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We report here on our numerical study of the two-dimensional Riemann problem for the compressible
Euler equations. Compared with the relatively simple 1-D configurations, the 2-D case consists of a
plethora of geometric wave patterns that pose a computational challenge for high-resolution methods. The
main feature in the present computations of these 2-D waves is the use of the Riemann-solvers-free central
schemes presented by Kurganov et al. This family of central schemes avoids the intricate and time-
consuming computation of the eigensystem of the problem and hence offers a considerably simpler
alternative to upwind methods. The numerical results illustrate that despite their simplicity, the central
schemes are able to recover with comparable high resolution, the various features observed in the earlier,
more expensive computations. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18:

584–608, 2002
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1. INTRODUCTION

We report here on our numerical study of two-dimensional (2-D) Riemann problem for the
compressible Euler equations, following the works of Schultz-Rinne et al. [1, 2], Chang et al.
[3], Zhang and Zheng [4], Lax and Liu [5], and Chang et al. [6].
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Before turning to the 2-D case, we recall the corresponding 1-D setup. The 1-D Riemann problem
could be solved in terms of a succession of centered waves [7]. In particular, the 1-D centered waves
associated with gas dynamics equations consist of shock-, rarefaction-, and contact-waves, [7–9].
The exact (or approximate) 1-D Riemann problem solvers serve as a building block for the large
class of so-called upwind schemes, following the seminal work of Godunov [8]. The other class of
so-called central schemes offers an alternative to upwind methods by avoiding the time-consuming
computation of (approximate) Riemann problem solvers, yet retaining the desired high resolution.
Unlike the 1-D case, however, no explicit Riemann solvers are available in the 2-D case. Indeed, the
2-D Riemann problem separated by 1-D elementary waves offers a plethora of no less than 19
different admissible configurations [1–6], which therefore cannot be used as a building block in the
2-D case. Consequently, 2-D upwind schemes require some sort of dimensional splitting, where 1-D
Riemann problems are solved, one dimension at the time. The advantage of the Riemann-solvers-free
central schemes is therefore further amplified in the 2-D case. By avoiding the intricate and
time-consuming computation of the eigen structures in 1-D and in particular, 2-D problems, we end
up with a considerably simpler and faster class of high-resolution schemes.

Central schemes can be formulated along the lines of the original Godunov’s framework [8],
namely, realizing the evolution of piecewise polynomial solution after each small time step by
its cell averages. To avoid Riemann problem solvers, however, the solution of central schemes
is realized by cell averages computed over staggered cells, which in turn yield numerical fluxes
located inside the smooth part of the piecewise solution. In the original 1-D second-order central
scheme of Nessyahu and Tadmor [10], and its higher-order and 2-D generalizations [11, 12],
cells of typical spatial length �x were staggered in alternate time steps, by being placed �x/2
away from each other. A survey on this class of central schemes can be found in the C.I.M.E.
Lectures Notes [13, pp. 47–82]. In the more recent, less dissipative versions of central schemes
presented in [14–18], staggered cells were placed in a distance of order �(�t) from each other.
The latter versions admit a particularly simple semi-discrete limit by letting �t 2 0. Conse-
quently, alternating cells collapse onto each other in the semi-discrete limit and staggering is
avoided altogether. Let us also mention that there are other derivations of central schemes that
lack any specific interpratation as Godunov/Finite-Volume methods. Most notably, central
schemes could be derived as zero-relaxation limits for a proper subclass of the relaxation
methods presented in [19], or, by combining componenetwise ENO/WENO reconstructions
together with flux splitting advocated in [20].

In Section 2 we provide a brief description of the central schemes proposed in [17], which
have been applied to the 2-D Euler equations of gas dynamics in Section 3. Compared with the
“simple” 1-D configurations, the 2-D case offers 19 different configurations which consist of a
considerably richer variety of 2-D geometric patterns formed by shocks, rarefactions, slip lines,
and contacts. The main feature of the present computation is the use of Riemann-solvers-free
central schemes to resolve this variety of wave formations. Remarkably, the numerical results
reported in Section 3 show that despite the lack of any specific “physical” input beyond the
maximal local speeds, the central schemes recover with a comparable high-resolution, all the
features observed by the earlier, more expensive computations based on upwind schemes.

2. GENUINELY MULTIDIMENSIONAL SEMI-DISCRETE CENTRAL SCHEMES
2.1. Fully Discrete Central Schemes

We consider a general two-dimensional system of hyperbolic conservation laws,

ut � f�u�x � g�u�y � 0. (2.1)
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The computed solution is realized in terms of the cell averages

u� j,k
n :�

1

�x�y �
xj�1/2

xj�1/2 �
yk�1/2

yk�1/2

u�x, y, tn� dx dy,

based on spatial cells Ijk � [xj�1/2, xj�1/2] � [yk�1/2, yk�1/2]. Here and below, (x�, y�) � (��x,
��y) denote the coordinates of the computational grid. To advance the computation to the next
time level at t � tn�1, we proceed with three steps of reconstruction, evolution, and projection.

