RANDOM KEYS FOR JOB SHOP SCHEDULING

James C. Bean
and
Bryan A. Norman
Department of Industrial and Operations Engineering
The University of Michigan
Ann Arbor, Ml 48109-2117

Technical Report 93-7

January 1993

Random Keys for Job Shop Scheduling

James C. Bean and Bryan A. Norman
Department of Industrial and Operations Engineering
University of Michigan
Ann Arbor, MI 48109

January 27, 1993

Abstract

This paper considers the job shop scheduling problem to minimize total tar-
diness given multiple machines, ready times, sequence dependent setups, machine
downtime and scarce tools. We develop a genetic algorithm based on random keys
representation, elitist reproduction, Bernoulli crossover, and immigration style mu-
tation. Computational results on problems from the auto industry are presented.

1 Introduction

Scheduling problems represent a rich domain in discrete optimization. Due to problem
complexity many of these problems cannot be solved using traditional operations re-
search techniques. Several heuristic methods have been applied to these problems with
varied results. Because genetic algorithms have been used successfully to solve discrete
optimization problems, scheduling problems have been a natural genetic algorithm ap-
plication. Genetic algorithms have been applied to scheduling problems by Biegal and
Davern [1990], Kanet and Sridharan [1991], Syswerda [1991], Falkenauer and Bouffouix
[1991), Whitley, Starkweather and Shaner [1991], Dorndorf and Pesch [1992] and Lee
and Hermann [1993] among others. Storer, Wu, and Vaccari [1992] present search and
problem space strategies that could be applied using a genetic algorithm. Most of these
applications use literal permutation encoding strategies. The code in this paper uses a
nonliteral encoding. Literal versus nonliteral encoding is an open research question and
the authors do not make any comparisons or state any conclusions concerning these two
strategies.

Section 2 describes the job shop scheduling problem. The random keys encoding
scheme, as applied to job shop scheduling, is described in Section 3. Sections 4 and 5
present the genetic algorithm and computational results for a set of real problems. Section
6 includes a summary and conclusions.

2 The Job Shop Scheduling Problem

In the general job shop problem there are n jobs to be processed through m machines.
Different jobs may be processed on different sets of machines and there may be precedence
requirements between jobs. The objective is to determine a sequence for placing the jobs
on the machines that optimizes a given evaluation measure. A brief description of job
shop scheduling terminology is presented below. For a more comprehensive discussion of
scheduling problems and terminology see Baker [1974] and French [1982].

A job’s ready time is the time a job is available for scheduling. If the ready time is
zero then the job is available at the beginning of the study horizon. Setup time is the
time required to prepare a machine to begin processing a particular job. Setup time may
be sequence dependent, meaning that the setup time for a job on a machine depends on
which job was previously run on the machine. Machine uptime represents the time that
a machine is available to perform work. If a machine has periods of downtime due to
routine maintenance or breakdowns jobs may only be scheduled on a machine during its
uptime. A job has tool constraints if it requires a special tool or fixture in order to be
processed. If different jobs require the same tool there may be a conflict concerning which

1

job should use a given tool at a particular time.

There are several different measures available for evaluating a job shop schedule. The
measure considered in this paper is total tardiness. A job is tardy if it completes after its
due date. In this case tardiness equals its completion time minus its due date. If a job
completes prior to its due date then it has a tardiness of zero. The algorithms presented
can handle many other objectives such as weighted earliness plus tardiness.

Job shop scheduling problems with a tardiness objective are sufficiently difficult that
the single machine problem with nonzero ready times is NP hard even if the following
simplifying assumptions are made: setup times are not sequence dependent, no machine
downtime, and no special tool requirements. In this paper we consider the more difficult
problem of minimizing total tardiness when there are multiple machines, nonzero ready
times, sequence dependent setup times, machine downtime, and tool constraints.

