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ABSTRACT The growth in protein sequence
data has placed a premium on ways to infer struc-
ture and function of the newly sequenced proteins.
One of the most effective ways is to identify a
homologous relationship with a protein about which
more is known. While close evolutionary relation-
ships can be confidently determined with standard
methods, the difficulty increases as the relation-
ships become more distant. All of these methods rely
on some score function to measure sequence similar-
ity. The choice of score function is especially critical
for these distant relationships. We describe a new
method of determining a score function, optimizing
the ability to discriminate between homologs and
non-homologs. We find that this new score function
performs better than standard score functions for
the identification of distant homologies. Proteins
2000;41:498-503. ©2000 Wiley-Liss, Inc.
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INTRODUCTION

The various genome projects have provided us with a
plethora of new protein sequences with unknown struc-
ture and function. The first step in analyzing such a
sequence is often a search for homologous proteins about
which more is known, with the expectation that these
proteins share a common structure and might have similar
functions or mechanisms. In addition, identification of
evolutionary relationships can be used to understand the
evolutionary history of these sequences, as well as identify
selective pressure on different parts of the protein chain.
This can provide important clues about structure and
function.

Sequence comparisons are now routine, taking advan-
tage of sophisticated software such as FASTA,* BLAST,>?
and SSEARCH.* All of these methods rely on the choice
of an appropriate method to compute an alignment score,
generally of the form

S = E ni,j’yi,j + ngap-I’Ygap-I + ngap-E’Ygap-E (1)

iJ
where n, ; refers to the number of times that amino acid
type i is aligned with amino acid type j, n,,,; is the total
number of gaps in the alignment, n,,, is the total
number of residues in each gap beyond one, and v; ;, Ygap.1,
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and v, i represents the contribution to the score for any
amino acid match or mismatch, initialization of a gap, and
extension of a gap, respectively. v, ; is known as the score
function, substitution matrix, or exchange residue matrix,
while v,,, 1, and .., i represent the gap penalties.

For any pair of proteins, the optimal alignment that
maximizes the total score can be done quickly, using
standard dynamic programming techniques.® The maxi-
mum possible score for a given pair of proteins is then used
to determine whether the two proteins are homologous.
This is often done by computing such quantities as p(S, >
x), the probability that a random pair of proteins of the
same length would have that score or higher, E, the
expected number of random proteins in the database that
would have at least that score, and P, the probability that
there is at least one random pair with a higher score.
Smaller values of p(S, > x), E, and P indicate a higher
likelihood that the given pair is in fact homologous.

The first commonly used score matrices were the PAM
(percent accepted mutations) series developed by Dayhoff
and co-workers.® Others such as those developed by Gon-
net et al. (GCB)” and Jones et al. (JTT)® have applied
Dayhoff et al.’s method to larger sequence datasets. Heni-
koff and Henikoff used a dataset of aligned sequence
blocks to construct their popular BLOSUM62 matrix.®
Overington and coworkers used Henikoff and Henikoffs’
cluster method to create a score matrix (STR) where the
protein sequences were aligned based on their observed
structures.*®

While identifying closely related homologs is relatively
easy with any of the commonly used score matrices, the
choice of method becomes more important as the diver-
gence increases.'! Current matrices can detect homologies
among approximately half of all newly discovered genes. It
is likely that there are many more distant homologies that
still cannot be detected with current score functions.
Recently various iterative approaches such as PSI-
BLAST*? have been developed where sets of homologs are
used to develop a statistical model that is then used to
identify further homologs. Although these approaches are
justifiably gaining in popularity, they still rely on the
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identification and alignment of an initial set of homologous
proteins using standard methods. In addition, these itera-
tive methods require a set of homologs that may not
always be available. For these reasons, the development of
score functions for pairs of sequences remains important.

Current score functions have a number of limitations.
Firstly, the standard alignment score functions assume
that each location evolves in a manner independent of all
other locations. In reality, many correlations can exist,
both because of residues that interact structurally or
functionally and through higher-order correlations across
extended structures. A more serious limitation is that the
score functions are computed in a manner inconsistent
with how they are actually used. The score functions are
generally derived from a database of properly aligned
proteins, often only using sections of the protein that can
be confidently aligned. Statistics are not gathered on
alignments between random sequences. These score func-
tions are used, however, to discriminate between opti-
mally (but possibly incorrectly) aligned homologs from
optimally aligned random sequences, where the optimal
alignment is itself dependent upon the score function.
There may be significant differences between optimal
alignments and the correct alignments. In addition, the
alignment is generally performed over significant parts of
the proteins involving regions of varying similarity. A
score function derived from less variable regions may not
be appropriate for an alignment that includes more highly
variable regions. Finally, the success of the score function
is critically dependent upon the choice of a gap penalty.
Unfortunately, it is difficult to calculate a priori what this
penalty should be.

