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In this article, we study a sequence of finite difference approximate solutions to a parabolic system, which
models two dissimilar rods that may come into contact as a result of thermoelastic expansion. We construct
the approximate solutions based on a set of finite difference schemes to the system, and we will prove that the
approximate solutions converge strongly to the exact solutions. Moreover, we obtain and prove rigorously
the error bound, which measures the difference between the exact solutions and approximate solutions in a
reasonable norm. c© 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 1–25, 1998
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I. INTRODUCTION

The purpose of this article is to prove convergence and derive the error bound for a system of
finite difference approximations to a parabolic system modeling the thermoelastic contacts of
two dissimilar rods. Problems involving thermoelastic contact arise naturally in many applied
situations, particularly those involving industrial processing, where two or more materials may
come into contact or may lose contact as a result of thermoelastic expansion or contraction.
The model of this article is one such situation: the mechanical behavior of two dissimilar rods,
which are each fixed at one end but which may come into contact at their free ends as a result
of thermoelastic expansions within finite time. Our model of the mechanical behavior originally
consisted of a system of energy and elastic equations involving the temperature and displacement
of each rod. The problem was then reformulated and reduced to solving an initial-boundary value
problem for a nonlinear parabolic system containing only the two temperatures (see [1]).

The physical setting consists of two thin rods, each of which is clamped at one end but which
may come into contact at their free ends. We assume that the process is independent of all but the
horizontal variable. We use θ(x, t) to represent the temperature of the left rod on 0 ≤ x ≤ l1 and
ψ(x, t) to represent the temperature of the right rod on l2 ≤ x ≤ 1, l1 ≤ l2 both in nondimensional
units. The fixed ends occur at x = 0 and x = 1, while the ends x = l1, x = l2 are free to expand
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or contact. We let g̃ = l2− l1 to denote the initial gap between the rods in the reference configura-
tion and the physical setting is displayed in Figure 1.

FIG. 1.

The complete parabolic system of equations is

(1 + a2
1)θt − θxx = α1gt(θ, ψ), 0 ≤ x ≤ l1, t > 0, (1.1)

(d+ a2
2)ψt − ψxx = α2gt(θ, ψ), l2 ≤ x ≤ 1, t > 0, (1.2)

where

g(θ, ψ)(t) = max

{
a1

∫ l1

0
θ(x, t)dx+ a2

∫ 1

l2

ψ(x, t)dx− g̃; 0
}
, (1.3)

α1 =
a1λ

l1(1 + λ)
, α2 =

a2λ

(1− l2)(1 + λ)
, g̃ = l2 − l1. (1.4)

The initial condition is

θ(x, 0) = θ̃(x), 0 ≤ x ≤ l1;ψ(x, 0) = ψ̃(x), l2 ≤ x ≤ 1, (1.5)

and boundary conditions are

θ(0, t) = ψ(1, t) = 0, t ≥ 0, (1.6)

−k1θx(l1, t) = k(θ(l1, t)− ψ(l2, t)), t ≥ 0, (1.7)

−k2ψx(l2, t) = k(θ(l1, t)− ψ(l2, t)), t ≥ 0. (1.8)

a1, a2, and d are positive constants related to material properties of the rods; k1, k2 are the heat
condition coefficients and k is the heat exchange coefficient; λ is the elastic modulus. For most
materials that arise in practice, a1 and a2 are very small, therefore, we will assume that α1, α2,
which are defined in (1.4), are also small. The exact smallness conditions will be specified later.
The current model is rather complicated in the sense that the two temperatures are coupled not
only by a nonlinear system of equations, but also in the boundary conditions. The two source
terms on the right hand side of (1.1), (1.2) are nonlocal as well as nonlinear. The system is also
unusual in that each temperature function is defined on a different domain.

The particular model has been studied previously in [1] and [2]. In [1], they proved that under
appropriate assumptions of the data, the system has a unique strong solution, i.e., a solution where
each temperature lies in a Sobolev space. In [2], they presented some numerical simulations to
the system, but there was no report of the convergence of those simulations and there was no
error bound analysis either. Our goal in this article is, therefore, to construct a sequence of
approximate (numerical) solutions to the system and to understand the convergence properties
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of those solutions in a rigorous mathematical way. More numerical works to related physical
problems can be found in [2] and [3]. But in each case, the problem involves but a single
temperature and a single displacement, so that decoupling leads to one nonlinear equation for a
single temperature.

We construct the approximate solutions based on a set of finite difference schemes that are
implicit, but linear. We show that the schemes can be solved easily for all time. We also establish
a priori energy estimates to the approximate solutions; these are similar to those satisfied by the
exact solutions, and are required to derive the weak truncation errors. We then show that the
approximate solutions converge to the exact solutions in a stronger sense, i.e., stronger than the
sense of distribution. Finally, we apply the weak truncation error estimates in obtaining the bound
for the difference between the exact and the approximate solutions. The overall mesh requirement
is essentially the standard stability requirement by a standard scheme to the parabolic equation.

We assume that θ̃(x), ψ̃(x) are smooth enough to satisfy the following conditions:

C̃0(x) = ‖θ̃‖2H2(0,l1) + ‖ψ̃‖2H2(l2,1) + (θ̃(l1)− ψ̃(l2))2 <∞. (1.9)

We now construct the schemes. Let ∆t be the time increment, ∆x be the space increment such
that 1 = M∆x, l1 = M1∆x, l2 = (M −M2)∆x, where M,M1,M2 are positive integers such
that M1 ≤M2 ≤M . Throughout the article, we will use δ, δ2 to represent the operators:

δwj =
wj+1/2 − wj−1/2

∆x
, δwj+1/2 =

wj+1 − wj
∆x

, δ2wj =
wj+1 − 2wj + wj−1

∆x2 , (1.10)

and we often use the following summation by parts formulae:

L2∑
j=L1

δwjzj∆x = −
L2−1∑
j=L1

wj+1/2δzj+1/2∆x+ wL2+1/2zL1 − wL1−1/2zL1 , (1.11)

L2∑
j=L1

δwj+1/2zj+1/2∆x = −
L2∑

j=L1+1

wjδzj∆x+ wL2+1zL2+1/2 − wL1+1/2zL1+1/2, (1.12)

where L1, L2 are integers. The two approximate temperatures {θqj}, {ψqj} are then computed
from the following implicit, but linear schemes:

(1 + a2
1)
θq+1
j − θqj

∆t
− δ2θq+1

j = α1
g(θq, ψq)− g(θq−1, ψq−1)

∆t
, 0 ≤ j ≤M1, (1.13)

(d+ a2
2)
ψq+1
j − ψqj

∆t
− δ2ψq+1

j = α2
g(θq, ψq)− g(θq−1, ψq−1)

∆t
,M2 ≤ j ≤M, (1.14)

g(θq, ψq) = max

a1

M1∑
j=1

θqj∆x+ a2

M∑
j=M2

ψqj∆x− g̃; 0
 , q ≥ 0. (1.15)

We take the following initial data

θ0
j = θ̃(xj), 0 ≤ j ≤M1;ψ0

j = ψ̃(xj),M2 ≤ j ≤M, (1.16)

and the boundary conditions:

θq0 = 0;−k1δθ
q
M1+1/2 = −k1

θqM1+1 − θqM1

∆x
= k(θqM1

− ψq−1
M2

), (1.17)
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ψqM = 0;−k2δψ
q
M2−1/2 = −k2

ψqM2
− ψqM2−1

∆x
= k(θqM1

− ψqM2
). (1.18)

In order to make the schemes complete, we also extend the schemes to

θ−1
j = θ0

j , 0 ≤ j ≤M1;ψ−1
j = ψ0

j ,M2 ≤ j ≤M, (1.19)

and

θq−1 = −θq1, ψqM+1 = −ψqM−1, 0 ≤ q ≤ N. (1.20)

We can prove that

C0 =
M1∑
j=0

((θ0
j )

2 + (δ2θ0
j )

2)∆x+
M1−1∑
j=0

(δθ0
j+1/2)

2∆x+
M∑

j=M2

((ψ0
j )

2 + (δ2ψ0
j )

2)∆x

+
M−1∑
j=M2

(δψ0
j+1/2)

2∆x+ (θ0
M1
− ψ0

M2
)2 ≤ 5C̃0 <∞. (1.21)

Since the source terms are nonlocal as well as nonlinear, no standard results in the parabolic
theory can be quoted here. Instead, we derive a priori energy estimates peculiar to this particular
problem, and use the estimates to prove convergence and derive error bound. Comparable results
can also be found in [4]–[8], where finite difference approximate solutions to other nonlinear
parabolic system equations were studied. But those schemes are all implicit and nonlinear, which
means a system of nonlinear equations must be solved at each time-step. Moreover, the initial data
to those systems were required to be sufficiently small. By contrast, our schemes are implicit,
but linear, which is quite easy to implement, and there is no smallness requirement to the initial
data. It is also amenable to a complete rigorous convergence and error bound analysis.