Starting with the given cell averages u� j,k
n , the first step consists of reconstructing a nonoscil-

latory piecewise polynomial of the form

ũn�x, y� :� �
j,k

pj,k
n �x, y��Ijk

�x, y�, (2.2)

where the �’s are the characteristic functions of the corresponding intervals. Different choices
of polynomial reconstructions result in different types of central schemes. Few choices will be
outlined below in (2.5), (2.6). In the second step, we evolve the piecewise polynomial ũn(x, y)
in time by solving the initial-value problem (2.1), (2.2). Each of the polynomial pieces of ũn(x,
y) centered around the vertices (xj�1/2, yk�1/2) is propagated within a “rectangular cone” of
influence, Dj�1/2,k�1/2, whose boundaries propagate with different right- and left-sided local
speeds, consult the floor plan in Figure 2.1. The computed values of the local speeds aj�1/2,k

� ,
bj,k�1/2

� are specified below at (2.8).
Integrating (2.1), (2.2) over rectangular control volumes erected under the aforementioned

domains, D�� � [tn, tn�1], results in the new cell averages at time t � tn�1, which are denoted,
respectively, by {w� j,k�1/2

n�1 }, {w� j�1/2,k
n�1 }, {w� j�1/2,k�1/2

n�1 }, and {w� j,k
n�1}. These cell averages can be

computed explicitly following the approach in [12], using appropriate quadrature rules to
approximate the flux across the temporal interfaces (consult [17] for details). Next, the new cell
averages, {w� �,�

n�1} are used to reconstruct new nonoscillatory polynomials, {w̃�,�
n�1(x, y)}, and at

this stage we end up with an approximate piecewise polynomial solution at t � tn�1 of the form

FIG. 2.1. Two-dimensional central-upwind differencing.
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w̃n�1�x, y� :� �
j,k

	w̃j,k
n�1�x, y��Djk

�x, y� � w̃j�1/2,k
n�1 �x, y��Dj�1/2,k�x, y� � w̃j,k�1/2

n�1 �x, y��Dj,k�1/2�x, y�

� w̃j�1/2,k�1/2
n�1 �x, y��Dj�1/2,k�1/2�x, y�
.

Finally, we conclude by projecting this computed solution back onto the original cells, which
is again realized in terms of the cell averages

u� j,k
n�1 �

1

�x�y �
xj�1/2

xj�1/2 �
yk�1/2

yk�1/2

w̃n�1�x, y� dxdy. (2.3)

The above derivation results in the second- or third-order fully-discrete central schemes, with
explicit yet complicated formulae. A particular advantage of this type of central schemes,
compared with the original staggered version of central schemes introduced in [12], is the
simplification that could be achieved by taking a semi-discrete limit, letting �t 2 0.

2.2. The Semi-Discrete Limit

Following the approach in [14, 16, 17], we consider the central algorithm described above and
pass to the limit as �t3 0. Notice that the cone of influence, Djk � [tn, tn � �t], falls back onto
the original cell, Ijk, we have started with at t � tn.

The resulting semi-discrete scheme can be written in the conservative form (see [17] for the
detailed derivation),

d

dt
u� j,k�t� � �

Hj�1/2,k
x �t� � Hj�1/2,k

x �t�

�x
�

Hj,k�1/2
y �t� � Hj,k�1/2

y �t�

�y
. (2.4)

Here, the numerical fluxes are obtained using a quadrature formula of an appropriate order for
approximating the integrals across the interfaces of the domains Dj�1/2,k and Dj,k�1/2. We
consider few examples.

A Second-order Method. A second-order method requires a piecewise linear reconstruction,
(2.2), of the form

pj,k
n �x, y� � u� j,k

n � �ux�j,k
n �x � xj� � �uy�j,k

n �y � yk�. (2.5)

Here, (ux)j,k
n and (uy)j,k

n stand for an (at least first-order) approximation to the derivatives ux(xj,
yk, tn) and uy(xj, yk, tn), respectively. To ensure a nonoscillatory nature of the reconstruction
(2.2)–(2.5), one needs to use a nonlinear limiter in the computation of these slopes. This can be
done in many different ways (see, e.g., [21–24]). In this article, we have used van Leer’s
one-parameter family of the minmod limiters [25, 21, 24]

�ux�j,k � minmod��
u� j�1,k � u� j,k

�x
,
u� j�1,k � u� j�1,k

2�x
, �

u� j,k � u� j�1,k

�x �,

�uy�j,k � minmod��
u� j,k�1 � u� j,k

�y
,
u� j,k�1 � u� j,k�1

2�y
, �

u� j,k � u� j,k�1

�y �, (2.6)
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where � � [1, 2], and the multivariable minmod function is defined by

minmod�x1, x2, . . . � :� � minj�xj�, if xj � 0 	 j,
maxj�xj�, if xj 
 0 	 j,
0, otherwise.