3 Genetic Algorithm Encoding Using Random Keys

The random keys representation (Bean [1992]) encodes a solution with random numbers.
These values are used as sort keys to decode the solution. Random keys eliminate the off-
spring feasibility problem by avoiding the issue. Chromosomal encodings are constructed
that represent solutions in a soft manner. These encodings are interpreted in the ob-
jective evaluation routine in a way that avoids the feasibility problem. There are other
encodings that use random variates (e.g. Back, Hoffmeister, and Schwefel [1991]) but not
in the manner of random keys. Bagchi et al [1991] explore different scheduling problem
encodings but none that are similar to random keys. The strength of random keys is
its robustness. The approach works for many other problems. Bean [1992] describes the
use for the traveling salesman problem, scheduling, vehicle routing, resource allocation,
and quadratic assignment problems. Bean [1992] shows excellent computational results
for identical machine scheduling and resource allocation and reasonable computational
results for the quadratic assignment problem.

An example of random keys is now provided for the context of job shop scheduling.
For the single machine sequencing problem, generate a uniform (0,1) random deviate
for each job. When such a sequence of realizations is passed to the objective evaluation
routine, sort them and sequence the jobs in ascending order of the sort. For a five job
problem, the chromosome

(.46,.91,.33,.75,.51)

would be sorted to the sequence

321552452

If our objective is to minimize total tardiness, this sequence can then be evaluated by
calculating and summing tardiness. Note that many random key vectors would sort to
the same sequence.

Crossovers are executed on the chromosomes, the random keys, not on the sequences.
Consider two individuals:

(46,.91,.33,.75,51) =3 5 1 5 5 = 4 — 2

and
(.84,.32,.64,.04,.48) =4 -255—-3 > 1.

Using a traditional one-point crossover, assume that the crossover point is after the second
gene. Then the two offspring are:

(.84,.32,.33,.75,.51) =2 2325241

and
(.46,.91,.64,.04,48) =4 > 15553 - 2.

Since any ordered set of numbers can be interpreted as a sequence, all offspring are feasible
solutions.

Through the dynamic of the genetic algorithm, jobs that should be early in the se-
quence evolve low numbers and jobs late in the sequence evolve large numbers. The
random keys simply serve as tags which the crossover operator uses to rearrange jobs.

This approach can be extended to multiple machine problems. Consider the m identi-
cal machine n job problem to minimize total tardiness. For each job generate an integer
randomly in {1,...,m} and add a uniform (0,1) deviate. Now the integer part of any
random key is interpreted as the machine assignment and the fractional parts sorted to
sequence on each machine. A single sort gives the jobs assigned to machine 1 in processing
order, followed by the jobs on machine 2, etc. Assuming that jobs are processed at their
earliest possible time, a schedule can be constructed and evaluated for total tardiness.

We have successfully modified this approach for the complications of nonidentical
machines, nonregular measures, nonzero ready times, sequence dependent setups and
tool constraints. One modification is in the function evaluation routine. In the schedule
construction phase, after the random keys are sorted, a forward pass enforces ready times
and inserts sequence dependent setups. Ready times are also used to bias the random
keys. Jobs with early ready times have a higher probability of being placed early in the
sequence. Tool constraints are captured by updating a tool availability indicator. If a job
requires a given tool then it may not start until that tool is available. Then the tool is
marked unavailable for the duration of the job’s processing.

Successfully solving problems that contain these additional complications is important
because they occur in real job shops. In general, not all jobs are available at the beginning
of the study horizon but arrive throughout the study horizon. Limited numbers of a given
tool may exist and therefore jobs requiring the tool may not be scheduled at the same
time. Sequence dependent setups are a natural result of the different tool requirements
of the different jobs. These complications make the problem more difficult because opti-
mal schedules often contain unforced idle time. In addition, good solutions may require
sequencing that sacrifices local evaluations to obtain a better global evaluation.