The plan of the article is as follows. In Section II, we derive a priori energy estimates to the
solutions {θqj}, {ψqj} of the schemes, and prove that the schemes are solvable. Then, in Section
III, we construct the approximate solutions {θh}, {ψh}, and we apply the estimates obtained in
Section II to derive bounds for the weak truncation errors, which measure the extent to which the
approximation solutions fail to be exact solutions. In Section IV, we prove that the approximate
solutions converge and we apply the weak truncation error estimates in deriving the error bound.
Finally, we provide some computational results in Section V.

Most of the estimates occuring in the following sections are long and technical; many of them
are symmetric between θ and ψ. We have, therefore, omitted most of the repeating details.

II. SOLVABILITY AND A PRIORI ENERGY ESTIMATES

In this section, we will prove solvability and derive various energy estimates of the schemes.

Theorem 2.1. Assume that schemes (1.13)–(1.20) have been solved to tn (tn ≥ ∆t), then the
schemes can be advanced from tn to tn+1 if ∆x is chosen to satisfy

∆x ≤ min
{

2k1

k
,
2k2

k

}
. (2.1)

Proof. We will only prove the solvability for {θnj }; the proof for {ψnj } is similar and will be
omitted. To advance {θnj } to {θn+1

j }, we need to solve the following system of linear equations:

Aθn+1
j = B(θnj , θ

n−1
j ), (2.2)
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where

θn+1
j = (θn+1

0 , θn+1
1 , . . . , θn+1

M1+1)
T (2.3)

is anM1 +2 dimensional vector andA is an (M1 +2)× (M1 +2) tridiagonal matrix with entries

a0,0 = 1; aM1+2,M1+2 = −k1; aj,j = 1 + a2
1 + 2

∆t
∆x2 , j = 1, 2, . . . ,M1; (2.4)

aj,j+1 = − ∆t
∆x2 , j = 0, 1, . . . ,M1; aj+1,j = − ∆t

∆x2 , j = 0, 1, . . . ,M1 − 1; (2.5)

aM1,M1+1 = k1 − k∆x. (2.6)

B is an M1 + 2 dimensional vector with entries

B0 = 0, BM1+1 = −k∆xψn−1
M2

, (2.7)

Bj = (1 + a2
1)θ

n
j + α1(g(θn, ψn)− g(θn−1, ψn−1)), j = 1, 2, . . . ,M1. (2.8)

By (2.1), A is a diagonally dominant matrix and so is invertible by the Gerschgorin Theorem.
Therefore, {θnj } can be advanced to {θn+1

j }.
We now give the energy estimates in the next two theorems.

Theorem 2.2. Assume that schemes (1.13)–(1.20) have been solved to tn (tn ≥ ∆t). If
a1, a2, α1, α2 are small enough, ∆x,∆t are chosen such that they satisfy (2.1) and

∆t ≤ ∆x1+p, for some constant p, 0 ≤ p ≤ 1, (2.9)

k∆xp + 2(a1 + a2)
(
k1α

2
1

1 + a2
1

+
k2α

2
2

d+ a2
2

)
≤ 1

2
min{k1(1 + a2

1), k2(d+ a2
2)}, (2.10)

then there exists a constant C, which satisfies

C ≤ max{k1, k2, k}
min

{
1
2k1(1 + a2

1),
1
2k2(d+ a2

2),
k1

1+a2
1
, k2
d+a2

2
, k1, k2, k

} , (2.11)

such that

M1−1∑
j=0

(δθnj+1/2)
2∆x+

M−1∑
j=M2

(δψnj+1/2)
2∆x+

n∑
q=0

M1∑
j=0

(δ2θqj )
2∆x∆t

+
n∑
q=0

M∑
j=M2

(δ2ψqj )
2∆x∆t+

n−1∑
q=0

M1∑
j=0

(
θq+1
j − θqj

∆t

)2

∆x∆t

(
ψq−1
j − ψqj

∆t

)2

∆x∆t

+
n−1∑
q=0

M∑
j=M2

+(θnM1
− ψnM2

)2 ≤ CC0. (2.12)

Remark 2.1. (2.10) is not the CFL condition, it is weaker than the CFL condition. The optimal
error bound, which will be given in Theorem 4.4., will depend on p.
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Proof. We square both sides of (1.13) to get

(1 + a2
1)

2

(
θq+1
j − θqj

∆t

)2

+ (δ2θq+1
j )2 − 2(1 + a2

1)δ
2θq+1
j

(
θq+1
j − θqj

∆t

)

= α2
1

(
g(θq, ψq)− g(θq−1, ψq−1)

∆t

)2

. (2.13)

We then multiply both sides of (2.13) by k1
1+a2

1
∆x∆t, sum over q, j to get

k1(1 + a2
1)
n−1∑
q=0

M1∑
j=0

(
θq+1
j − θqj

∆t

)2

∆x∆t+
k1

1 + a2
1

n∑
q=1

M1∑
j=0

(δ2θq+1
j )2∆x∆t

− 2k1

n−1∑
q=0

M1∑
j=0

(
θq+1
j − θqj

∆t

)
(δ2θq+1

j )∆x∆t

=
k1α

2
1

1 + a2
1

n−1∑
q=0

M1∑
j=0

(
g(θq, ψq)− g(θq−1, ψq−1)

∆t

)2

∆x∆t. (2.14)

We then apply the summation by parts formula to the third term on the left-hand side of (2.14) to
get

−2k1

n−1∑
q=0

M1∑
j=0

(
θq+1
j − θqj

∆t

)
(δ2θq+1

j )∆x∆t

= 2k1

n−1∑
q=0

M1−1∑
j=0

δθq+1
j+1/2 − δθqj+1/2

∆t
(δθq+1

j+1/2)∆x∆t

− 2k1

n−1∑
q=0

θq+1
M1
− θqM1

∆t
δθq+1
M1+1/2∆t+ 2k1

n−1∑
q=0

θq+1
0 − θq0

∆t
δθq+1
−1/2∆t. (2.15)

The last term of (2.15) is zero by the first part of the boundary condition (1.17). We use the second
part of (1.17) to the middle term and simplify the first term on the right-hand side of (2.15) to
get

−2k1

n−1∑
q=0

M1∑
j=0

θq+1
j − θqj

∆t
(δ2θq+1

j )∆x∆t ≥ k1

M1−1∑
j=0

(δθnj+1/2)
2∆x

− k1

M1−1∑
j=0

(δθ0
j+1/2)

2∆x− 2k
n−1∑
q=0

θq+1
M1
− θqM1

∆t
(θq+1
M1
− ψqM2

)∆t. (2.16)

To estimate the term on the right-hand side of (2.14), we use the fact that, for any number r,

max{r, 0} =
1
2
r +

1
2
|r|, (2.17)
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by using the definition of g(θ, ψ) and (2.17), we get

g(θqj , ψ
q
j )− g(θq−1

j , ψq−1
j )