Remark. Notice that in the scalar case, larger �’s in (2.6) correspond to less dissipative, but
still nonoscillatory limiters [12, 14, 16, 17]. For systems of conservation laws, no proof of a
nonoscillatory property is available. Nevertheless, a large variety of computations performed
with central schemes confirm stability and lack of spurious oscillations while achieving high
resolution throughout the computational domain. In particular, central schemes owe their
considerable simplicity to implementation of the minmod limiter (2.6) componentwise; no need
for eigen decomposition of the vectors of divided differences. Our numerical experiments
(Section 3, see also [14, 16, 17]) indicate that the optimal values of � vary between 1 and 1.5.

Given the piecewise linear polynomial we can compute the reconstructed values at the
interfaces

uj,k
N :� pj,k

n �xj, yk�1/2�, uj,k
S :� pj,k

n �xj, yk�1/2�, uj,k
E :� pj,k

n �xj�1/2, yk�, uj,k
W :� pj,k

n �xj�1/2, yk�. (2.7)

These interfaces are moving with the corresponding speeds

aj�1/2,k
� :� max��N��f

�u
�uj�1,k

W ��, �N��f

�u
�uj,k

E ��, 0�,

bj,k�1/2
� :� max��N��g

�u
�uj,k�1

S ��, �N��g

�u
�uj,k

N ��, 0�,

aj�1/2,k
� :� min��1��f

�u
�uj�1,k

W ��, �1��f

�u
�uj,k

E ��, 0�,

bj,k�1/2
� :� min��1��g

�u
�uj,k�1

S ��, �1��g

�u
�uj,k

N ��, 0�, (2.8)

where �N and �1 denote the largest and the smallest eigenvalues of the Jacobians (�f/�u) and
(�g/�u), respectively.

Using second-order midpoint rule to approximate the spatial integrals along the faces of side
cells, Dj�1/2,k and Dj,k�1/2, results in the second-order numerical fluxes

Hj�1/2,k
x �

aj�1/2,k
� f �uj,k

E � � aj�1/2,k
� f �uj�1,k

W �

aj�1/2,k
� � aj�1/2,k

� �
aj�1/2,k

� aj�1/2,k
�

aj�1/2,k
� � aj�1/2,k

� 	uj�1,k
W � uj,k

E 
, (2.9)

and

Hj,k�1/2
y �

bj,k�1/2
� g�uj,k

N � � bj,k�1/2
� g�uj,k�1

S �

bj,k�1/2
� � bj,k�1/2

� �
bj,k�1/2

� bj,k�1/2
�

bj,k�1/2
� � bj,k�1/2

� 	uj,k�1
S � uj,k

N 
. (2.10)
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Remark. The computation in (2.8) takes into account the different local speeds from each side
of the x- and y-interfaces. If we further simplify and use a symmetric cone of propagation with
local speeds aj�1/2,k

� :� �max{�aj�1/2,k
� �, �aj�1/2,k

� �}, bj,k�1/2
� :� � max{�bj,k�1/2

� �, �bj,k�1/2
� �}, then

the central scheme (2.4), (2.9)–(2.10) is reduced to the central scheme introduced earlier in [14].
The refinement, introduced in [17], requires a more precise cone of propagation, which
nevertheless avoids any additional information on the eigen structure of the problem.

An Alternative Second-order Method. With the same piecewise linear reconstruction as
before, (2.5), we introduce the corner values

uj,k
NE�NW� :� pj,k

n �xj�1/2, yk�1/2�, uj,k
SE�SW� :� pj,k

n �xj�1/2, yk�1/2�. (2.11)

Replacing the second-order midpoint rule with the trapezoidal rule gives the alternative
second-order numerical fluxes:

Hj�1/2,k
x :�

aj�1/2,k
�

2�aj�1/2,k
� � aj�1/2,k

� �
	f �uj,k

NE� � f �uj,k
SE�
 �

aj�1/2,k
�

2�aj�1/2,k
� � aj�1/2,k

� �
	f �uj�1,k

NW � � f �uj�1,k
SW �


�
aj�1/2,k

� aj�1/2,k
�

2�aj�1/2,k
� � aj�1/2,k

� �
	uj�1,k

NW � uj,k
NE � uj�1,k

SW � uj,k
SE
, (2.12)

and

Hj,k�1/2
y :�

bj,k�1/2
�

2�bj,k�1/2
� � bj,k�1/2

� �
	g�uj,k

NW� � g�uj,k
NE�
 �

bj,k�1/2
�

2�bj,k�1/2
� � bj,k�1/2

� �
	g�uj,k�1

SW � � g�uj,k�1
SE �


�
bj,k�1/2

� bj,k�1/2
�

2�bj,k�1/2
� � bj,k�1/2

� �
	uj,k�1

SW � uj,k
NW � uj,k�1

SE � uj,k
NE
. (2.13)

Remark. The numerical fluxes in (2.12) and (2.13) offer a genuinely multidimensional
discretization by adding the cross-diagonal directions to the Cartesian directions utilized in
(2.8).