4 Genetic Algorithm Operators

There are several types of genetic operators that may be used in the reproduction stage of
a genetic algorithm. For details see Goldberg [1989]. For permutation ordering problems
several specialized operators have been developed to insure the feasibility of generated so-
lutions. Some of these include PMX Crossover (Goldberg [1985]), the subsequence-swap
operator (Grefenstette et al [1985]), the subsequence-chunk operator (Grefenstette [1987]),
other subsequence operators (Cleveland and Smith [1989]), edge recombination (Whitley
et al [1989]), and forcing (Nakano [1991]). Because the random keys encoding preserves
feasibility there is no need to generate specialized operators. The code described here
uses clonal propagation, Bernoulli crossover, and immigration. The random keys repre-
sentation is not limited to these operators and other operators remain to be investigated.
However, these operators have performed well in tests completed at this time.

Clonal propagation (Goldberg [1989]), also called an elitist strategy, is accomplished
by cloning the best individuals from one generation to the next. This method has the ad-
vantage of producing a best solution that is monotonically improving but has the potential
for premature convergence. This is overcome by introducing high mutation rates.

Bernoulli crossover (called parameterized uniform crossover in Spears and De Jong
[1991]) is used instead of the traditional single-point or multiple-point crossover. Two
parents are chosen from the current population. For each gene a biased coin is tossed
to determine which parent contributes its allele to each offspring. Consider the example
given in Table 1.

Immigration is used instead of single gene mutation to replace genetic material that
the current population may have lost. The immigration operator creates a new randomly
generated individual to enter the next generation. This individual may then be selected
as a parent for the crossover operation in the succeeding generation. This introduces a
significant mutation effect which offsets the premature convergence effect of clonal prop-
agation.

Table 1: Random crossover example

ComToss| H{ H| T|H|T
Parent 1 | .46 .91|.33[.75].51
Parent 2 | .84 .32 |.64| .04 | 48
Oftspring | .46 | .91 | .64 |.75| .48

5 Computational Results

To determine the effectiveness of the genetic algorithm eight problems from a large au-
tomaker were tested. The data sets contain approximately 350 jobs that are to be per-
formed on two machines. The jobs have ready times and due dates that range throughout
the study horizon. There is only one copy of each tool and multiple jobs require the
same tool. Thus, there are tooling conflicts. In addition, the problems contain sequence
dependent setups, periods of machine downtime, and periods of tool unavailability. The
scheduling objective is to minimize total tardiness.

Due to the large problem size it was not possible to compute optimal solutions for these
problems. Therefore, the genetic algorithm’s solutions are compared to total tardiness
lower bounds for each of the problems. The lower bound for each problem is the inherent
tardiness for the problem. A job’s inherent tardiness equals the maximum of zero and its
release time plus its processing time minus its due time. Each of the problems was run
ten times using a different random seed for each run. The code was implemented on a
MasPar MP-1 massively parallel computer with 1024 processors.

Test results for the genetic algorithm are presented in Tables 2 and 3. Table 2 contains
results regarding the search for the best possible schedule. Table 3 contains results for
obtaining a solution within 5% of the lower bound. These Tables indicate the number of
generations and cpu time required for each of the problems. Deviation from the total tar-:
diness lower bounds is also presented. Because the objective is to find the best scheduling
sequence, only the best solution obtained by the genetic algorithm is compared to the
lower bound, not the average value for the entire population. As a benchmark for the
genetic algorithm, random search using the random keys encoding was tested. The clonal
propogation factor was set to 1, to retain the single best solution, and the rest of each
generation was created using the immigration operator. The algorithm was run for 1500
generations. This represents about 1400 seconds of cpu time which is approximately 1.5
times as much cpu time as the genetic algorithm required. Table 4 contains results for
the best solution found, number of generations, and cpu time required.

