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ABSTRACT Success in the protein structure
prediction problem relies heavily on the choice of
an appropriate potential function. One approach
toward extracting these potentials from a database
of known protein structures is to maximize the
Z-score of the database proteins, which represents
the ability of the potential to discriminate correct
from random conformations. These optimization
methods model the entire distribution of alternative
structures, reducing their ability to concentrate on
the lowest energy structures most competitive with
the native state and resulting in an unfortunate
tendency to underestimate the repulsive interac-
tions. This leads to reduced accuracy and predictive
ability. Using a lattice model, we demonstrate how
we can weight the distribution to suppress the
contributions of the high-energy conformations to
the Z-score calculation. The result is a potential that
is more accurate and more likely to yield correct
predictions than other Z-score optimization meth-
ods as well as potentials of mean force. Proteins
2000;41:157-163. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Methods to predict the tertiary structure of a target
protein generally have three parts: there must be a way of
defining a space of possible structures, a search strategy
for exploring this space, and a potential energy function
that is used to evaluate how well the protein sequence
“fits” into any of the possible structures. The choice of a
potential energy function is critical to the success of such
procedures. In the absence of methods for generating
sufficiently accurate potentials using ab initio quantum
mechanical calculations or parameters drawn from small
molecules, most of these potential functions are derived
from the database of known protein structures using one of
two approaches. The first approach is to calculate so-called
“potentials of mean force” (POMF)'~2 based on the quasi-
chemical approximation of Miyazawa and Jernigan.* An
alternative method to deriving potential functions is
through optimization, generally by ensuring that the
energy of the correctly folded structure of a set of training
proteins is as low as possible compared with those of the
incorrect structures.>~'? The ability of the potentials to
predict the structure of novel proteins is measured by
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evaluation the accuracy of the predictions made on an
independent set of test proteins. Implicit in this approach
is that it is necessary not only to stabilize the correct
structures, but also to destabilize incorrect ones.

Goldstein, Luthy-Shulten, and Wolynes (GLW) ap-
proached this problem using both techniques drawn from
spin-glass theory and from Bayesian statistics.”®13:14
According to their work, the important quantity was the
difference in the energy of the correct native state com-
pared to the average energy of the random conformations
(A), divided by the standard deviation of the random-
conformation energies (I'), similar to what has been called
a Z-score in the sequence-alignment literature.'® The best
energy potential would be the potential that maximized
this Z-score averaged over the proteins in the training
database. A number of different implementations of this
approach have been described, including maximization of
(A, )KT, ) as first proposed by GLW?-813:14 and maximiza-
tion of (1/Z,)) ~ !, as suggested by Mirny and Shakhnovich
(MS).1° We (CG) developed an expression to directly
quantify the probability of success in predicting protein
structures as a function of the Z-score.'® We then maxi-
mized the average probability of success over the ensemble
of training-set proteins.

Although performance in true blind tests with real
proteins is the most definitive proof of a method, the small
number of proteins in these tests make the results neces-
sarily anecdotal. In addition, the tests with true proteins
measures the success of the overall prediction package
including the search over protein structures and the
parametrization of the energy function, making it difficult
to compare interaction derivation methods directly. This is
especially problematic as we do not know the true interac-
tion energies that are being approximated. One approach
to this problem using lattice models was introduced by
Thomas and Dill.}” They created a model of proteins as
self-avoiding walks on a cubic lattice, specified an energy

Grant sponsor: College of Literature, Science, and the Arts, the
Program in Protein Structure and Design, the Horace H. Rackham
School of Graduate Studies; Grant sponsor: National Institutes of
Health; Grant number: LMO0577; Grant sponsor: National Science
Foundation; Grant number: BIR9512955.

Ting-Lan Chiu’s present address is Laboratory of Computational
Genomics, Donald Danforth Plant Science Center, 893 N. Warson
Road, St. Louis, MO 63141.