A Third-order Method. The third-order scheme is based on a reconstruction of a nonoscil-
latory piecewise quadratic polynomial. One of the possible ways to obtain an essentially
nonoscillatory third-order reconstruction is by using a ENO or Weighted-ENO (WENO)
approach presented in [26, 27]. For a general survey of the highly accurate ENO/WENO
reconstructions we refer the reader to C.I.M.E. Lecture Notes [13, p. 333–381]. The disadvan-
tage of the WENO-type interpolants in this context, however, is that they are based on
smoothness indicators, and thus on an a priori information about the solution, which may be
unavailable. This may result in spurious oscillations or extra smearing of discontinuities.

In this article, we have used an alternative reconstruction, which was proposed in [16]. The
main idea is to apply 1-D nonoscillatory piecewise quadratic interpolants (for examples of such
1-D reconstructions we refer the reader to [28, 11, 16]) in the x- and y-directions, and in the
diagonal directions. The detailed description of this 2-D extension can be found in [16]; see also
[17].
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The numerical fluxes, which correspond to the fourth-order Simpson’s quadrature rule, are

Hj�1/2,k
x :�

aj�1/2,k
�

6�aj�1/2,k
� � aj�1/2,k

� �
	f �uj,k

NE� � 4f �uj,k
E � � f �uj,k

SE�


�
aj�1/2,k

�

6�aj�1/2,k
� � aj�1/2,k

� �
	f �uj�1,k

NW � � 4f �uj�1,k
W � � f �uj�1,k

SW �


�
aj�1/2,k

� aj�1/2,k
�

6�aj�1/2,k
� � aj�1/2,k

� �
	uj�1,k

NW � uj,k
NE � 4�uj�1,k

W � uj,k
E � � uj�1,k

SW � uj,k
SE
, (2.14)

and

Hj,i�1/2
y :�

bj,k�1/2
�

6�bj,k�1/2
� � bj,k�1/2

� �
	g�uj,k

NW� � 4g�uj,k
N � � g�uj,k

NE�


�
bj,k�1/2

�

6�bj,k�1/2
� � bj,k�1/2

� �
	g�uj,k�1

SW � � 4g�uj,k�1
S � � g�uj,k�1

SE �


�
bj,k�1/2

� bj,k�1/2
�

6�bj,k�1/2
� � bj,k�1/2

� �
	uj,k�1

SW � uj,k
NW � 4�uj,k�1

S � uj,k
N � � uj,k�1

SE � uj,k
NE
. (2.15)

In (2.14)–(2.15), the one-sided local speeds aj�1/2,k
� , bj,k�1/2

� are defined in (2.8), and the values
of the u’s are computed in (2.7) and (2.11), using the piecewise quadratic reconstruction {pj,k}
at time t.

Remarks.

1. Time integration. All the aforementioned schemes, (2.4), (2.9)–(2.10); (2.4), (2.12)–
(2.13), and (2.4), (2.14)–(2.15) are semi-discrete schemes. To solve the corresponding
systems of time dependent ODEs, one may use any stable ODE solver. In the examples
below, we use integrate the second- and third-order central schemes using, respectively,
the second-order modified Euler time-discretization and the third-order TVD Runge-Kutta
method [29, 30] (consult [13, pp. 384–394] for a general overview).

2. Simplicity. The Godunov-type central schemes enjoy the particular advantage that the
computation of the midvalues in (2.7) and (2.11) is based on component-wise evaluation
of the numerical derivatives (2.6). Consequently, no (approximate) Riemann problem
solvers are required, and the intricate and time consuming part of computing the eigen-
system of the problem at hand is avoided. In this sense, the simplicity offered by the above
semi-discrete central schemes coupled with one’s favorite ODEs solvers, leads to a class
of easily implemented “black-box” methods for solving 1-D and 2-D systems of conser-
vation laws and related equations governing the evolution of large gradient phenomena
(see [14–17, 31]).