∆t

=

max

a1

M1∑
j=0

θqj∆x+ a2

M∑
j=M2

ψqj − g̃; 0


− max

a1

M1∑
j=0

θq−1
j ∆x+ a2

M∑
j=M2

ψq−1
j ∆x− g̃; 0


/∆t

=
a1

2

M1∑
j=0

θqj − θq−1
j

∆t
∆x+

a2

2

M∑
j=M2

ψqj − ψq−1
j

∆t
∆x

+
1
2

∣∣∣∣∣∣a1

M1∑
j=0

θqj∆x+ a2

M∑
j=M2

ψqj∆x− g̃
∣∣∣∣∣∣

−
∣∣∣∣∣∣a1

M1∑
j=0

θq−1
j ∆x+ a2

M∑
j=M2

ψq−1
j ∆x− g̃

∣∣∣∣∣∣
/∆t, (2.18)

we then use a basic inequality ||a| − |b|| ≤ |a− b| to (2.18) and get∣∣∣∣∣g(θ
q
j , ψ

q
j )− g(θq−1

j , ψq−1
j )

∆t

∣∣∣∣∣
≤ a1

2

M1∑
j=0

∣∣∣∣∣θ
q
j − θq−1

j

∆t

∣∣∣∣∣∆x+
a2

2

M∑
j=M2

∣∣∣∣∣ψ
q
j − ψq−1

j

∆t

∣∣∣∣∣∆x
+

1
2

∣∣∣∣∣∣a1

M1∑
j=0

θqj − θq−1
j

∆t
∆x+ a2

M∑
j=M2

ψqj − ψq−1
j

∆t
∆x

∣∣∣∣∣∣
≤ a1

M1∑
j=0

∣∣∣∣∣θ
q
j − θq−1

j

∆t

∣∣∣∣∣∆x+ a2

M∑
j=M2

∣∣∣∣∣ψ
q
j − ψq−1

j

∆t

∣∣∣∣∣∆x. (2.19)

So,(
g(θqj , ψ

q
j )− g(θq−1

j , ψq−1
j )

∆t

)2

≤ 2a2
1

M1∑
j=0

∣∣∣∣∣θ
q
j − θq−1

j

∆t

∣∣∣∣∣∆x
2

+ 2a2
2

 M∑
j=M2

∣∣∣∣∣ψ
q
j − ψq−1

j

∆t

∣∣∣∣∣∆x
2

≤ 2a2
1

M1∑
j=0

∆x

M1∑
j=0

(
θqj − θq−1

j

∆t

)2

∆x


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+ 2a2
2

 M∑
j=M2

∆x

 M∑
j=M2

(
ψqj − ψq−1

j

∆t

)2

∆x



= 2l1a2
1

M1∑
j=0

(
θqj − θq−1

j

∆t

)2

∆x

+ 2l2a2
2

 M∑
j=M2

(
ψqj − ψq−1

j

∆t

)2

∆x

 . (2.20)

Therefore,

k1α
2
1

1 + a2
1

n−1∑
q=0

M1∑
j=0

(
g(θqj , ψ

q
j )− g(θq−1

j , ψq−1
j )

∆t

)2

∆x∆t

≤ k1α
2
1

1 + a2
1

2l21a
2
1

n−1∑
q=0

M1∑
j=0

(
θqj − θq−1

j

∆t

)2

∆x∆t

+ 2l22a
2
2

n−1∑
q=0

M∑
j=M2

(
ψqj − ψq−1

j

∆t

)2

∆x∆t



≤ 2k1α
2
1(a

2
1 + a2

2)
1 + a2

1

n−1∑
q=0

M1∑
j=0

(
θqj − θq−1

j

∆t

)2

∆x∆t

+
n−1∑
q=0

M∑
j=M2

(
ψqj − ψq−1

j

∆t

)2

∆x∆t

 . (2.21)

If we put (2.16) and (2.21) back to (2.14), we then get

k1(1 + a2
1)
n−1∑
q=0

M1∑
j=0

(
θq+1
j − θqj

∆t

)2

∆x∆t+
k1

1 + a2
1

n∑
q=1

M1∑
j=0

(δ2θqj )
2∆x∆t

+ k1

M1−1∑
j=0

(δθnj+1/2)
2∆x− 2k

n−1∑
q=0

(
θq+1
M − θqM1

∆t

)
(θq+1
M1
− ψqM2

)∆t

≤ k1

M1−1∑
j=0

(δθ0
j+1/2)

2∆x+
2k1(a1 + a2)α2

1

1 + a2
1

n−1∑
q=0

M1∑
j=0

(
θq+1
j − θqj

∆t

)2

∆x∆t

+
n−1∑
q=0

M∑
j=M2

(
ψq+1
j − ψqj

∆t

)2

∆x∆t

 .

(2.22)
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We obtain similar estimates to (1.14) and combine with (2.22) to get

k1(1 + a2
1)
n−1∑
q=0

M1∑
j=0

(
θq+1
j − θqj

∆t

)2

∆x∆t+ k2(d+ a2
2)
n−1∑
q=0

M∑
j=M2

(
ψq+1
j − ψqj

∆t

)2

∆x∆t

+
k1

1 + a2
1

n∑
q=1

M1∑
j=0

(δ2θqj )
2∆x∆t+

k2

d+ a2
2

n∑
q=1

M∑
j=M2

(δ2ψqj )
2∆x∆t

+ k1

M1−1∑
j=0

(δθnj+1/2)
2∆x+ k2

M−1∑
j=M2

(δψnj+1/2)
2∆x+ 2k

n−1∑
q=0

(
θq+1
M1
− θqM1

∆t

)2

× (θq+1
M1
− ψqM2

)∆t− 2k
n−1∑
q=0

(
ψq+1
M2
− ψqM2

∆t

)
(θq+1
M1
− ψq+1

M2
)∆t

≤ k1

M1−1∑
j=0

(δθ0
j+1/2)

2∆x+ k2

M−1∑
j=M2

(δψ0
j+1/2)

2∆x+ 2(a1 + a2)
(
k1α

2
1

1 + a2
1

+
k2α

2
2

d+ a2
2

)

×
n−1∑
q=0

M1∑
j=0

(
θq+1
j − θqj

∆t

)2

∆x∆t+
n−1∑
q=0

M∑
j=M2

(
ψq+1
j − ψqj

∆t

)2

∆x∆t

 . (2.23)

The two terms just before the inequality sign in (2.23) can be estimated by

2k
n−1∑
q=0

(
θq+1
M1
− θqM1

∆t

)
(θq+1
M1
− ψqM2

)∆t− 2k
n−1∑
q=0

(
ψq+1
M2
− ψqM2

∆t

)
(θq+1
M1
− ψq+1

M2
)∆t

= 2k
n−1∑
q=0

[
θq+1
M1
− θqM1

∆t
(θq+1
M1
− ψq+1

M2
)− ψq+1

M2
− ψqM2

∆t
(θq+1
M1
− ψq+1

M2
)

]
∆t

+ 2k∆t
n−1∑
q=0

θq+1
M1
− θqM1

∆t
ψq+1
M2
− ψqM2

∆t
∆t

= 2k
n−1∑
q=0

(θq+1
M1
− ψq+1

M2
)((θq+1

M1
− ψq+1

M2
)− (θqM1

− ψqM2
))

+ 2k∆t
n−1∑
q=0

θq+1
M1
− θqM1

∆t
ψq+1
M2
− ψqM2

∆t
∆t

≥ 2k
n−1∑
q=0

(θq+1
M1
− ψq+1

M2
)2 − k

[
n−1∑
q=0

(θq+1
M1
− ψq+1

M2
)2 +

n−1∑
q=0

(θqM1
− ψqM2

)2

]

− k∆t
n−1∑
q=0

(θq+1
M1
− θqM1

∆t

)2

+

(
ψq+1
M2
− ψqM2

∆t

)2
∆t

≥ k(θnM1
− ψnM2

)2 − k(θ0
M1
− ψ0

M2
)2

− k∆t
n−1∑
q=0

(θq+1
M1
− θqM1

∆t

)2

+

(
ψq+1
M2
− ψqM2

∆t

)2
∆t [by using (2.9)]
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= k(θnM1
− ψnM2