In this study, we describe a new procedure to generate a
score function optimized to detect distantly related pairs of
protein sequences. A training set of distant homologs was
developed based on the Cluster of Orthologs Groups (COG)
database of Koonin and co-workers.'> We additionally
create four independent test sets of homologous proteins,
two representing distant homologs (percentage identity
less than 25%) and two with closer homologs (percentage
identity between 28 and 40%). We generated alignments
between homologous and non-homologous proteins in the
training set and maximized the ability of the score func-
tion to discriminate between homologous and non-homolo-
gous pairs. As the alignments are themselves a function of
the score function, this process is iterated. Results with
the independent test sets demonstrate the superiority of
the resulting score function compared with other com-
monly used score functions for the detection of distant
homologies.

METHODS
Theory

We sequentially align a target protein A, with each of
the proteins in a dataset of size D, achieving a distribution
of scores {S,} as computed with Equation 1. The score for
the alignment of the target protein and a putative homolog
is x. We wish to characterize the significance of this score
by calculating the likelihood that this score or higher
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Fig. 1. Value of (C) averaged over the training dataset and test
dataset of distant homologs during the optimization procedure.

would be obtained by a random match. We first compute
the Z-score, defined as

_ x—(5) @
USH — (S,

where the averages are over the alignments of the target
protein with the ensemble of random non-homologous
proteins in the dataset. By using the Z score, we automati-
cally account for variations in the expected score with the
length of the proteins. In addition, the value of Z will not
be appreciably affected if a few accidental distant ho-
mologs are included in the set of random proteins.

We can represent the distribution of scores for un-
gapped®!*!® and gapped alignments'® by an extreme
value distribution (EVD).'” In this case, the probability
that a given random score S, would be equal or greater
than x is given by

s,
pS,>x)=1- f p(x)dx

=1 — exp(—exp(—aZ — B)) 3)

a = 1.28 and B = 0.58 for a perfect EVD,'® although these
parameters are generally adjusted based on the observed
distribution. For a search of a database of size D, the
expected number of scores between the target protein and
random pairs is equal to £ = Dp(S, > x). In this study,
we use a value of D = 100,000. Assuming a Poisson
distribution, the probability P of observing at least one
alignment with score equal to or greater than x is given by

P=1-exp(—E) (4)

Both the E-value and the P-value depend upon the size of
the database being searched. E-values range from 0 to D,
while P-values range from 0 to 1.

We are interested in optimizing the ability of a score
function to discriminate between homologous and non-
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TABLE I. OPTIMA Score Matrix Achieved at the Tenth Iteration®

A 36

R -9 56

N -19 4 59

D -20 -18 18 65

C 6 —29 —-30 —30 99

Q -3 12 2 2 -30 46

E -10 3 3 20 -39 19 40

G 4 -18 7 -10 —-29 -20 -23 67

H -19 3 12 -7 -29 3 2 -18 86

I -5 -28 -32 -3¢ -6 -30 —-33 —41 -28 35

L -7 —20 —-32 —-43 -6 -23 —31 —42 -27 28 32

K -10 31 1 -4 -29 15 14 -18 -7 -31 -21 37

M -9 -10 -19 -3 -8 1 -21 -30 -19 12 24 -12 51

F -19 -30 -29 -33 -18 -29 -32 -32 -8 8 17 —-29 2 57

P -5 -18 -17 -7 -30 -11 -7 -18 -18 —-30 -33 -10 -21 -39 74

S 12 -1 1 4 -100 o0 -1 2 -9 -2 -2 3 -10 -19 -8 36

T o -8 o0 -10 -7 -7 -6 -17 -20 -8 -13 -8 -7 -18 —11 18 48

W —29 -29 -39 —40 -18 -19 -29 -19 -18 -28 -15 —-30 -8 14 —38 —29 —19 110

Y -19 -15 -19 -20 -18 -9 -21 -29 2 -8 -2 -17 -9 37 -28 -19 —17 22 69

\4 6 —-32 -31 -31 -6 -19 -28 -30 -29 35 18 -23 10 0 —18 —22 6 —28 -9 38
AR N D ¢C Q E G H I L X M F P S T W YV

2The elements are multiplied by ten to increase precision; corresponding gap penalties are —120 and —20.