3. Upwinding. The schemes described above are so-called central schemes in the sense that
their solution are realized in terms of cell averages which are integrated across the center
of Riemann fans. At the same time, these schemes also share common features with the
class of upwind schemes, most notably, their solution follow the propagation of left- and
right-going waves emanating from the interfaces between interior discontinuities. These
schemes are therefore referred to as central-upwind schemes in [17].
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To illustrate our point, one may consider the scalar linear advection equation, ut � aux

� buy � 0 with, for example, positive constants a and b. Then the first-order version of
the central-upwind scheme becomes a standard first-order upwind scheme

d

dt
uj,k�t� � �a

uj,k � uj�1,k

�x
� b

uj,k � uj,k�1

�y
.

4. Multidimensional approach. The second-order scheme (2.4), (2.9)–(2.10) can also be
obtained using the so-called “dimension-by-dimension” approach, namely, by adding the
corresponding 1-D central fluxes (similar to the derivation of multidimensional schemes
in [14, 15]).
The third-order scheme (2.4), (2.14)–(2.15), like the second-order scheme (2.4), (2.12)–
(2.13), however, are genuinely multidimensional because of the additional cross-diagonal
terms; for details see [16, 17]. The performed numerical experiments indicate that the
genuinely multidimensional second-order scheme (2.4), (2.12)–(2.13) is more stable and
less sensitive to a choice of piecewise linear reconstruction than the dimension-by-
dimension scheme (2.4), (2.9)–(2.10).

5. Maximum principle. In the scalar case, both second-order schemes (2.4), (2.9)–(2.10) and
(2.4), (2.12)–(2.13), coupled with the nonoscillatory minmod reconstruction (2.2)–(2.6),
satisfy the maximum principle ([17, Theorem 3.1).

3. NUMERICAL EXPERIMENTS

Let us consider the 2-D Euler equations of gas dynamics,

�

�t �




u

v
E

	 �
�

�x �

u


u2 � p

uv

u�E � p�
	 �

�

�y �

v


uv

v2 � p

v�E � p�
	 � 0,

p � �� � 1� � 
E �



2
�u2 � v2�� , (3.1)

for an ideal gas, � � 1.4. Here 
, u, v, p, and E are the density, the x- and y-velocities, the
pressure and the total energy, respectively.

We solve the Riemann problem for (3.1) with initial data

�p, 
, u, v��x, y, 0� � �
�p1, 
1, u1, v1�, if x � 0.5 and y � 0.5,
�p2, 
2, u2, v2�, if x 
 0.5 and y � 0.5,
�p3, 
3, u3, v3�, if x 
 0.5 and y 
 0.5,
�p4, 
4, u4, v4�, if x � 0.5 and y 
 0.5.

(3.2)

According to [3, 5], there are 19 genuinely different admissible configurations for polytropic
gas, separated by the three types of 1-D centered waves, namely, rarefaction- (R� ), shock- (S�),
and contact-wave (J�). The arrows ( ��) and ( ��) indicate forward and backward waves, and the
superscript J� and J� refer to negative, respectively, positive contacts. Consult [1, 2, 4, 6] for
details.
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In this section, we compute all these solutions using the second- and third-order genuinely
multidimensional central schemes, (2.4), (2.12)–(2.13) and (2.4), (2.14)–(2.15). The computa-
tional configuration is identical to the one in [5]: the solution is computed using 400 � 400
gridpoints, and the results are recorded at the final time indicated as T. The CFL number used
is 0.475. Our numerical examples below show the (uniformly distributed) density contour lines
subject to 19 different initial data configurations, the same initial configurations as in [5], and
we refer the reader to Schultz-Rinne et al. [2] for a detailed discussion on the wave formation
in each of these configurations.

Below, we make brief comments for each configuration, comparing our computed results
with the upwind computations in [2] and [5]. Overall, our results based on central schemes
reveal the same detailed information on the variety of wave formations, in a complete agreement
with the upwind schemes. It is rather remarkable that this amount of details is revealed without
any input on the 1-D elementary waves involved, beyond the maximal local speeds. The high
resolution in the central and upwind approaches is comparable, with the only noticeable
difference in contacts and slip lines. As expected, the resolution of the corresponding linear
waves by the upwind schemes, particularly in [2], is somewhat sharper than in the central
computations. The difference in resolution of these linear waves is small and in fact, in certain
cases, consult Configurations 8 and 17 below, the central schemes perform better than the results
reported in [5].

Configuration 1.

R21
�

R32
� R41

�

R34
�

The initial data are

p2 � 0.4 
2 � 0.5197 p1 � 1 
1 � 1
u2 � �0.7259 v2 � 0 u1 � 0 v1 � 0

p3 � 0.0439 
3 � 0.1072 p4 � 0.15 
4 � 0.2579
u3 � �0.7259 v3 � �1.4045 u4 � 0 v4 � �1.4045

Comments. We recover here the same “ripples” in the middle of the left and lower rarefac-
tions observed in [5] and in a sharpened form in [2]. The computed front propagating in between
these two rarefactions is in agreement with [5], and is sharper than the one reported in [2] [Fig.
3.1(a), 3.1(b)].