)2 − k(θ0
M1
− ψ0

M2
)2

− k∆xp
n−1∑
q=0

(θq+1
M1
− θqM1

∆t

)2

+

(
ψq+1
M2
− ψqM2

∆t

)2
∆x∆t. (2.24)

If we put (2.24) back to (2.23), we then get

k1(1 + a2
1)
n−1∑
q=0

M1∑
j=0

(
θq+1
j − θqj

∆t

)2

∆x∆t+ k2(d+ a2
2)
n−1∑
q=0

M∑
j=M2

(
ψq+1
j − ψqj

∆t

)2

∆x∆t

+
k1

1 + a2
1

n∑
q=1

M1∑
j=0

(δ2θqj )
2∆x∆t+

k2

d+ a2
2

n∑
q=1

M∑
j=M2

(δ2ψqj )
2dxdt

+ k1

M1−1∑
j=0

(δθnj+1/2)
2∆x+ k2

M−1∑
j=M2

(δψnj+1/2)
2∆x+ k(θnM1

− ψnM2
)2

≤ k1

M1−1∑
j=0

(δθ0
j+1/2)

2∆x+ k2

M−1∑
j=M2

(δψ0
j+1/2)

2∆x+ k(θ0
M1
− ψ0

M2
)2

+
(
k∆xp + 2(a1 + a2)

(
k1α

2
1

1 + a2
1

+
k2α

2
2

d+ a2
2

))

×
n−1∑
q=0

M1∑
j=0

(
θq+1
j − θqj

∆t

)2

∆x∆t+
n−1∑
q=0

M∑
j=M2

(
ψq+1
j − ψqj

∆t

)2

∆x∆t

 . (2.25)

(2.12) follows from (2.25) by using (2.10).
By Using Theorem 2.2, we can get a few more estimates, given in the next theorem.

Theorem 2.3. Assume that schemes (1.13)–(1.20) have been solved to tn (tn ≥ ∆t), and C
is the constant as described in Theorem 2.2. If a1, a2, α1, α2 are small enough and ∆x,∆t are
chosen to satisfy (2.1), (2.10), and (2.11), then

M1∑
j=0

θn2
j ∆x+

M∑
j=M2

ψn2
j ∆x ≤ CC0, (2.26)

and

M1∑
j=1

(δ2θnj )2∆x+
M∑

j=M2+1

(δ2ψnj )2∆x+
n−1∑
q=0

M1∑
j=0

(
δθq+1
j+1/2 − δθqj+1/2

∆t

)2

∆x∆t

+
n−1∑
q=0

M∑
j=M2

(
δψq+1

j+1/2 − δψqj+1/2

∆t

)2

∆x∆t ≤ CC0. (2.27)

Proof. By using the first part of (1.17), we have

θnj − θn0 = θnj =
j−1∑
l=0

δθnj+1/2∆x, (2.28)
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we then square both sides of (2.28), and use the Cauchy–Schwarz inequality to get

θn2
j =

(
j−1∑
l=0

δθnl+1/2∆x

)2

≤
(
j−1∑
l=0

∆x

)(
j−1∑
l=0

δθn2
l+1/2∆x

)

≤ l1

(
j−1∑
l=0

δθn2
l+1/2∆x

)
≤ l1

M1−1∑
j=0

δθn2
j ∆x

 , (2.29)

we then multiply both sides of (2.29) by ∆x, sum over j, and use (2.12) to get

M−1∑
j=0

θn2
j ∆x ≤ l1

M1∑
j=0

∆x

M1∑
j=0

δθn2
j ∆x

 ≤ l21
M1−1∑

j=0

δθn2
j ∆x

 ≤ CC0, (2.30)

the other term in (2.26) can be proved similarly, this proves (2.26).
To prove (2.27), we apply the δ operator to both sides of (1.13), notice that the right-hand side

of (1.13) does not depend on j, so we get

(1 + a2
1)
δθq+1
j+1/2 − δθqj+1/2

∆t
− δ3θq+1

j+1/2 = 0. (2.31)

We then multiply both sides of (2.31) by
δθq+1
j+1/2−δθ

q

j+1/2

∆t ∆x∆t, sum over q, j and use (1.17) to
get

(1 + a2
1)
n−1∑
q=0

M1∑
j=0

(
δθq+1
j+1/2 − δθqj+1/2

∆t

)2

∆x∆t+
n−1∑
q=0

M1∑
j=1

δ2θq+1
j (δ2θq+1

j − δ2θqj )∆x

+
n−1∑
q=0

δ2θq+1
0

δθq+1
1/2 − δθq1/2

∆t
∆t−

n−1∑
q=0

δ2θq+1
M1+1

δθq+1
M1+1/2 − δθqM1+1/2

∆t
∆t = 0. (2.32)

By (1.20),

δ2θq+1
0 =

θq+1
1 − 2θq+1

0 + θq+1
−1

∆x2 = 0, (2.33)

so the third term of (2.32) vanishes. We assume the schemes are extended, so that

δ2θq+1
M1+1 =

θq+1
M1+2 − 2θq+1

M1+1 + θq+1
M1

∆x2 = 0, (2.34)

so the last term on the right-hand side of (2.32) also vanishes. We now estimate the second term
on the right-hand side of (2.32) by

n−1∑
q=0

M1∑
j=1

((δ2θq+1
j )2 − δ2θq+1

j δ2θqj )∆x ≥
1
2

n−1∑
q=0

M1∑
j=1

(δ2θq+1
j )2∆x− 1

2

n−1∑
q=0

M1∑
j=1

(δθqj )
2∆x

≥ 1
2

M1∑
j=1

(δ2θnj )2∆x− 1
2

M1∑
j=1

(δ2θ0
j )

2∆x. (2.35)
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So (2.32) becomes

1
2

M1−1∑
j=1

(δ2θnj )2∆x+ (1 + a2
1)
n−1∑
q=0

M1∑
j=0

(
δθq+1
j+1/2 − δθqj+1/2

∆t

)2

∆x∆t

≤ 1
2

M1−1∑
j=1

(δ2θ0
j )

2∆x ≤ 1
2
C0. (2.36)

The other terms of (2.27) about ψqj can be estimated similarly.

III. WEAK TRUNCATION ERRORS

In this section, we will obtain the truncation errors to schemes (1.13)–(1.20). Let h = (∆x,∆t),
we first construct the approximate solutions {θh, ψh, gh}, which are linear interpolations of
{θqj}, {ψqj}, and {g(θqj , ψqj )}.

θh(x, t) = θqj +
θq+1
j − θqj

∆t
(t− tq) + δθqj+1/2(x− xj)

+
δθq+1
j+1/2 − δθqj+1/2

∆t
(x− xj)(t− tq), (x, t) ∈ [xj , xj+1]

× (tq, tq+1], 0 ≤ j ≤M1, q ≥ 0, (3.1)

ψh(x, t) = ψq−1
j +

ψqj − ψq−1
j

∆t
(t− tq) + δψq−1

j+1/2(x− xj)

+
δψqj+1/2 − δψq−1

j+1/2

∆t
(x− xj)(t− tq), (x, t) ∈ [xj , xj+1]

× (tq, tq+1],M2 − 1 ≤ j ≤M − 1, q ≥ 0, (3.2)

and

gh(t) = g(θq, ψq) +
g(θq+1, ψq+1)− g(θq, ψq)

∆t
(t− tq), t ∈ (tq, tq+1], q ≥ 0. (3.3)

Notice that, with the above constructions, we can obtain the following boundary conditions to
θh, ψh:

θh(0, t) = 0,−k1θ
h
x(l1, t) = k(θh(l1, t)− ψh(l2, t)), (3.4)

ψh(1, t) = 0,−k2ψ
h
x(l2, t) = k(θh(l1, t)− ψh(l2, t)). (3.5)

Both functions θh, ψh are constructed slightly beyond their ranges [0, l1] and [l2, 1] in order
for us to take care of the boundary conditions. A direct result of Theorems 2.2, 2.3 will give the
following theorem.
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Theorem 3.1. Let {θh, ψh} be the approximate solutions constructed in (3.1), (3.2), gh(t) be
the function given in (3.3). Then for any T > 0,