Table 2: Genetic Algorithm Results - Best Solution

Number of Percent Above

Generations CPU Timet Lower Bound
Problem | Min | Median | Max | Min | Median | Max | Min | Median | Max
1 185 189 207 | 468 | 479 524 | 0.9 0.9 1.1
2 224 242 255 | 567 | 613 645 | 2.5 2.8 3.1
3 171 190 202 | 451 484 512 | 1.0 1.0 1.3
4 189 199 230 | 479 | 504 583 | 0.9 0.9 1.2
5 184 191 215 | 466 484 545 | 0.3 0.3 0.6
6 185 189 207 | 468 | 479 524 | 0.9 0.9 1.1
7 171 192 203 | 433 | 485 515 | 0.8 1.0 1.3
8 185 189 207 | 468 479 524 | 0.6 0.6 1.0

Table 3: Genetic Algorithm Results - Within 5% of Lower Bound

tseconds on MasPar MP-1

Number of
Generations CPU Timet
Problem | Min | Median | Max | Min | Median | Max
1 129 139 156 | 326 | 351 395
2 173 183 198 | 437 | 461 501
3 128 140 154 | 323 353 364
4 127 144 152 | 321 364 384
5 129 138 153 | 326 348 387
6 129 137 156 | 326 | 345 395
7 115 141 149 | 291 357 377
8 126 136 153 | 318 343 387

tseconds on MasPar MP-1

Table 4: Random Search Results

Number of Percent Above

Generations CPU Timet Lower Bound
Problem | Min | Median | Max | Min | Median | Max | Min | Median | Max
1 734 949 (1484 | 687 | 888 [1389| 92.2 | 994 | 105.3
2 446 | 1034 | 1313 | 417 | 967 |1229|101.1 | 108.8 | 114.7
3 734 | 949 | 1484 | 687 888 | 1389 92.0 | 100.9 | 106.3
4 226 835 | 1152 212 782 | 1078 | 99.8 { 106.7 | 110.5
5 431 873 | 1152 | 403 817 |[1078 | 91.2 96.6 | 104.2
6 734 | 949 | 1484 | 687 | 888 [1389 | 92.2 99.4 | 105.3
7 607 | 1301 | 1437 | 568 | 1218 | 1345 | 88.9 93.8 |103.3
8 734 949 | 1484 | 687 | 888 | 1389 | 91.6 99.0 | 104.9

tseconds on MasPar MP-1
6 Summary and Conclusions

The genetic algorithm performed well on all eight data sets. The median (over the ten
seeds) best solution found was within 1% of the lower bound for seven of the data sets
and was within 3% for the eighth. The genetic algorithm produced good results across
the different random seed values. The maximum deviation from the lower bound was less
than 4% for all eight data sets.

The data in Tables 2 and 3 support the conclusion that the genetic algorithm requires
increasing amounts of time to obtain solutions that are very close to optimal. Approxi-
mately 35-40% more computation time is required to obtain a solution that is 2-4% above
the lower bound as compared to 5% above the lower bound. The results from Table 4 in-
dicate that random search is not an efficient way to solve this problem. The best random
search solution found in all the testing was 89% above the lower bound. The median val-
ues of the solutions found were almost double the values found by the genetic algorithm.
Figure 1 provides a comparison between the genetic algorithm and the random search for
a single run of problem eight. The genetic algorithm converges to a solution that is very
close to the lower bound much faster than the random search. This same behavior was
exhibited by all the random seeds for each of the eight problems. Due to the large size
of the solution space it is highly improbable that a good solution would ever be selected
randomly. The use of the crossover operator to share good partial sequences was vital to
the success of the genetic algorithm.

1 Random Search
900 - m

Evaluation
1

Genetic Algorithm

700 1 &

Function
A

Objective
'

300 A Lower Bound

g -r

200 Tty

v T v L) T M T T M 1
0 20 40 60 80 100 120 140 160 180 200

Number of Generations
Figure 1: Genetic Algorithm and Random Search Comparison.

7 Acknowledgment

We would like to thank Darrell Whitley for many helpful comments. This research
was supported in part by National Science Foundation grants DDM-9018515 and DDM-
9202849 to the University of Michigan and by the National Science Foundation Graduate

Fellowship Program.

REFERENCES

Bick, T., F. Hoffmeister, and H. Schwefel [1991], “A Survey of Evolution Strategies,”
Proceedings of the Fourth International Conference on Genetic Algo-
rithms, 2-9.

