crostructures. Femoral neck tissuc was classified into osteonal. 
intcrstitial, and trabecular microstructures. Within a single speci- 
men. nine regions of each microstructurc present were tested. At 
each region of interest, a 30-pm2 array of four indentations was 
madc (for a total of 108 indentations per spccimen). Indentation 
was pcrformed at 10 nmisec, to a maximum dcpth of 500 nm. Test- 
ing parameters were selected to be consistent with those of a 
previous study that yielded reproducible data (47). As described 
earlier, thc lamellar-level elastic modulus was then calculated 
from thc unloading segment of the force-displacement curve as- 
suining a Poisson ratio of 0.3. Recent 1-esults indicate thal trabec- 
ular tissuc may have an isotropic Poisson ratio of 0.25 (46) and 
that hone elastic modulus varies only within lo%, between Pois- 
son ratios of 0.2 and 0.4. when measured with nanoindentation 
(47). Ixnellar tissue hardness was also determined. 

We subsequently examincd the ability of body mass, hcight, 
and body mass index to predict lamellar-level elastic modulus and 
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Of 2.91 6 possible indentations, 175 were excluded 
because of equipment failure or fluid saturating the 
testing surface. An additional 53 measurements were 
not included because the data werc recorded at 
depths more than 10% away from the 500-nm target 
depth (Fig. 2). Lastly, 24 statistical outliers were elim- 
inated because they differed by more than 20% from 
the next closest datum point. Thus, the final data set 
consisted of 2,664 observations. 

For both elastic modulus and transformed hard- 
ness, the models fitted with use of age and gender 
wcre not significant for either the entire sample or the 
subset of cadavera at least 60 years old. The models 
fitted with use of weight and gender, height, or body 
mass index were not significant either. Correlations 
were absent for all of the microstructures. For elastic 
modulus, the variance of regions within a specimen 
was approximately four times larger than the variance 
of individual observations. The variance of donors ex- 
ceeded that of regions within a sample by a similar 
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Microstructure 
FIG. 5. Graph showing the microstructural drlferences in elastic 
modulus 

margin. The hardness variances differed by similar 
factors. The lamellar-level properties of trabecular tis- 
sue were found to be independent of age and gender 
(Fig. 3). The elastic modulus and body mass index 
were also independent (Fig. 4). The data do not indi- 
cate changes in lamellar-level elastic modulus or hard- 
ness as a function of age. gender, weight, height. or 
body mass index. 

In contrast, the lamellar-level elastic modulus and 
hardness of bone did depend on microstructure. Both 
parameters differed significantly among all micro- 
structures (p < 0.05 for all comparisons) (Fig. 5) .  Inter- 
stitial tissue was determined to have a greater elastic 
modulus (16.13 t- 2.2 GPa [mean t SD]) and hard- 
ness (0.55 t 0.07 GPa) than osteonal tissue (15.11 & 
2.2 and 0.51 f 0.10 GPa, respectively), which had 
greater properties still than trabecular tissue (11.1 0 2 
2.4 and 0.44 2 0.14 GPa, respectively). 

DISCUSSION 
The most striking results from the present study are 

that lamellar-level elastic modulus and hardness are 
independent of age and gender in the lateral femoral 
neck. Because no correlation was found, we sought 
additional parameters to explain the variations in 
lamellar mechanical properties between cadavera. 
Bone mass has been shown to correlate with body 
weight, percentage of ideal body weight. and body 
mass index (17), indicating a possible role €or func- 
tional strains in bone mass regulation (37). Our data 
demonstrate that neither of these body mass or height 
factors is an effective predictor of lamellar elastic 
modulus or hardness. Furthermore, the results of the 
current study suggest that increased bone mass main- 
tenance, known to occur in heavier individuals (17), is 
not accompanied by increases in the elastic modulus 
or hardness of the extracellular matrix. 

