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INTRODUCTION

Glidden and Liang [2002] have raised important issues regarding ascertainment
adjustment in the framework of variance-components modeling for complex genetic
traits. While the structure of the authors’ logistic variance-component model is
simple, ascertainment issues arising with this model are likely analogous to
ascertainment issues in more complex variance-component models commonly used
for the analysis of either genetic disease data [Duggirala et al., 1997; Burton et al.,
1999] or quantitative trait data [Amos, 1994; Almasy and Blangero, 1998].
Therefore, the results of Glidden and Liang [2002] are of importance both to
investigators who design gene mapping studies, and to analysts who use variance-
component methods to study genetic trait data.

The authors first demonstrate that, if the ascertainment scheme is correctly
modeled, ascertainment-adjusted parameter estimates from their logistic variance-
component model for analyzing disease data reflect the true values of the population-
based parameter values rather than the sample-based parameter values. These results
are analogous to those of Epstein et al. [2002], who used a similar logistic variance-
component model initially proposed by Burton et al. [2000]. de Andrade and Amos
[2000] showed similar results for the traditional linear variance-component method
that assumed major gene, polygene, and environmental effects. In their example,
de Andrade and Amos [2000] selected families in which one sibling had a trait value
more extreme than 90% of the population, and properly accounted for ascertain-
ment by dividing the unconditional likelihood by the likelihood that the selected
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sibling had a trait value greater than or equal to the 90th percentile of the
population.

While these results support the idea that ascertainment-adjusted parameter
estimates reflect the true population-based values, one’s ability to obtain these
estimates can be complicated by many factors. For disease data, the population
prevalence of the disease can have an impact on the ability to obtain unbiased
ascertainment-adjusted parameter estimates. In particular, if the disease is rare, one
can show that ascertainment-adjusted parameter estimates from the logistic
variance-components model of Glidden and Liang [2002] are biased with respect
to the population-based values unless one uses enormous sample sizes.

To demonstrate this, I first show how one calculates the population prevalence
of a disease simulated from the logistic variance-component model in equation 1 of
Glidden and Liang [2002]. Using Gauss-Hermite integration, the population
prevalence of the simulated disease is
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where wk and ak are predefined weights and abscissas, and N denotes the number of
quadrature points.

Glidden and Liang [2002] simulated disease data, assuming a ¼ �5 and s2c ¼
4:5 which, using (1), corresponds to a disease with a population prevalence of
approximately 0.04. To simulate a rarer disease, I investigated a disease model in
which a ¼ �10 and s2c ¼ 4:5. Using (1), this model corresponds to a disease with a
population prevalence of approximately 0.0004. I performed analyses to determine
whether ascertainment-adjusted parameter estimates from the logistic variance-
component method of Glidden and Liang [2002] were unbiased for this rarer disease.
I simulated datasets of 1,000 sibships of size 5 under complete ascertainment
(collecting all sibships with at least one affected sibling) and obtained ascertainment-
adjusted parameter estimates of the two parameters, using adaptive Gaussian
quadrature [Pinheiro and Bates, 1995]. Over 200 simulated datasets, the mean
estimates of a and s2c are �6.81 (SD¼ 1.53) and 2.04 (SD¼ 1.30), respectively,
which are severely biased with respect to the true simulated values.

In this example, the ascertainment-adjusted analysis of the rare disease yielded
biased results due to small sample effect. In a simulated dataset of 1,000 sibships of
size 5 selected under complete ascertainment, the average proportion of sibships with
only one affected sibling is approximately 0.97. As these sibships are selected based
on that affected sibling (under complete ascertainment), they provide little or no
information for statistical inference. Inference instead is based primarily on the other
approximate 3% of the sample that has more than one affected sibling; hence, the
small sample effect. When ascertainment-adjusted analyses were repeated for a much
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larger sample of 10,000 sibships, estimates of a and s2c over 200 simulated datasets
were, on average, unbiased with respect to the simulated values (data not shown).