TABLE II. Comparison of the Various Score Matrices and Gap Penalties on PFAM and COG Test Sets of Distant Homologs
(Percentage Identity Less Than 25%) and Closer Homologs (Percentage Identity Between 28% and 40%) as Evaluated With
Average Confidence Value ((C)), Average Probability That a Random Score Would Be Higher Than The Known Homolog
(p(S,. > x))), and Average Probability That at Least One of The Random Scores in a Dataset of 100,000 Proteins Would Be
Higher Than The Known Homolog (P))®

Gap penalties COGs distant homologs ~ COGs close homologs ~ PFAM distant homologs ~PFAM close homologs
Score matrix_(Initiate/Extend) (€) (S, >x) () (€ (S, >x) B (© o6, >x) P (€ @S, >x) @
OPTIMA -11.97/-2.0 0.741 0.004 0.277 0.896 0.010 0.109 0.724 0.008 0.301 0.922 0.002 0.084
BLOSUM62° —12/-2 0.652  0.009 0372 0.899 0.010 0.107 0645 0.016 0.376 0.928 0.003  0.078
BLOSUM62° —8/-0.52 0.248 0.024 0.800 0.854 0.020 0.154 0.312 0.033 0.737 0.783 0.001 0.237
PAM2508 -12/-2 0.480 0.017 0.549 0.863 0.021 0.144 0.669 0.012 0.359 0.879 0.001 0.133
PAM250° —6/-1.32 0.013 0.072 0999 0.773  0.040 0237 0.035 0.061 0988 0469 0.005 0.573
GCB’ —12/-2 0.647 0.007 0.377 0.874 0.021 0.132 0.703 0.022 0.324 0.884 0.001 0.128
GCB’ —75/—0.4%2 0.023 0.061 0.997 0.789 0.036 0.221 0.030 0.042 0.987 0473 0.006 0.568
STR1° —12/-2 0515 0.035 0509 0.903 0.010 0.103 0575 0.033 0450 0.925 0.007  0.082
STRX —8/-0.5%2 0.172 0.041 0.866 0.849 0.020 0.158 0.281 0.034 0.774 0.787 0.002 0.233
JTT® -12/-2 0.517 0.009 0.516 0.862 0.023 0.146 0.642 0.022 0.392 0.863 0.001 0.149
JTT® —10.5/—0.4%2 0.076 0.035 0958 0.816 0.031 0.191 0.127 0.036 0916 0.650 0.003  0.375

bFor the purpose of these comparisons, we use both the standard default gap penalties as well as the gap penalties derived by Vogt and

co-workers.??

homologous pairs of proteins. That is, we are interested in
identifying a true homolog, and in having confidence in
this identification. Our confidence in a putative match is
equal to the number of correct matches divided by the
number of matches, both correct and incorrect, with the
same score or higher. Assuming that we have one true
homolog in the dataset, the average confidence C can be
quantified as

c = (1+D(1—e o~z )1 ®)

T1+E
A Cvalue close to 1 indicates a confident alignment, with C
decreasing to 1/(1 + D) as the confidence of the alignment
decreases. This represents our average relative chance

that the match is to a true homolog. In this study, we
optimize the score function by maximizing (C) averaged
over the training set. By optimizing (C) we automatically
focus on homologous pairs at the limit of detection, reduc-
ing the dependence of the score function on homologies
that are either easily detectable (E < 1) or overly distant
(E ~ D). In addition, optimization of (C) eliminates the
contribution of falsely identified homologies in the training
dataset, as these would presumably be at the overly
distant limit.

Database Preparation

We are interested in optimizing our score functions for
the detection of distant homologs, beyond the capability of
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current score functions. We, therefore, need a set of known
homologs whose homology cannot be reliably determined
with standard pairwise sequence comparisons. For this
purpose, we took advantage of the Cluster of Orthologs
Genomes (COG) database of Koonin and co-workers.'® A
900-pair training set was constructed of pairs of proteins
in the same COG but with less than 25% sequence
identity.