‖θh(x, t)‖H1(0,l1) + ‖θh(x, t)‖H1((0,l1)×(0,T )) + ‖θhxt(x, t)‖L2((0,l1)×(0,T ))

+ ‖θh(l1, t)‖H1(0,T ) + ‖ψh(x, t)‖H1(l2,1) + ‖ψh(x, t)‖H1((l2,1)×(0,T ))

+ ‖ψhxt(x, t)‖L2((l2,1)×(0,T )) + ‖ψh(l2, t)‖H1(0,T ) + ‖gh(t)‖l2(0,T ) ≤ CC1/2
0 , (3.6)

where C is the constant as described in Theorem 2.2.
Let T be a fixed time, we define the truncation errors τ1, τ2 as follows:∫ T

0

∫ l1

0
((1 + a2

1)θ
h
t − α1g

h
t )φ1dxdt+

∫ T

0

∫ l1

0
θhxφ1xdxdt =

∫ T

0
(θhxφ1)(l1, t)dt+ τ1 (3.7)

∫ T

0

∫ 1

l2

((d+ a2
2)ψ

h
t − α2g

h
t )φ2dxdt+

∫ T

0

∫ 1

l2

ψhxφ2xdxdt = −
∫ T

0
(ψhxφ2)(l2, t)dt+ τ2, (3.8)

where φ1, φ2 are test functions to be described later. The next two theorems will give the exact
measurements of τ1, τ2.

Theorem 3.2. Let T be a fixed time and φ1 be a test function that satisfies

φ1(0, t) = 0, C(φ1) = ‖φ1‖H1((0,l1)×(0,T )) + ‖φ1(x, t)‖L2(0,l1) + ‖φ1(l1, t)‖L2(0,T ) <∞.
(3.9)

If a1, a2, α1, α2 are small and ∆x,∆t are chosen so that they satisfy (2.1), (2.10), and (2.11),
then

|τ1| ≤ CC1/2
0 C(φ1)∆xp, 0 < p ≤ 1, (3.10)

where C is the constant as described in Theorem 2.2.
Proof. For simplicity, we assume T = N∆t for a positive integer N . By using schemes

(1.13)–(1.20) and definitions of θh, gh, we get

(1 + a2
1)θ

h
t − α2g

h
t

= (1 + a2
1)

(
θq+1
j − θqj

∆t
+
δθq+1
j+1/2 − δθqj+1/2

∆t
(x− xj)

)
− α1

g(θq+1
j , ψq+1

j )− g(θqj , ψqj )
∆t

= δ2θq+1
j + (1 + a2

1)
δθq+1
j+1/2 − δθqj+1/2

∆t
(x− xj) = δ2θq+1

j + (1 + a2
1)θ

h
xt(x− xj).

θhx = δθqj+1/2 +
δθq+1
j+1/2 − δθqj+1/2

∆t
(t− tq). (3.11)

So τ1 can be simplified to

τ1 =
N−1∑
q=0

M1−1∑
j=0

∫ tq+1

tq

∫ xj+1

xj

(1 + a2
1)θ

h
xt(x− xj)φ1dxdt
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+
N−1∑
q=0

M1−1∑
j=0

∫ tq+1

tq

∫ xj+1

xj

δθq+1
j+1/2 − δθqj+1/2

∆t
(t− tq)φ1xdxdt

+
N−1∑
q=0

M1−1∑
j=0

∫ tq+1

tq

∫ xj+1

xj

(δ2θq+1
j φ1 + δθq+1

j+1/2φ1x)dxdt−
∫ T

0
θhx(l1, t)φ1(l1, t)dt.

(3.12)

The first two terms can be estimated by using (3.6) and (2.27) to get∣∣∣∣∣∣
N−1∑
q=0

M1−1∑
j=0

∫ tq+1

tq

∫ xj+1

xj

θhxt(x− xj)φ1dxdt

+
N−1∑
q=0

M1−1∑
j=0

∫ tq+1

tq

∫ xj+1

xj

δθq+1
j+1/2 − δθqj+1/2

∆t
(t− tq)φ1xdxdt

∣∣∣∣∣∣
≤ ∆x‖θhxt‖L2((0,l1)×(0,T ))‖φ1‖L2((0,l1)×(0,T ))

+ ∆t

N−1∑
q=0

M1−1∑
j=0

(
δθq+1
j+1/2 − δθqj+1/2

∆t

)2

∆x∆t

1/2

‖φ1x‖L2((0,l1)×(0,T ))

≤ CC
1/2
0 C(φ1)(∆x+ ∆t). (3.13)

In order to estimate the last two terms of (3.12), we introduce a new function θ∗:

θ∗ = δθqj+1/2 +
δθq+1
j+1/2 − δθqj+1/2

∆t
(t− tq) + δ2θqj (x− xj)

+
δ2θq+1

j − δ2θqj
∆t

(x− xj)(t− tq), (x, t) ∈ (xj , xj+1]

× (tq, tq+1], 0 ≤ j ≤M1, 0 ≤ q ≤ N − 1. (3.14)

Then, the results of Theorems 2.2, 2.3 show that

‖θ∗‖H1((0,l1)×(0,T )) ≤ CC1/2
0 . (3.15)

We now simplify the last two terms of (3.12).

N−1∑
q=0

M1−1∑
j=0

∫ tq+1

tq

∫ xj+1

xj

(δ2θq+1
j φ1 + δθq+1

j+1/2φ1x)dxdt−
∫ T

0
(θhxφ1)(l1, t)dt

=
N−1∑
q=0

M1−1∑
j=0

∫ tq+1

tq

∫ xj+1

xj

(
θ∗xφ1 −

δ2θq+1
j − δ2θqj

∆t
(t− tq)φ1 + δθq+1

j+1/2φ1x

)
dxdt

=
N−1∑
q=0

M1−1∑
j=0

∫ tq+1

tq

∫ xj+1

xj

(−θ∗φ1x + δθq+1
j+1/2φ1x)dxdt
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−
N−1∑
q=0

M1−1∑
j=0

∫ tq+1

tq

∫ xj+1

xj

δ2θq+1
j − δ2θqj

∆t
(t− tq)φ1dxdt+

∫ T

0
(θ∗φ1 − θhxφ1)(l1, t)dt.

(3.16)

We estimate the middle term of (3.16) by using (2.11), (2.27), (3.6), and (3.14) to get∣∣∣∣∣∣
N−1∑
q=0

M1−1∑
j=0

∫ tq+1

tq

∫ xj+1

xj

δ2θq+1
j − δ2θqj

∆t
(t− tq)φ1dxdt

∣∣∣∣∣∣
≤ C ∆t

∆x
‖φ1‖L2((0,l1)×(0,T ))

N−1∑
q=0

M1−1∑
j=0

(
δθq+1
j − δθqj

∆t

)2

∆x∆t

1/2

≤ CC1/2
0 C(φ1)∆xp. (3.17)

By the definitions of θ∗, θh, the last term of (3.16) vanishes. We finally estimate the first term
of (3.16) by using the Cauchy–Schwarz inequality, (2.27) and (3.14).∣∣∣∣∣∣

N−1∑
q=0

M1−1∑
j=0

∫ tq+1

tq

∫ xj+1

xj

(−θ∗φ1x + δθq+1
j+1/2φ1x)dxdt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N−1∑
q=0

M1−1∑
j=0

∫ tq+1

tq

∫ xj+1

xj

(
δθq+1
j+1/2 − δθqj+1/2

∆t
(t− tq) + δ2θqj (x− xj)

+
δ2θq+1

j − δ2θqj
∆t

(t− tq)(x− xj)
)
φ1xdxdt

∣∣∣∣∣
≤ C(φ1)

∆t

N−1∑
q=0

M1−1∑
j=0

(
δθq+1
j+1/2 − δθqj+1/2

∆t

)2

∆x∆t

1/2

+ ∆x

 N∑
q=0

M1−1∑
j=0

(δ2θqj )
2∆x∆t

1/2
 ≤ CC1/2

0 C(φ1)∆x. (3.18)

(3.10) follows from (3.12), (3.13), (3.16), (3.17), and (3.18).