*Correspondence to: Richard A. Goldstein, Department of Chemis-
try, Biophysics Research Division, University of Michigan, Ann Arbor,
MI 48109-1055. E-mail: richardg@umich.edu

Received 5 November 1999; Accepted 11 May 2000



158

function, and then created a lattice-protein database by
finding the ground state of a set of amino acid sequences.
The different methods for deriving interaction parameters
were then applied to this database, and the accuracy of
various methods compared. Using this approach, we can
implement the same search strategy, the same parametri-
zation of the energy function, and create a model that
fulfills the approximations and assumptions of all of the
various models. In this way, we can directly compare the
different methods for deriving potentials, independently of
these other factors.

In our previous article, we used this lattice-model method
to demonstrate that our average probability of success
method generates the most accurate potentials of the
various Z-score based optimization approaches, and that
the potentials calculated using the CG method is signifi-
cantly more likely to be successful at predicting the
structures of nondatabase proteins.'® Even so, in further
work we found that the POMF approach generates slightly
more accurate potentials with a marginally higher success
rate at predicting the correct structure for an independent
test set. One factor was the tendency of the CG method,
like other Z-based optimization schemes, to underestimate
strongly repulsive interactions,'® as noted by a number of
investigators.'®'® In addition, the Z-score is a function of
the distribution of energies of the entire ensemble of
alternative structures. It is not clear how relevant the very
high energy alternative structures are to the prediction
method. In this paper, we again turn to lattice models to
show how this underestimation of the repulsive interac-
tions is an inherent aspect of the Gaussian approximation
used to model the distribution of energies of the random
conformations. We improve our previous approach of maxi-
mizing the average probability of success by incorporating
a refined Z-score calculation procedure that concentrates
on the low-energy alternative structures. We find in tests
with lattice proteins that this new approach generates
potentials that are more accurate than those generated by
previous Z-score based optimization methods as well as
the POMF approach, even when the most questionable
assumptions of the POMF method are satisfied by the
model. We further show that, under these conditions, our
method is significantly more likely to be successful at
predicting the structures of an independent set of test
proteins.

METHODS
Z-Score Based Optimization Methods

In all energy-based prediction schemes, we calculate the
energy of each target sequence m in each of an ensemble of
possible conformations {€,} consisting of a set of random
conformations {€,} as well as the native-state (NS) confor-
mation €yg. Of the set of resulting energies {E}'}, the
conformation of lowest energy is the predicted structure.
The prediction is a success if the lowest energy conforma-
tion is the true native state, that is, all of the random
conformations are higher in energy.

Z-score based optimization methods are based on maxi-
mizing the ability of the potential to discriminate between
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the correct and various incorrect structures. Similarly to
the method used in sequence-alignment statistics, we
calculate the Z-score by comparing the difference between
the native state energy and the average of the distribution
of energies of the other possible conformations with the
width of this distribution. Mathematically, the Z-score for
sequence m, Z,,,is equal to Z,, = A, /T',, where A,, = E™
— Efs, with Efjg is the energy of sequence m in its native
state, E™ is the average of the energies of the random
conformations, and I',, is the width of the distribution of
energies of these random conformations. If the Z-score is
large, it means that the energy of the native state is
well-separated from the energies of the random conforma-
tions, so predicting the correct native state can be done
with confidence. The smaller the Z-score, the more likely it
is that some random conformation will have an energy
lower than that of the native state when calculated with
the model potential, resulting in an incorrect prediction.
We can use this approach to develop a potential from a
training set of proteins with their associated structures by
finding the potential that maximizes the Z-score of the
proteins in the training set.

Maximizing the Probability of Success

In contrast to earlier methods that maximized (A, )XT',,,)
or(1/Z,,)~* where the averages are over the set of training
proteins, we developed a potential to maximize the aver-
age probability of making a correct prediction. Let us
assume that p,,(E,), the distribution of energies of protein
m in the random conformations, is a Gaussian centered at
E™ with standard deviation I',,. For us to be successful in
correctly predicting the structure from among the N
incorrect alternatives, all of the other structures have to
have energy greater than EJs. We assume that the
energies of the incorrect alternatives are randomly and
independently chosen from p,,(E,). P(¥,,), the probability
of “success” for sequence m, is given by'®

Z N
P(&,) = (0.5 +0.5 erf<—g)> (1)
AY

For an ensemble of proteins, we were interested in
generating the largest possible number of correct predic-
tions. As the total number of correct predictions is equal to
the number of attempts times the average probability of
success, we maximized (P(¥,,)) = (0.5 + 0.5 erf(Z,/
V2))Y), the probability that the energy function would
yield a correct prediction averaged over the proteins in the
training set.