Configuration 2.

R21
�

R32
� R41

�

R34
�

The initial data are
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p2 � 0.4 
2 � 0.5197 p1 � 1 
1 � 1
u2 � �0.7259 v2 � 0 u1 � 0 v1 � 0

p3 � 1 
3 � 1 p4 � 0.4 
4 � 0.5197
u3 � �0.7259 v3 � �0.7259 u4 � 0 v4 � �0.7259

Comments. The �-limiter (2.6) proves to be over-compressive with � � 2; the spurious
oscillations can be noticed on the left [Fig. 3.2(a)] are avoided in the third-order computation on
the right [Fig. 3.2(b)]. The same secondary “ripples” are observed in all the computations.

Configuration 3.

S21
�

S32
� S41

�

S34
�

FIG. 3.1. (a) 2nd-order scheme, � � 2, T � 0.2; (b) 3rd-order scheme, T � 0.2.

FIG. 3.2. (a) 2nd-order scheme, � � 2, T � 0.2; (b) 3rd-order scheme, T � 0.2.
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The initial data are

p2 � 0.3 
2 � 0.5323 p1 � 1.5 
1 � 1.5
u2 � 1.206 v2 � 0 u1 � 0 v1 � 0

p3 � 0.029 
3 � 0.138 p4 � 0.3 
4 � 0.5323
u3 � 1.206 v3 � 1.206 u4 � 0 v4 � 1.206

Comments. As before, oscillations because of the over-compressive limiter with � � 2 in
Figure 3.3(a) are reduced in the third-order case, and even sharper results are obtained with a
more “mild” limiter parameter, � � 1. The resolution of shocks is comparable to the upwind
results.

FIG. 3.3. (a) 2nd-order scheme, � � 2, T � 0.3; (b) 3rd-order scheme, T � 0.3; (c) 2nd-order scheme, � �
1, T � 0.3.
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Configuration 4.

S21
�

S32
� S41

�

S34
�

The initial data are

p2 � 0.35 
2 � 0.5065 p1 � 1.1 
1 � 1.1
u2 � 0.8939 v2 � 0 u1 � 0 v1 � 0

p3 � 1.1 
3 � 1.1 p4 � 0.35 
4 � 0.5065
u3 � 0.8939 v3 � 0.8939 u4 � 0 v4 � 0.8939

FIG. 3.4. (a) 2nd-order scheme, � � 2, T � 0.25; (b) 3rd-order scheme, T � 0.25; (c) 2nd-order scheme,
� � 1, T � 0.25.
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Comments. Again, � � 2 is over-compressive in Figure 3.4(a), the oscillations are reduced in
the third-order approximation, and sharp results, in complete agreement with those of [2, 5], are
obtained with the usual minmod limiter, corresponding to � � 1.

Configuration 5.

J21
�

J32
� J41

�

J34
�

The initial data are

p2 � 1 
2 � 2 p1 � 1 
1 � 1
u2 � �0.75 v2 � 0.5 u1 � �0.75 v1 � �0.5

p3 � 1 
3 � 1 p4 � 1 
4 � 3
u3 � 0.75 v3 � 0.5 u4 � 0.75 v4 � �0.5

Comments. Same features are picked up by al methods, with similar resolution as in [5]. The
contact obtained in [2] has a better resolution [Fig. 3.5(a,b)].

Configuration 6.

J21
�

J32
� J41

�

J34
�

The initial data are

p2 � 1 
2 � 2 p1 � 1 
1 � 1
u2 � 0.75 v2 � 0.5 u1 � 0.75 v1 � �0.5

p3 � 1 
3 � 1 p4 � 1 
4 � 3
u3 � �0.75 v3 � 0.5 u4 � �0.75 v4 � �0.5

FIG. 3.5. (a) 2nd-order scheme, � � 1.3, T � 0.23; (b) 3rd-order scheme, T � 0.23.
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Comments. The ripples observed in both the NE and SW quadrants, are recovered with a
comparable resolution to the one in [2, 5] [Fig. 3.6(a,b)].

Configuration 7.

R21
�

J32
�

R41
�

J34
�

The initial data are

p2 � 0.4 
2 � 0.5197 p1 � 1 
1 � 1
u2 � �0.6259 v2 � 0.1 u1 � 0.1 v1 � 0.1

p3 � 0.4 
3 � 0.8 p4 � 0.4 
4 � 0.5197
u3 � 0.1 v3 � 0.1 u4 � 0.1 v4 � �0.6259

Comments. The high-resolution is in agreement with the corresponding upwind results in [5].
The contacts in [2] are sharper [Fig. 3.7(a,b)].