Bagchi, S., S. Uckun, Y. Miyabe, and K. Kawamura [1991], “Exploring Problem-Specific
Recombination Operators for Job Shop Scheduling,” Proceedings of the Fourth
International Conference on Genetic Algorithms, 10-17.

Baker, K. [1974], Introduction to Sequencing and Scheduling, Wiley.

Bean, J. C. [1992], “Genetics and Random Keys for Sequencing and Optimization,”
Technical Report 92-43, Department of Industrial and Operations Engineering, Uni-
versity of Michigan, Ann Arbor, Michigan 48109. To appear in ORSA Journal
on Computing.

Biegal, J. and J. Davern {1990], “Genetic Algorithms and Job Shop Scheduling,” Com-
puters and Industrial Engineering, Vol. 19, 81-91.

Cleveland, G.A. and S. F. Smith [1989], “Using Genetic Algorithms to Schedule Flow
Shop Releases,” Proceedings of the Third International Conference on Ge-
netic Algorithms, 160-169.

Dorndorf, U. and E. Pesch [1992], “Evolution Based Learning in a Job Shop Environ-
ment,” Working Paper. INFORM - Institut fir Operations Research und Manage-
ment GmbH, Pascalstrafie 23, D-5100 Aachen, F.R.G.

Falkenauer E. and S. Bouffouix [1991], “A Genetic Algorithm for Job Shop,” Proceed-
ings of the 1991 IEEE International Conference on Robotics and Au-
tomation, 824-829.

French, S. [1982], Sequencing and Scheduling, Halstead Press.

Goldberg, D. E. [1989], Genetic Algorithms in Search Optimization and Machine
Learning, Addison Wesley.

Goldberg, D. E. and R. Lingle Jr. [1985], “Alleles, Loci, and the Traveling Salesman
Problem,” Proceedings of the First International Conference on Genetic
Algorithms.

Grefenstette, J. J., R. Gopal, B. Rosmaita, and D. Van Gucht [1985], “Genetic Algo-
rithms for the Traveling Salesman Problem,” Proceedings of the First Interna-
tional Conference on Genetic Algorithms.

Grefenstette, J. J. [1987], “Incorporating Problem Specific Knowledge into Genetic Al-
gorithms,” Genetic Algorithms and Simulated Annealing, (ed. L. Davis)
Morgan Kaufman Publishers.

Kanet, J. J. and V. Sridharan [1991], “PROGENITOR: A genetic algorithm for produc-
tion scheduling,” Wirtschafts Informatik, Vol. 33, 332-336.

Lee, C. and J. Herrman [1993], “Decision Support Systems for Dynamic Job Shop
Scheduling,” Proceedings of the 1993 NSF Design and Manufacturing Sys-
tems Conference, Charlotte, NC, Vol. 2, 1119-1123.

Nakano, R. [1991], “Conventional Genetic Algorithm for Job Shop Problems,” Pro-
ceedings of the Fourth International Conference on Genetic Algorithms,
474-479.

Spears, W. M. and K. A. De Jong [1991], “On the Virtues of Parameterized Uniform
Crossover,” Proceedings of the Fourth International Conference on Genetic
Algorithms, 230-236.

Storer, R. H., S. D. Wu, and R. Vaccari [1992], “New Search Spaces for Sequencing
Problems With Application to Job Shop Scheduling,” Management Science, Vol.
38, No. 10, 1495-1509.

Syswerda, G. [1991], “Schedule Optimization Using Genetic Algorithms,” in Handbook
of Genetic Algorithms, (ed. L. Davis), Van Nostrand, 332-349.

Whitley, D., T. Starkweather, and D. Fuquay [1989], “Scheduling Problems and Travel-
ing Salesman: The Genetic Edge Recombination Operator,” Proceedings of the
Third International Conference on Genetic Algorithms, 133-140.

Whitley, D., T. Starkweather, and D Shaner [1991], “The Traveling Salesman and
Sequence Scheduling: Quality Solutions Using Genetic Edge Recombination,” in
Handbook of Genetic Algorithms, (ed. L. Davis), Van Nostrand, 350-372.

10