More than three decades ago, Weaver published an 
extensive study detailing the microhardness of moist 

human bone lamellae and its variation with age and 
gender (43). He tested interstitial tissue of the fibula 
on surfaces normal to the anatomical axis and found 
bone microhardness to be independent of age and 
gender in skeletally mature adults. Our findings con- 
firm those of Weaver and extend them to osteonal and 
trabecular microstructures, elastic modulus, and, most 
importantly, to a region with a higher incidence of 
fracture. Interestingly. Weaver also found very little 
intersubject variation, which is in marked contrast to 
the current results. This discrepancy may result from 
Weaver's use of the maximum triad of values selected 
from 10 total observations on each tissue specimen. 

On the basis of backscatter electron imaging, Crofts 
et al. (14) found older cadavera (60-71 years old at 
death) to have a lower equivalent ash content in the 
femoral neck than younger cadavera (17-35 years old 
at death). Alternatively, Aerssenh et al. (1 )  found 
calcium content in the femoral neck to increase with 
age. Neither finding supports the independence of 
lamellar-level mechanical properties from age, even 
though relationships between hardness and various 
mineral measures have been reported (1 l,23.43). 
Clearly, a more complete cross-sectional study inte- 
grating biochemical and mechanical measures is nec- 
essary. The role of mineral constituents in dictating 
variations in the lamellar-level elastic modulus and 
hardness with age remains unknown. 

Increases in femoral neck width have been demon- 
strated to compensate for decreases in bone mineral 
density and cross-sectional area in older men (7). 
However, a similar compensation does not occur in 
postmenopausal women (8). The rcsults of the current 
study suggest that these architectural adaptations in 
men are not accompanied by changes in the modulus 
or hardness of bone in the extracellular matrix. In ad- 
dition, the absence of structural adaptation in post- 
menopausal women and the similarity of lamellar 
elastic modulus and hardness in men and women 
suggest that bone organization may contribute to in- 
creases in gender-related fragility. Other lamellar- 
level mechanical properties may also play a role. 

Microstructurally, our study demonstrates that the 
elastic modulus values for interstitial tissue exceed 
those for osteonal tissue and that the values for tra- 
becular tissue are lower than both. Rho et al. (35) 
reported similar results for dry tibia1 bone. These 
mechanical differences may reflect mineralization dis- 
crepancies due to tissue age. The results are consiytent 
with interstitial tissue being older and more mineral- 
ized than osteonal tissue and trabecular tissue being 
turned over more frequently, possibly for mineral 
homeostasis (26). Collagen fiber orientations vary in 
both cortical and trabecular bone measurements. Spe- 
cifically, osteonal bone measurements represent a 
random mixture of osteons with collagen fiber preler- 
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entially oriented longitudinally, transversely, or alter- 
nating between the two alignments (2-6). Because of 
the complex architecture of trabecular tissue, mea- 
surements in trabecular lamellae were also made at 
different orientations with regard to collagen fiber 
orientation. The effect that different distributions of 
collagen fiber orientation have within microstructural 
groups is unknown. 

Although our results detail the relationship be- 
tween age and lamellar elastic modulus and hardness, 
the implications of this investigation should be tem- 
pered in light of the sample size of our data. Also, we 
selected cadavera without femoral neck fractures that 
may not represent individuals who will subsequently 
experience fracture. In addition, we restricted our at- 
tention to the femoral neck, recognizing that con- 
siderable variation exists in mechanical properties 
and aging trends in different anatomical locations 
(12,21,45). Our study quantified lamellar-level elastic 
modulus and hardness only. The principal lamellar- 
level material properties responsible for prescribing 
whole-bone mechanical integrity are unknown. Ulti- 
mate, fatigue, and fracture toughness properties of the 
extracellular matrix may also be important determi- 
nants of the mechanical integrity of whole bone. 

Despite these limitations, the independence of 
lamellar elastic modulus and hardness from age and 
gcnder suggests that declines in lamellar-level me- 
chanical properties may not be responsible for age 
and gender-related decreases in the mechanical in- 
tegrity of whole bone. There is an absence of corre- 
lation for both elastic modulus and hardness, which 
are measures of elastic and yield properties (15), re- 
spectively. Lamellar-level ultimate, fatigue, and frac- 
ture toughness properties should also be investigated. 
Additionally, other factors, such as tissue mass and 
organization, may contribute more substantially to 
age and gender-related decreases in mechanical in- 
tegrity than extracellular matrix properties. 
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