Another factor that can complicate one’s ability to obtain ascertainment-
adjusted parameter estimates is that, for small family sizes, the parameter estimates
may be nonidentifiable (Glidden, personal communication). For example, if one had
analyzed sibships of size 2 instead of size 5, using the model of Glidden and Liang
[2002] (sibships still ascertained under complete ascertainment), one would be unable
to obtain unique maximum likelihood estimates of a and s2c . The ascertained-
adjusted likelihood would have the form p1ð Þn1 p2ð Þn2 , where pj denotes the
probability of j affected siblings in a sibship, and nj denotes the observed number
of such sibships. Here, one can easily rewrite pj as a function of a and s2c . Because
one ascertains sibships based on having at least one affected sibling, one can rewrite
the likelihood as p1ð Þn1 1� p1ð Þn2 and subsequently obtain the maximum-likelihood
estimate p̂p1 ¼ n1= n1 þ n2ð Þ. As multiple values of a and s2c can solve p̂p1, the
maximum-likelihood estimates of âa and ŝs2c are nonidentifiable. To find identifiable
estimates of âa; ŝs2c , one needs to impose a constraint on the relationship between the
two parameters. If one had prior knowledge of the population disease prevalence,
one could possibly use the constraint shown in Equation (18) of Breslow and
Clayton [1993] to obtain âa and ŝs2c . As many disease studies will consist only of
ascertained sibpairs and sibtrios, future work in the area of suitable constraints
would be of interest.

In the second part of their article, Glidden and Liang [2002] focused on the
impact of random-effect misspecification on parameter estimates under ascertain-
ment sampling. Their results showed that slight misspecification of random effects
can lead to biased estimates of a and s2c under their logistic variance-components
model, assuming complete ascertainment. While biased parameter estimates are
expected under random-effect misspecification for random samples [Neuhaus et al.,
1992; Heagerty and Kurland, 2001], the severity of the bias under ascertainment
sampling is extraordinary, given that the misspecified random-effects distributions
(logistic,

ffiffiffiffiffiffiffi
2:7

p
times a t-distribution with 5 degrees of freedom) are quite similar in

form to the assumed multivariate normal distribution. The authors’ findings lead to
the issue of whether tests of H0 : s2c ¼ 0 have the correct size. If type I error is
elevated, one needs to develop statistics that are robust to misspecified random
effects. For random samples, Lin [1997] developed a variance-component score
statistic that is robust to misspecified effects. One could easily extend this robust
statistic to account for ascertainment.

This result from Glidden and Liang [2002] leads one to question whether the
same phenomena will occur in more complicated ascertainment-adjusted variance-
component models for genetic linkage analysis. Many articles have focused on the
effect of random-effect misspecification on variance-components linkage analyses of
quantitative traits, assuming random sampling [Allison et al., 1999; Blangero et al.,
2001]. Results showed that the type I error for testing for a major gene effect
increases as the kurtosis of the misspecified random-effects distribution increases. To
my knowledge, no one has determined the effect of random-effect misspecification
on ascertainment-adjusted variance-component analyses for selected normal traits
[Hopper and Mathews, 1982; Elston and Sobel, 1979; de Andrade and Amos, 2000].
Due to the more complex structure of the ascertainment-adjusted likelihood, one
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would expect that an ascertainment-adjusted variance-component linkage method
would be even more sensitive to random-effect misspecification than the variance-
component method under random sampling.

I performed some preliminary simulations to investigate this issue. Data were
simulated for sibtrios from a trait model that assumed unmeasured effects due to
a major gene, polygenes, and environment. Unmeasured effects were simulated from
a Laplace distribution (similar to a normal distribution, but with a positive nonzero
kurtosis). After trait data were simulated, I ascertained sibtrios that had at least one
sibling with a trait value in the 90th or greater percentile of the population.
I conducted ascertainment-adjusted variance-components analyses assuming multi-
variate normality of the random effects, as performed by de Andrade and Amos
[2000]. Preliminary results indicate that misspecification of random effects leads to
severely biased variance-component estimates and a large increase in type I error for
testing the major gene effect. Therefore, the development of robust test statistics is
required for valid inference of these ascertained samples. Such methods could
include the ascertainment-based extensions of the robust score tests and LOD score
methods for variance-component linkage analyses that Blangero et al. [2000, 2001]
developed for random samples.

As described here and in Glidden and Liang [2002], problems can arise when
one properly adjusts a variance-component analysis for ascertainment. Therefore,
the development of variance-component methods that are independent of the
ascertainment criterion could prove useful in genetic analyses of ascertained samples.
For variance-component linkage analyses of selected samples, one such approach
consists of using a retrospective likelihood, as proposed by Whittemore [1996]. For
this approach, instead of maximizing the typical prospective likelihood of the trait
data conditional on both the ascertainment criterion and the major gene data, one
instead maximizes the likelihood of the major gene data conditional on the trait data.
By using this retrospective likelihood, one avoids ascertainment bias and also may
resolve the identifiability issues of the parameter estimates, given small families.
Li and Zhong [2002] applied such a retrospective likelihood approach to the analysis
of survival data, using genetic frailities. I am in the process of extending this
retrospective likelihood approach to variance-component analyses of genetic data. In
the future, I will investigate the impact of random-effect misspecification on such
retrospective likelihood approaches and develop robust approaches, if necessary.
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