New CG Method

As mentioned in the introduction, all Z-based schemes
(including ours) tend to underestimate repulsive interac-
tions. We can see why this happens by considering under
what circumstances Z,, is increased. Maximization of the
Z-score occurs when A, is maximized and I',, is reduced.
I',, is decreased when the energy of the highest-energy
conformations are reduced. This results in a tendency of
the optimization procedure to underestimate the repulsive
interactions found more often in these high-energy states.
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More generally, these Z-based schemes model the entire
ensemble of random states. In fact, the challenge is to
distinguish between the native state and other low-lying
states.

We can reduce the systematic bias to a considerable
amount and concentrate on the low-lying states by sup-
pressing the high-energy states in calculating the Z-
scores. We do it by weighting the contribution of random
conformation r with energy E, by exp( — aE,), where a is a
positive real number, and then model the resulting data by
Gaussian X exp( — oFE). The parameters A,, and I',,, can
thus be extracted for calculating the Z-score, as follows.
Following the weighting, the average of the resulting data,
e’ is given by

E]rv: 1 Er eXP(_GEr)

=TS exp(—oE,) @
with 2" similarly given by
N | E?exp(—akE,
Som _ 1 p( ) 3)

& T3V exp(—akE,)

Modeling the resulting data by p,,(E,) X exp(— oF,),
Est(e”) and Est(e2"), the expected values of & and &2, are
given by

(E. - E}Y
J2.E, eXp(—ocE,)eXp(— 7>d »

Eab(@™) — arz,
e = i
f* % exp(_o‘Er)exp - T dEr
=E"— ol? (4)
and
o0 2 (Er - E:n)z
I~ . Eexp(—aE,)exp| — oz dE,
—omy _m
Bstler) == e
J7w exp(—ak,)exp| = — o |dE,
=12 + (E" — ol%)% (5)

orI'2, = Est(e?") — (Est(@™)?and A,, = Est(@”) + ol?,
— ERs. Equating calculated and estimated values of e
and 2" leads to

2 =g — (em)? (6)
and

We can obtain A, and I',,, using Egs. (6) and (7), calculate
the value of Z,, = A, /T,,, and compute P(¥,,) using Eq.
(1). We then can adjust the potential to maximize (P(¥,,)).
Note that the new CG method is equivalent to the older CG
method when a = 0.

Potentials of Mean Force

The most common approach toward extracting interac-
tion potentials from a training dataset is the potential of
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mean force method. According to this approach, the con-
tact potential between residue types a and b separated by
k peptide units along the chain is given by

ab
fi (S)] ®)

AE®(s) = —kT ln[ o)

where s is the spatial distance between residues a and b;
f%(s) and f,(s) denote the relative frequencies of ab
contacts and all amino acid pair contacts observed in the
database for given values of k£ and s, respectively.®19-21
£%%(s)is equal to n%%, the number of ab pairs at a distance s,
divided by the total number of ab pairs, n%?; f,(s) is equal to
n, the number of pairs at a distance s, divided by the total
number of pairs, n,. To account for small datasets, the
value of f “®(s)/f(s) is estimated as

(L yn (e

fils) ~ \1+n¥c)ny  \1+n¥e)n®®

with ¢ = =.'° The value of o reflects the relative impor-
tance given to the pre-data estimate of f “®(s)/f (s) = nJnp
and the value calculated based on the data alone.