Theorem 3.3. Let φ2 be a test function that satisfies

φ2(1, t) = 0, C(φ2) = ‖φ2‖H1((l2,1)×(0,T )) + ‖φ2(x, t)‖L2(l2,1) + ‖φ2(l2, t)‖L2(0,T ) <∞.
(3.19)

If a1, a2, α1, α2 are small and ∆x,∆t are chosen to satisfy (2.1), (2.10), and (2.11), then

|τ2| ≤ CC1/2
0 C(φ2)∆xp, 0 < p ≤ 1, (3.20)

C is the constant as described in Theorem 2.2.
Proof. The proof is similar to the one for Theorem 3.2, and so is omitted.
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IV. CONVERGENCE AND ERROR BOUND

Theorem 4.1. Let {θh}, {ψh} be the approximate solutions constructed in (3.1), (3.2) and T
be a positive time. If ∆x,∆t, a1, a2, α1, α2 satisfy (2.1), (2.10), and (2.11), then there exists a
subsequence {h1} of {h}, functions θ defined on [0, l1] × [0, T ], and ψ defined [l2, 1] × [0, T ],
such that

lim
hl→0

θhl = θ pointwise uniformly on [0, l1]× [0, T ], (4.1)

lim
hl→0

ψhl = ψ pointwise uniformly on [l2, 1]× [0, T ], (4.2)

lim
hl→0

ghl = g(θ, ψ) pointwise uniformly on [0, T ]. (4.3)

Remark 4.1. θ, ψ are unique, the uniqueness will be proved in Theorem 4.3.
Proof. We can use (3.6) to show that the functions {θh}, {ψh} are uniformly bounded and

uniformly equicontinuous on the indicated sets. Appropriate subsequences, therefore, converge
pointwise uniformly, which proves (4.1), (4.2). We now prove (4.3). Let t ∈ (tq, tq+1] for some
q, then

|ghl(t)− g(θhl , ψhl)(t)| ≤ |ghl(t)− ghl(tq)|
+ |ghl(tq)− g(θhl , ψhl)(tq)|+ |g(θhl , ψhl)(tq)− g(θhl , ψhl)(t)|. (4.4)

To estimate the first term of (4.4), we use (3.3) and an estimate similar to (2.19) to get

|g(θhl , ψhl)(tq)− g(θhl , ψhl)(t)|
=
∣∣∣∣g(θq+1, ψq+1)− g(θq, ψq)

∆t
(t− tq)

∣∣∣∣
≤ C∆t


M1∑
j=0

(
θq+1
j − θqj

∆t

)2

∆x

1/2

+

 M∑
j=M2

(
ψq+1
j − ψqj

∆t

)2

∆x

1/2


≤ C∆t1/2


N−1∑
q=0

M1∑
j=0

(
θq+1
j − θqj

∆t

)2

∆x∆t

1/2

+

N−1∑
q=0

M∑
j=M2

(
ψq+1
j − ψqj

∆t

)2

∆x∆t

1/2


≤ CC
1/2
0 ∆t1/2 ≤ CC1/2

0 ∆x
1+p

2 . (4.5)

The other two terms can be estimated similarly, we get

|ghl(t)− g(θhl , ψhl)(t)| ≤ CC1/2
0 ∆x

1+p
2 . (4.6)

Since g(θh, ψh) is continuous for θh, ψh, (4.3) follows from (4.1), (4.2), and (4.6).
We can further prove by using Theorem 3.1 and Theorem 4.1 that there exist new subsequences

{θhl}, {ψhl}, which converge to θ, ψ in somewhat stronger sense. In order to simplify our
notations, we will still use {hl} to represent the new indexes, and here is the theorem.
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Theorem 4.2. Let {θh}, {ψh} be the approximate solutions constructed in (3.1), (3.2) and
T be a fixed time. If ∆x,∆t, a1, a2, α1, α2 satisfy (2.1), (2.10), and (2.11), then there exists a
subsequence {hl} of {h}, such that

lim
hl→0

θhl(x, t) = θ(x, t) weakly in L2((0, l1)× (0, T )), (4.7)

lim
hl→0

θhlx (x, t) = θx(x, t) weakly in L2((0, l1)× (0, T )), (4.8)

lim
hl→0

θhlt (x, t) = θt(x, t) weakly in L2((0, l1)× (0, T )), (4.9)

lim
hl→0

θhl(l1, t) = θ(l1, t) weakly in L2(0, T ), (4.10)

lim
hl→0

θhlx (l1, t) = θx(l1, t) weakly in L2(0, T ), (4.11)

lim
hl→0

ψhl(x, t) = ψ(x, t) weakly in L2((l2, 1)× (0, T )), (4.12)

lim
hl→0

ψhlx (x, t) = ψx(x, t) weakly in L2((l2, 1)× (0, T )), (4.13)

lim
hl→0

ψhlt (x, t) = ψt(x, t) weakly in L2((l2, 1)× (0, T )), (4.14)

lim
hl→0

ψhl(l2, t) = ψ(l2, t) weakly in L2(0, T ), (4.15)

lim
hl→0

ψhlx (l2, t) = ψx(l2, t) weakly in L2(0, T ), (4.16)

lim
hl→0

ghll (t) = gt(θ, ψ)(t) weakly in L2(0, T ). (4.17)

In addition, the functions θ, ϕ inherit the following properties:

‖θ(x, t)‖H1((0,l1)×(0,T )) + ‖θ(l1, t)‖H1(0,T ) + ‖gt(t)‖L2(0,T )

+ ‖ψ(x, t)‖H1((l2,1)×(0,T )) + ‖ψ(l2, t)‖H1(0,T ) ≤ CC1/2
0 . (4.18)

Proof. We will just prove (4.8) in detail; (4.7), (4.9)–(4.17) can be proved similarly. (4.1)
implies that

lim
hl→0

θhl(x, t) = θ(x, t) in distribution sense on (0, l1)× (0, T ), (4.19)

and so

lim
hl→0

θhlx (x, t) = θx(x, t) in distribution sense on (0, l1)× (0, T ). (4.20)

On the other hand, (3.6) proves that there is a new subsequence of {θhlx }, which converges
weakly on L2((0, l1)× (0, T )). To simplify our notations, we still use {θhl} to represent the new
subsequence, so we have

lim
hl→0

θhlx (x, t) = θ̄(x, t) weakly on L2((0, l1)× (0, T )) (4.21)
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for some function θ̄(x, t) ∈ L2((0, l1)× (0, T )). In particular,

lim
hl→0

θhlx (x, t) = θ̄(x, t) in distribution sense on (0, l1)× (0, T ). (4.22)

By uniqueness, θx = θ̄, which proves (4.8). (4.18) is a direct result of Theorem 3.1 and
(4.7)–(4.17).

In the next theorem, we will prove that θ, ψ are solutions of (1.1)–(1.8). In fact, they are
solutions in a sense that is stronger than the sense of distribution, because the test functions φ1, φ2
are in much weaker spaces than C∞0 .

Theorem 4.3. If φ1 satisfies (3.9) and φ2 satisfies (3.19), then the limit functions θ, ψ obtained
in Theorem 4.1 are the solutions of (1.1)–(1.8). In other words, they satisfy∫ T

0

∫ l1

0
((1 + a2

1)θt − α1gt(θ, ψ))φ1dxdt+
∫ T

0

∫ l1

0
θxφ1xdxdt =

∫ T

0
(θxφ1)(l1, t)dt, (4.23)

∫ T

0

∫ 1

l2

((d+ a2
2)ψt − α2gt(θ, ψ))φ2dxdt+

∫ T

0

∫ 1

l2

ψxφ2xdxdt = −
∫ T

0
(ψxφ2)(l2, t)dt, (4.24)

and

θ(0, t) = 0,−k1θx(l1, t) = k(θ(l1, t)− ψ(l2, t)), (4.25)

ψ(1, t) = 0,−k2ψx(l2, t) = k(θ(l1, t)− ψ(l2, t)). (4.26)

Proof. In (3.7), we let {h} be the subsequence {hl} in Theorem 4.2, and let hl → 0. Then
(4.23) is proved by (3.9), (3.10), (4.8), (4.9), (4.10), and (4.17). (4.24) can be proved similarly.
By (3.4), (4.1), (4.2), we have

lim
hl→0

−k(θhl(l1, t)− ψhl(l2, t)) = −k(θ(l1, t)− ψ(l2, t)), pointwise uniformly on [0, T ].