Configuration 8.

R21
�

J32
�

R41
�

J34
�

The initial data are

p2 � 1 
2 � 1 p1 � 0.4 
1 � 0.5197
u2 � �0.6259 v2 � 0.1 u1 � 0.1 v1 � 0.1

p3 � 1 
3 � 0.8 p4 � 1 
4 � 1
u3 � 0.1 v3 � 0.1 u4 � 0.1 v4 � �0.6259

FIG. 3.6. (a) 2nd-order scheme, � � 1.3; T � 0.3; (b) 3rd-order scheme, T � 0.3.
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Comments. The semi-circular wavefront is recovered here with sharper resolution than the
one in [5], mainly due to the “genuinely multidimensional” approach taken here, in terms of the
cross-diagonal differences. Again, the bottom and left contacts are sharper in [2] [Fig. 3.8(a,b)].

Configuration 9.

J21
�

R32
� R41

�

J34
�

The initial data are

p2 � 1 
2 � 2 p1 � 1 
1 � 1
u2 � 0 v2 � �0.3 u1 � 0 v1 � 0.3

p3 � 0.4 
3 � 1.039 p4 � 0.4 
4 � 0.5197
u3 � 0 v3 � �0.8133 u4 � 0 v4 � �0.4259

FIG. 3.7. (a) 2nd-order scheme, � � 1.3, T � 0.25; (b) 3rd-order scheme, T � 0.25.

FIG. 3.8. (a) 2nd-order scheme, � � 1.3, T � 0.25; (b) 3rd-order scheme, T � 0.25.
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Comments. As typical with the upwind approach, contacts are resolved better in [29, 5]. The
“bulge” on the SW corner is identical in both central and upwind computations [Fig. 3.9(a,b)].

Configuration 10.

J21
�

R32
� R41

�

J34
�

The initial data are

p2 � 1 
2 � 0.5 p1 � 1 
1 � 1
u2 � 0 v2 � 0.6076 u1 � 0 v1 � 0.4297

p3 � 0.3333 
3 � 0.2281 p4 � 0.3333 
4 � 0.4562
u3 � 0 v3 � �0.6076 u4 � 0 v4 � �0.4297

Comments. There is a sharp resolution of the contact waves, but the resolution in [5] is
somewhat better [Fig. 3.10(a,b)].

Configuration 11.

S21
�

J32
�

S41
�

J34
�

The initial data are

FIG. 3.9. (a) 2nd-order scheme, � � 1.3, T � 0.3; (b) 3rd-order scheme, T � 0.3.
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p2 � 0.4 
2 � 0.5313 p1 � 1 
1 � 1
u2 � 0.8276 v2 � 0 u1 � 0.1 v1 � 0

p3� 0.4 
3� 0.8 p4� 0.4 
4� 0.5313
u3� 0.1 v3� 0 u4� 0.1 v4� 0.7276

Comments. The “ripples” in the NE quadrant are captured in full agreement with [5]. The
same results are strongly peaked in [2]. The limiter parameter � � 1.3 as well as the third-order
results lead to oscillations that are avoided with the standard minmod (� � 1) limiter. The
contact on the left, however, is further smeared compared with [2, 5] [Fig. 3.11(a–c)].

Configuration 12.

S21
�

J32
�

S41
�

J34
�

The initial data are

p2 � 1 
2 � 1 p1 � 0.4 
1 � 0.5313
u2 � 0.7276 v2 � 0 u1 � 0 v1 � 0

p3 � 1 
3 � 0.8 p4 � 1 
4 � 1
u3 � 0 v3 � 0 u4 � 0 v4 � 0.7276

Comments. The resolution of the two contacts is improved by the third-order scheme,
compared to the second-order one. The results are in agreement with upwind computations [Fig.
3.12(a,b)].

FIG. 3.10. (a) 2nd-order scheme, � � 1.3, T � 0.15; (b) 3rd-order scheme, T � 0.15.
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Configuration 13.

J21
�

S32
� S41

�

J34
�

The initial data are

p2 � 1 
2 � 2 p1 � 1 
1 � 1
u2 � 0 v2 � 0.3 u1 � 0 v1 � �0.3

p3 � 0.4 
3 � 1.0625 p4 � 0.4 
4 � 0.5313
u3 � 0 v3 � 0.8145 u4 � 0 v4 � 0.4276

Comments. Should the blip in the NE quadrant should be there? Indeed, this is in agreement
with [2] and [5] [Fig. 3.13(a,b)].

FIG. 3.11. (a) 2nd-order scheme, � � 1.3, T � 0.3; (b) 3rd-order scheme, T � 0.3; (c) 2nd-order scheme,
�v � 1, T � 0.3.
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Configuration 14.