Tests With Lattice Proteins

Given these different approaches to derive potential
energy functions, we wished to identify the approach that
generates the most accurate energy functions and are the
most successful at predicting protein structures. To ad-
dress this issue, we applied the method pioneered by Dill
using lattice models.’” The basic idea is to imagine a
reality where proteins are described by self-avoiding ran-
dom walks on lattices, and where the energy function is
specified in advance. We can generate a synthetic database
of random sequences and their corresponding native states.
We then determine the accuracy with which scientists
living in this lattice world could reconstruct the true
energy function by applying one method or another to the
synthetic database. We can also see how successful these
scientists would be in predicting the structure of other
lattice proteins based on their approximate energy func-
tions. Although obviously simplified, the use of lattice
models provides us with a method to evaluate the various
optimization methods without the complications and limi-
tations inherent when dealing with a restricted set of real
proteins and where the interactions are known with
limited accuracy. Although success with lattice models
does not guarantee similar performance for predicting the
structure of biological proteins, the hope is that insights
obtained with the lattice models can be applied to this
more complicated problem.

Our lattice model consists of a chain of 27 monomers,
confined to a 3 X 3 X 3 three-dimensional maximally-
compact cubic lattice, with each monomer located at one
lattice point. There are 103,346 possible conformations
represented by the set of self-avoiding walks unrelated by
rotations or reflections. We assume that the energies of the
various conformations are given by a simple contact en-
ergy of the form:
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E = ) yaslsls, shu(l = ry) (10)
@

where yy5(s4;, ;) is the contact energy when amino acid
dA; at position i in the sequence is in contact with amino
acid 54, at position j, and u(1 — r;)) is a step-function equal
to 1 if nonsequential amino acid locations i and j are in
contact, that is, on adjacent lattice points. It is assumed
that the true energy function for these lattice proteins was
the one developed by Miyazawa and Jernigan (MJ).* The
conformation of lowest energy is assumed to be the native
state. All of the other 103,345 conformations make up the
set of random conformations.

We assembled three independent training sets of 750,
1,000, 2,500, and 5,000 27-residue proteins, each protein
with a random sequence. For each training protein m, we
calculated the energy of all 103,346 conformations, consid-
ered the structure of lowest energy to be the native state,
and calculated A, T',,,, and Z,, = A, /T,,. We then used
each of the training sets to estimate the interaction
parameters y(d;, s4,) using a variety of different methods
including maximizing the value of (A,,)XT,,) as first pro-
posed by GSW, maximizing the value of (1/Z,)) !, as
suggested by MS, as well as the simplest procedure,
maximization of (Z,,). We also maximized (P(%,,)), the
probability of success, calculated using both the CG ap-
proach and the new CG approach described previously.
The estimated potentials were assumed to be symmetric
(i.e., y(dd,, ;) = v(d;, o,)), resulting in 210 parameters to
be estimated. As the Z-scores are unchanged by additive or
multiplicative factors applied to y(si;, s4), we set two
interactions equal to their corresponding MdJ potentials
and optimized the other 208 interaction potentials using
the quasi-Newton algorithm of the NAG software package
(Numerical Algorithms Group Ltd., Oxford, UK).

We also estimated the potentials using the POMF
approach. To apply this method in a fair manner to the 3 X
3 X 3 three-dimensional cubic lattice model, two modifica-
tions are necessary. Firstly, because the contact potentials
in the model only depend upon the types of amino acids,
the £ dependence in POMF method should be averaged out
when applied to the lattice model. Secondly, in the lattice
model, pairs of noncovalently connected amino acids are
either interacting if they are in contact (on adjacent lattice
sites) or not interacting. For this reason, there are two
possible values of s, corresponding tos = 1 (contact, C) or
s > 1 (noncontact, N). We calculate the energy for these
two situations, and subtract the noncontact potential from
the contact potential to obtain the potential for a given pair
of amino acids in contact relative to the same pair not in
contact.

For the 3 X 3 X 3 three-dimensional cubic lattice model,
there are always 28 contacts formed out of 156 pairs of
residues that can possibly be in contact. n, _ ;/n, is there-
fore equal to 28/156, whereas n, _ o/n, = 128/156. kT in
Eq. (8) is a multiplicative constant that does not affect the
accuracy of the potential or the ability to discriminate
between various protein conformations.