(4.27)

By a similar proof as (4.1), we can prove that

lim
hl→0

θhlx = θ1(x, t) pointwise uniformly on [0, l1]× [0, T ] (4.28)

for some function θ1(x, t) defined on [0, l1]× [0, T ]. Further, we can prove by using (4.18) that

lim
hl→0

θhlx = θ1(x, t) weakly on L2((0, l1)× (0, T )). (4.29)

By comparing (4.8) and (4.29), we conclude that θ1 = θx, therefore,

lim
hl→0

θhlx (x, t) = θx(x, t) pointwise uniformly on [0, l1]× [0, T ], (4.30)

in particular

lim
hl→0

θhlx (l1, t) = θx(l1, t) pointwise uniformly on [0, T ]. (4.31)

So the second part of (4.25) is obtained from (3.4), (4.27), and (4.31). (4.26) can be proved
similarly.

In the next theorem, we will give the error bound estimate.
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Theorem 4.4. Let T be f ixed, d, a1, a2, α1, α2, l1, l2, k1, k2, k be the physical constants de-
scribed in Section I and C is the constant described in Theorem 2.2. Let a1, a2, α1, α2,∆x,∆t
be chosen to satisfy (2.1), (2.10), and (2.11). Let {θh, ψh} be the approximate solutions con-
structed in (3.1), (3.2). Then there exist unique functions θ, ψ obtained in Theorem 4.1, such that
they are the exact solutions of (1.1)–(1.8), and the whole sequences {θh}, {ψh} converge to θ, φ,
respectively, as h→ 0. Moreover, if for any 0 ≤ t ≤ T , we define

η(t) = [‖(θ − θh)(x, t)‖L2(0,l1) + ‖(ψ − ψh)(x, t)‖L2(l2,1)] +
(∫ t

0
(θ(l1, s)− ψ(l2, s))ds

)2

,

(4.32)

then

η(t) ≤ CC1/2
0 (η(0) + ∆x

p
2 ), 0 < p ≤ 1. (4.33)

Remark 4.2. Notice that we actually prove that the whole sequences {θh}, {ψh} converge to
the unique solutions θ, ψ, not just converging subsequences.

Proof. We subtract (4.23) from (3.7), multiply both sides by k1, introduce a new notation
∆θ = θ − θh, take φ1 =

∫ T
t

∆θ(x, s)ds, which satisfies (3.9), and we get

k1(1 + a2
1)
∫ T

0
∆θt

(∫ T

t

∆θds

)
dxdt+ k1

∫ T

0

∫ l1

0
∆θx

(∫ T

t

∆θxds

)
dxdt

= α1k1

∫ T

0

∫ l1

0
(gt(θ, ψ)− ght )

(∫ T

t

∆θds

)
dxdt

+ k1

∫ T

0
∆θx(l1, t)

(∫ T

t

∆θ(l1, s)ds

)
dx+ k1τ1. (4.34)

Similarly, we subtract (4.24) from (3.8), multiply both sides by k2, introduce ∆ψ = ψ−ψh, take
φ2 =

∫ T
t

∆ψ(x, s)ds, which satisfies (3.19), and combine with (4.34) to get

I1 + I2 = I3 + I4 + k1τ1 + k2τ2, (4.35)

where

I1 = k1(1 + a2
1)
∫ T

0

∫ l1

0
∆θt

(∫ T

t

∆θds

)
dxdt

+ k2(d+ a2
2)
∫ T

0

∫ 1

l2

∆ψt

(∫ T

t

∆ψds

)
dxdt, (4.36)

I2 = k1

∫ T

0

∫ l1

0
∆θx

(∫ T

t

∆θxds

)
dxdt+ k2

∫ T

0

∫ 1

l2

∆ψx

(∫ T

t

∆ψxds

)
dxdt, (4.37)

I3 = α1k1

∫ T

0

∫ l1

0
(gt(θ, ψ)− ght )

(∫ T

t

∆θds

)
dxdt

+ α2k2

∫ T

0

∫ 1

t2

(gt(θ, ψ)− ght )

(∫ T

t

∆ψds

)
dxdt, (4.38)
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I4 = k1

∫ T

0
∆θx(l1, t)

(∫ T

t

∆θ(l1, s)ds

)
dt− k2

∫ T

0
∆ψx(l2, t)

(∫ T

t

∆ψ(l2, s)ds

)
dt.

(4.39)

We now estimate I1, I2, I3, and I4. The first term of I1 can be estimated by

k1(1 + a2
1)
∫ T

0

∫ l1

0
∆θt

(∫ T

t

∆θds

)
dxdt

= k1(1 + a2
1)
∫ l1

0
∆θ

(∫ T

t

∆θds

)
dx|T0 − k1(1 + a2

1)
∫ T

0

∫ l1

0
(−∆θ2)dxdt

= −k1(1 + a2
1)
∫ l1

0
∆θ(x, 0)

(∫ T

0
∆θdt

)
dx+ k1(1 + a2

1)
∫ T

0

∫ l1

0
∆θ2dxdt

≥ −k1(1 + a2
1)

2

∫ l1

0
∆θ(x, 0)2dx− k1(1 + a2

1)
2

∫ l1

0

(∫ T

0
∆θ(x, t)dt

)2

dx

+ k1(1 + a2
1)
∫ t

0

∫ l1

0
∆θ2dxdt

≥ −k1(1 + a2
1)

2

∫ l1

0
∆θ(x, 0)2dx+ k1(1 + a2

1)
(

1− l1
2

)∫ T

0

∫ l1

0
∆θ2dxdt. (4.40)

We can estimate the other term of I1 similarly to get

I1 ≥ k1(1 + a2
1)
(

1− l1
2

)∫ T

0

∫ l1

0
∆θ2dxdt+ k2(d+ a2

2)
(

1− l2
2

)∫ T

0

∫ 1

l2

∆ψ2dxdt

− k1(1 + a2
1)

2

∫ l1

0
∆θ(x, 0)2dx− k2(d+ a2

2)
2

∫ 1

l2

∆ψ(x, 0)2dx. (4.41)

We now estimate the first term of I2 to get

k1

∫ T

0

∫ l1

0
∆θx

(∫ T

t

∆θxds

)
dxdt

= k1

∫ T

0

∫ l1

0

(
− d

dt

∫ T

t

∆θx(x, s)ds

)(∫ T

t

∆θxds

)
dxdt

= −k1

2

∫ l1

0

(∫ T

t

∆θx(x, s)ds

)2
∣∣∣∣∣∣
T

0

dx =
k1

2

∫ l1

0

(∫ T

0
∆θx(x, t)dt

)2

dx. (4.42)

We can estimate the other term of I2 similarly to get

I2 =
k1

2

∫ l1

0

(∫ T

0
∆θ(x, t)dt

)2

dx+
k2

2

∫ 1

l2

(∫ T

0
∆ψ(x, t)dt

)2

dx. (4.43)
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We integrate by parts to the first term of I3 to get

α1k1

∫ T

0

∫ l1

0
(gt(θ, ψ)− ght )

(∫ T

t

∆θ(x, s)ds

)
dxdt

= α1k1

∫ l1

0

(
(g(θ, ψ)− gh)