J21
�

S32
� S41

�

J34
�

The initial data are

p2 � 8 
2 � 1 p1 � 8 
1 � 2
u2 � 0 v2 � �1.2172 u1 � 0 v1 � �0.5606

p3 � 2.6667 
3 � 0.4736 p4 � 2.6667 
4 � 0.9474
u3 � 0 v3 � 1.2172 u4 � 0 v4 � 1.1606

FIG. 3.12. (a) 2nd-order scheme, � � 1.3, T � 0.25; (b) 3rd-order scheme, T � 0.25.

FIG. 3.13. (a) 2nd-order scheme, � � 1.3, T � 0.3; (b) 3rd-order scheme, T � 0.3.
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Comments. The resolution of the contact in [5] is slightly sharper than the one achieved by
the central scheme [Fig. 3.14(a,b)].

Configuration 15.

R21
�

J32
�

S41
�

J34
�

The initial data are

p2 � 0.4 
2 � 0.5197 p1 � 1 
1 � 1
u2 � �0.6259 v2 � �0.3 u1 � 0.1 v1 � �0.3

p3 � 0.4 
3 � 0.8 p4 � 0.4 
4 � 0.5313
u3 � 0.1 v3 � �0.3 u4 � 0.1 v4 � 0.4276

Comments. Again, the sharp resolution of the contacts is only slightly less than those in [5].
The lower contact in [2] is sharper, but our result is free of the weak oscillations observed in [2]
at the tip of the shock [Fig. 3.15(a,b)].

Configuration 16.

R21
�

J32
�

S41
�

J34
�

The initial data are

FIG. 3.14. (a) 2nd-order scheme, � � 1.3, T � 0.1; (b) 3rd-order scheme, T � 0.1.
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p2 � 1 
2 � 1.0222 p1 � 0.4 
1 � 0.5313
u2 � �0.6179 v2 � 0.1 u1 � 0.1 v1 � 0.1

p3 � 1 
3 � 0.8 p4 � 1 
4 � 1
u3 � 0.1 v3 � 0.1 u4 � 0.1 v4 � 0.8276

Comments. The ripples, observed between the shock and contact waves, reproduce the same
waveform as in [2, 5]. Here, the shock resolution in [2] is sharper than [5] and the result in
Figure 3.16(b).

Configuration 17.

J21
�

S32
� R41

�

J34
�

FIG. 3.15. (a) 2nd-order scheme, � � 1.3, T � 0.2; (b) 3rd-order scheme, T � 0.2.

FIG. 3.16. (a) 2nd-order scheme, � � 1.3, T � 0.2; (b) 3rd-order scheme, T � 0.2.
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The initial data are

p2 � 1 
2 � 2 p1 � 1 
1 � 1
u2 � 0 v2 � �0.3 u1 � 0 v1 � �0.4

p3 � 0.4 
3 � 1.0625 p4 � 0.4 
4 � 0.5197
u3 � 0 v3 � 0.2145 u4 � 0 v4 � �1.1259

Comments. Here, we obtain sharp resolution of the contact without the spurious vorticities
appearing in [5]. In both cases, one observes the ripple formed in the NW quadrant [Fig.
3.17(a,b)].

Configuration 18.

J21
�

S32
� R41

�

J34
�

The initial data are

p2 � 1 
2 � 2 p1 � 1 
1 � 1
u2 � 0 v2 � �0.3 u1 � 0 v1 � 1

p3 � 0.4 
3 � 1.0625 p4 � 0.4 
4 � 0.5197
u3 � 0 v3 � 0.2145 u4 � 0 v4 � 0.2741

Comments. The resolution of the contacts is almost as sharp as in [5]. The ripples in the NW
quadrant are observed in all computations [Fig. 3.18(a,b)].

FIG. 3.17. (a) 2nd-order scheme, � � 1.3, T � 0.3; (b) 3rd-order scheme, T � 0.3.
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Configuration 19.

J21
�

S32
� R41

�

J34
�

The initial data are

p2 � 1 
2 � 2 p1 � 1 
1 � 1
u2 � 0 v2 � �0.3 u1 � 0 v1 � 0.3

p3 � 0.4 
3 � 1.0625 p4 � 0.4 
4 � 0.5197
u3 � 0 v3 � 0.2145 u4 � 0 v4 � �0.4259

FIG. 3.19. (a) 2nd-order scheme, � � 1.3, T � 0.3; (b) 3rd-order scheme, T � 0.3.

FIG. 3.18. (a) 2nd-order scheme, � � 1.3, T � 0.2; (b) 3rd-order scheme, T � 0.2.
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Comments. As before, ripples are observed in NW quadrant, and only the resolution of
contacts is slightly sharper in [5] [Fig. 3.19(a,b)].
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