Once the various estimates of y(,;, s1;) are made, we use
two different measures to evaluate the success of the
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Fig. 1. Correlation coefficients as a function of the a value for various

database sizes: datasets of 750 sequences (@), 1,000 sequences (4),
2,500 sequences (O), and 5,000 sequences (<). Error bars represent the
variation of results among three independent sets of equal size.

estimation. The first is to ask how well do the estimated
contact potentials agree with the true yy;(s4;, #;) potential
used to construct the database? Because we are not
interested in constants of proportionality, we calculate the
correlation coefficient between the true parameters and
the estimated parameters. More important is how well
these potentials work at predicting the structure of pro-
teins not in the training set. For each of the training sets,
we prepared a separate 1,000-protein test set of random
sequences, and find the true native state of these se-
quences in the same manner as for the training set. We
then calculate the energy of all 103,346 conformations
using the various estimates of the contact parameters, and
take the conformation of lowest energy with these esti-
mates as the predicted structure. We then compute the
success rate, that is, the fraction of the proteins in the test
set whose structure is correctly predicted.

RESULTS

In contrast to the various other methods, the New CG
approach has one more adjustable parameter, a. Figure 1
shows the correlation coefficient of the potentials derived
using the new CG method compared with the true MdJ
potentials as a function of a for different sizes of the
training database. As can be seen, the inclusion of the
parameter results in an increased ability to extract more
accurate potential functions compared with the original
CG method (o« = 0). This translates directly into an
improved ability to predict the structure of the proteins in
the test set, as shown in Figure 2. The increase in the
accuracy of the predictions is considerable: from an aver-
age of 67% prediction accuracy to an average of approxi-
mately 84% accuracy for the largest training sets.
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Fig. 2. Prediction accuracy as a function of the « value for various
database sizes: datasets of 750 sequences (@), 1,000 sequences (4),
2,500 sequences (O), and 5,000 sequences (<). Error bars represent the
variation of results among three independent sets of equal size.
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Fig. 3. Average effective number of states, defined in Eq. (11), as a
function of « for one of the 5,000-sequence datasets. For a = 0, (N
equals the total number of structures. As some of the sequences in the
dataset fold into the same structure, this total is equal to 4,878.

There is a tendency for reduced performance with large
values of «, especially for the smaller training sets. As «
increases, fewer random conformations contribute to the
calculation of Z,,. This is shown in Figure 3, which shows
the average effective number of states (N as a function
of a for one of the datasets of size 5,000, with (V¢ defined
as
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Fig. 4. Optimal potentials derived by the CG method (O) and new CG
method at o« = 1.4 (@) compared with the “correct” MJ potential.
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For larger values of « there is a succeptability to overtrain-
ing, as the optimization procedure is increasingly able to
optimize for these few particular random conformations.
This is less of a problem for the larger training sets.

As mentioned in the introduction, the earlier CG method
tended to underestimate the value of the destabilizing
interactions, as shown in Figure 4 (open circles).'® This
consistent underestimation was also observed in other
Z-score optimization methods.'® The new CG method, in
contrast, tends to do a better job estimating these poten-
tials (Fig. 4, filled circles). It is this increased accuracy that
results in the improved performance in structure predic-
tion.

Table I details a comparison between the different
estimation strategies for a 5,000-protein training set of
proteins, as measured by average correlation coefficients
with the true MdJ potential as well as average prediction
accuracy on a 1,000-protein test set. Especially as mea-
sured by prediction accuracy, the new CG method with a =
1.4 has a significantly higher success rate than any of the
other Z-score based optimization schemes as well as the
Potential of Mean Force.

DISCUSSION

The first implementation of this approach maximized
(AY(T'), where the averages are over the database proteins,
to enable a closed-form solution for the optimal energy
function. In contrast, Mirny and Shakhnovich (MS) maxi-
mized the harmonic average of individual Z-scores to
obtain the optimal potential for a set of proteins, motivated
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TABLE 1. Comparison of Various Methods’

Method Correlation coefficient Prediction accuracy
GLW 0.938 53.1%
Z-avg 0.939 53.8%
MS 0.946 56.0%
CG 0.965 63.9%
POMF 0.987 68.7%
New CG 0.993 82.9%