(∫ T

t

∆θ(x, s)ds

))∣∣∣∣∣
T

0

dx

+ α1k1

∫ T

0

∫ l1

0
(g(θ, ψ)− gh)∆θdxdt

= −α1k1(g(θ, ψ)− gh)(0)
∫ T

0

∫ l1

0
∆θdxdt+ α1k1

∫ T

0

∫ l1

0
(g(θ, ψ)− gh)∆θdxdt

≤ α1k1

2
((g(θ, ψ)− gh)(0))2 +

α1k1

2

∫ T

0

∫ l1

0
∆θ2dxdt

+
α1k1

2

∫ T

0

∫ l1

0
(g(θ, ψ)− gh)2dxdt+

α1k1

2

∫ T

0

∫ l1

0
∆θ2dxdt

≤ α1k1

2
((g(θ, ψ)− g(θh, ψh))(0))2 +

α1k1

2
((g(θh, ψh)− gh)(0))2

+ α1k1

∫ T

0

∫ l1

0
∆θ2dxdt+

α1k1

2

∫ T

0

∫ l1

0
(g(θ, ψ)− g(θh, ψh))2dxdt

+
α1k1

2

∫ T

0

∫ l1

0
(g(θh, ψh)− gh)2dxdt. (4.44)

By using (4.5), we can estimate the second and last term of (4.44) as

α1k1

2
((g(θh, ψh)− gh)(0))2 +

α1k1

2

∫ T

0

∫ l1

0
(g(θh, ψh)− gh)2dxdt ≤ C∆x1+p. (4.45)

We now estimate the first and fourth term of (4.44). By the definition of g and a known formula
max{r, 0} = 1

2r + 1
2 |r|, we get

g(θ, ψ)− g(θh, ψh)

= max

{
a1

∫ l1

0
θdx+ a2

∫ 1

l2

ψdx− g̃; 0
}
−max

{
a1

∫ l1

0
θhdx+ a2

∫ 1

l2

ψhdx− g̃; 0
}

=
a1

2

∫ l1

0
∆θdx+

a2

2

∫ 1

l2

∆ψdx

+
1
2

∣∣∣∣∣a1

∫ l1

0
θdx+ a2

∫ 1

l2

ψdx− g̃
∣∣∣∣∣− 1

2

∣∣∣∣∣a1

∫ l1

0
θhdx+ a2

∫ 1

l2

ψh − g̃
∣∣∣∣∣ . (4.46)
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So,

|g(θ, ψ)− g(θh, ψh)|

≤ a1

2

∣∣∣∣∣
∫ l1

0
∆θdx

∣∣∣∣∣+ a2

2

∣∣∣∣∫ 1

l2

∆ψdx
∣∣∣∣+ 1

2

∣∣∣∣∣a1

∫ l1

0
∆θdx+ a2

∫ 1

l2

∆ψdx

∣∣∣∣∣
≤ a1

∣∣∣∣∣
∫ l1

0
∆θdx

∣∣∣∣∣+ a2

∣∣∣∣∫ 1

l2

∆ψdx
∣∣∣∣ . (4.47)

Thus,

α1k1

2
((g(θ, ψ)− g(θh, ψh))(0))2 +

α1k1

2

∫ T

0

∫ l1

0
(g(θ, ψ)− g(θh, ψh))2dxdt

≤ C
(∫ l1

0
∆θ(x, 0)2dx+

∫ 1

l2

∆ψ(x, 0)2dx

)

+ α1k1(a2
1 + a2

2)

(∫ T

0

∫ l1

0
∆θ2dxdt+

∫ T

0

∫ 1

l2

∆ψ2dxdt

)
. (4.48)

So, ∣∣∣∣∣α1k1

∫ T

0

∫ l1

0
(gt(θ, ψ)− ght )

(∫ T

t

∆θ(x, s)ds

)
dxdt

∣∣∣∣∣
≤ C

(∫ l1

0
∆θ(x, 0)2dx+

∫ 1

l2

∆ψ(x, 0)2dx

)

+ α1k1(a2
1 + a2

2)

(∫ T

0

∫ l1

0
∆θ2dxdt+

∫ T

0

∫ 1

l2

∆ψ2dxdt

)
. (4.49)

We do a similar estimate to the other term of I3 to get

I3 ≤ C
(∫ l1

0
∆θ(x, 0)2dx+

∫ 1

l2

∆ψ(x, 0)2dx

)

+ (α1k1 + α2k2)(a2
1 + a2

2)

(∫ T

0

∫ l1

0
∆θ2dxdt+ α2k2(1 + a2)

∫ T

0

∫ 1

l2

∆ψ2dxdt

)
.

(4.50)

Finally, we estimate I4. By using the boundary conditions (3.2), (3.3), (4.25), and (4.26), we
get

I4 = −k
∫ T

0
(∆θ(l1, t)−∆ψ(l2, t))

(∫ T

t

∆θ(l1, s)ds

)
dt

+ k

∫ T

0
(∆θ(l1, t)−∆ψ(l2, t))

(∫ T

0
∆ψ(l2, s)ds

)
dt
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FIG. 2. Temperature functions corresponding to (5.1).

= −k
∫ T

0
(θ(l1, t)− ψ(l2, t))

(∫ T

t

(∆θ(l1, s)−∆ψ(l2, s))ds

)
dt

= k

∫ T

0

(
d

dt

∫ T

t

(∆θ(l1, s)−∆ψ(l2, s))ds

)(∫ T

t

(∆θ(l1, s)−∆ψ(l2, s))ds

)
dt

=
k

2

(∫ T

t

(∆θ(l1, s)−∆ψ(l2, t)ds

)2
∣∣∣∣∣∣
T

0

= − k

2

(∫ T

0
(∆θ(l1, t)−∆ψ(l2, t))dt

)2

. (4.51)

We put the estimates of I1, I2, I3, and I4 back to (4.35) and simplify to get(
k1(1 + a2

1)
(

1− l1
2

)
− (α1k1 + α2k2)(a2

1 + a2
2)
)∫ T

0

∫ l1

0
∆θ2dxdt

+
(
k2(d+ a2

2)
(

1− l2
2

)
− (α1k1 + α2k2)(a2

1 + a2
2)
)∫ T

0

∫ 1

l2

∆ψ2dxdt

FIG. 3. Temperature functions corresponding to (5.2).
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+
k

2

(∫ T

0
(∆θ(l1, t)−∆ψ(l2, t))dt

)2

≤ C(η2(0) + C0τ1 + C0τ2 + ∆x2) ≤ CC0(η2(0) + ∆xp). (4.52)

Since a1, a2, α1, α2 are small, we can assume that

k1(1 + a2
1)
(

1− l1
2

)
− (α1k1 + α2k2)(a2

1 + a2
2) ≥

1
4
,

k2(d+ a2
2)
(

1− l2
2

)
− (α1k1 + α2k2)(a2

1 + a2
2) ≥

1
4
, (4.53)

we then have

η2(t) ≤ CC0(η2(0) + ∆xp), (4.54)

and (4.33) follows. Since we just proved that the whole sequences {θh}, {ψh} converge, therefore
θ, ψ are unique.

Remark 4.3. If in (2.9), we take p = 1, then (2.9) will become the CFL condition, and the
corresponding error bound for the case will be ∆x1/2.

V. COMPUTATIONAL RESULTS

In this section, we will provide some computational results to schemes (1.13)–(1.20). We take
λ = 0.5, a1 = a2 = 0.001, d = k1 = 1, k2 = 0.06, l1 = 0.43, l2 = 0.56, and ∆x = 0.01,∆t =
2∆x2. We first take the following two initial functions:

θ(x, 0) = x2, 0 ≤ x ≤ 0.43, ψ(x, 0) = (1− x)2, 0.44 ≤ x ≤ 1. (5.1)

Then Fig. 1 shows the two temperature functions for the left and right rod at time-steps 0, 20,
40, 60, 80, 100, 200, 300, 400, 500, 600, 700, and 800. We then take the following two initial
functions:

θ(x, 0) = sin
(

2π
0.43

x

)
, 0 ≤ x ≤ 0.43, ψ(x, 0) = 1− cos

( π

0.56
(x− 0.44)

)
, 0.44 ≤ x ≤ 1.

(5.2)

Figure 2 shows the two temperature functions at the same time-steps. Both figures show that the
temperatures tend to stabilize.

The author thanks Professor Endre Suli and Professor Xiao–bing Feng for many valuable
discussions during her visit to IMA—University of Minnesota in June, 1997.
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