TAverage correlation coefficients between the potentials derived by
various methods and the “true” MdJ potential. These methods include
maximization of (A, AT, ) (GLW), (Z,,) (Z-avg), (1/Z,,) ~ * (MS), maxi-
mizing the probability of a successful prediction using the previous CG
approach (CG) and the New CG approach described in this paper (a =
1.4) (new CG), as well as calculating the potential using the potential
of mean force approach (POMF). Also shown is the average percentage
of correct predictions made on the test database using the variously
derived potentials. All results are based on 5,000-sequence training
sets and 1,000-sequence test sets.

by the desire for proteins with low Z-scores to dominate
the averaging procedure.'® This averaging procedure al-
lowed us to concentrate on the proteins with intermediate
Z-scores rather than the ones with extremely low or high
Z-scores, thus giving less weight to proteins whose predic-
tions are either highly unlikely or overly easy.

In the development of these potentials, the distribution
of interactions in folded proteins is assumed to represent
an uncorrelated Boltzmann weighting of the interaction
energy. Although these potentials have achieved some
degree of success, they suffer from a number of problems.
The theoretical justification for this approach is difficult
and nonintuitive.*?2-?3 In addition, the potentials of mean
force generally assume statistical independence of the
various interactions. This is quite problematic, both for
trivial reasons (if hydrophobic residues are buried away
from the surface to avoid interactions with the solvent,
they will tend to be clustered near each other, causing a
greater chance that they will be in contact even in the
absence of interactions between them) and deeper reasons
(the consistency principle of Go and the principle of
minimal frustration imply that correlations between inter-
actions may arise in order to facilitate the folding pro-
cess.?*2?% The growing use of more complicated potential
energy functions and information derived from alternative
sources (such as experimental results) will make assump-
tions of statistical independence increasingly invalid.

It has been proposed that the underestimation of the
repulsive interactions in optimized potentials results from
the random error'® or because of overoptimization of the
potentials.'® We propose the reason for this systematic
bias is that, as we maximize the Z-score (and thus reduce
I'), we overstabilize the high-energy random structures,
resulting in the underestimation of the repulsive poten-
tials. This is supported by the observation that we can
reduce the systematic bias to a considerable amount by
suppressing the high-energy state contribution to the
Z-score calculation. Using this approach, we improve our
previous CG approach by incorporating a refined Z-score
implementation procedure into the calculation of the aver-
age probability of success. As can be seen in Table I, this
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Fig. 5. The normal probability plot showing the cumulative distribution
of the energies of a typical set of random structures (- - -), compared with
the models generated using the CG (——) and New CG methods (— —-).

new CG method reproduces the “real” potential with the
correlation coefficient as high as 0.993. This improved
method generates potentials that are more accurate than
those generated by other potential derivation methods
including previous Z-score based optimization methods as
well as the potential-of-mean-force approach.

There is another advantage to focus on the lower-energy
part of the Gaussian distribution. As the precision of our
calculation of the average probability of success is espe-
cially dependent on the lower energy tail, this indicates
that there might be an advantage to more accurately
modeling this part of the distribution. Figure 5 shows a
normal probability plot showing the cumulative of the
distribution of the energies of a typical set of random
structures, compared with the models generated using the
CG and new CG methods. A normal probability plot will be
a straight line plot, to within sampling error, if Gaussian is
a good representation of p,,(E,). As can be seen, the new
CG method captures the distribution of the low-energy
states better than the previous Gaussian representation.

We can understand the existence of the optimal value of
a by considering how systematic bias and random bias
vary as « is modified. The new CG is completely identical
to CG when « is equal to zero. Even though the systematic
bias is reduced as « is increased, random bias increases
because of the fall of the effective number of states
contributing to the calculation of the averages, resulting in
reduced accuracy as well as a strong dependence of the
potentials on the training set, as shown in Figures 2 and 3.
As o becomes larger, the Z-score calculation becomes
dominated by the few alternative low-energy conforma-
tions, similar in spirit to the optimization procedure of
Crippen.®%%11 The danger is that the small number of
alternative conformations can induce sampling errors,



GENERATING IMPROVED POTENTIALS

especially for small datasets. Incorporation of a as an
additional parameter allows us to adjust the number of
alternative states being considered, interpolating between
giving too much emphasis to thermodynamically-irrel-
evant high-energy conformations or to the fewest low-
energy states.
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