It is always important to validate the results of such
optimization procedures with independent test sets. For
this study, we developed four such sets. A 177-pair test set
was constructed in al similar manner from the COG
database, excluding all COGs that contributed to the
training set, with each pair of proteins again having less
than 25% sequence identity. In order to evaluate perfor-
mance on a set of closer homologs, we similarly created an
independent group of 900 protein pairs from COG with
between 28 and 40% sequence identity. We also desired to
develop test sets constructed independently of the method
used to construct the training set. For this purpose, we
took pairs of proteins identified as homologs in the PFAM
database release 5.2.'° In order to avoid overlap with the
training and test sets derived from the COG database, we
ran a BLAST search? (using BLOSUM62° with -12,-2 for
the gap penalties) of all the sequences in the PFAM
database against the 1,077 pairs from the COGs that we
were using either as the training set or first test set, and
excluded all PFAM families with any member with similar-
ity to these proteins (i.e., E < 10). From this set of protein
sequences, we selected 103 pairs that share less than 25%
sequence identity as a third test set of distantly related
sequences, and 362 pairs with between 28 and 40%
sequence identity as a fourth test set. The proteins in the
training and test sets are available as supplementary
material.

Optimization of the Score Function

We are interested in maximizing the confidence value
(C) averaged over proteins in the training set, where the
calculation of C involves the distribution of scores for the
optimal alignment of the target proteins with homologous
and non-homologous proteins in the dataset. These opti-
mal alignments are themselves dependent upon the value
of the score function. Thus, an iterative scheme is re-
quired.

We started with the BLOSUM62 matrix® and used the
local dynamic programming algorithm® to align each of the
target proteins in the training dataset against a homolog
and a set of non-homologous proteins with a large number
of different gap penalties. We then calculated Z and C for
each pair of homologs, and averaged over the pairs in the
training set to yield (C). The highest C values were
obtained with gap penalties of v, ;1 = —12.0 and v, & =
—2.0. This scoring scheme (BL62(12,2)) was then used to
generate an initial set of alignments of the target proteins
with homologous and non-homologous proteins. The ob-
served distributions of the non-homologous proteins were
used to adjust the values of « = 1.31 and 3 = 0.74, similar
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to the values expected (o = 1.28 and B = 0.58) for a perfect
EVD.'®

As multiplication of the score function by any constant
does not change Z or any of the other statistics, we fixed
one score function (v, 1) equal to —2.0, resulting in 211
adjustable parameters corresponding to the 210 possible
pairs of amino acid types and the remaining gap penalty.
Starting with the BL.62(12,2) score scheme and the corre-
sponding set of aligned sequences, we analytically calcu-
lated the approximate direction of a steepest descent for
the adjustable parameters assuming the alignments re-
mained unchanged. We then adjusted the parameters
along that direction, realigning the sets of sequences at
every point, until Armijo’s rule was satisfied.?® The next
appropriate direction of steepest descent was then recalcu-
lated. Approximately 10 cycles of optimization and re-
alignments were performed until the score function con-
verged. Implementation of a Simplex optimization
procedure®! gave similar results. Performance was moni-
tored by simultaneous calculations of (C) averaged over
the proteins in the test set of distant homologs derived
from the COG database. The statistics with the optimized
score function indicated that the appropriate values of «
and B did not appreciably shift.

RESULTS

The values of (C) as averaged over the training set and
distant COG homolog test set during the optimization
process are shown in Figure 1. The resulting score function
(OPTIMA) obtained after 10 iterations is shown in Table I.
The optimal value for v, , ; was —11.97 with v, i fixed at
—2.0. The small change in the gap penalties indicates that
most of the improvement comes from refinements of the
values of v; ;. As shown in Table II, OPTIMA has a
significantly improved average confidence ((C)) value com-
pared with other commonly used score matrices. This
improvement is not confined only to values of C; both

Fraction of protein sequences

Fig. 2. Cumulative distribution of the C values for the various score
matrices, showing the fraction of all protein pairs in the COGs test set of
distant homologs with less than a given value of confidence. The various
lines refer to the OPTIMA score matrix (—); BLOSUMG2 (12/2)° (- - -);
GCB (12/2)" (---); STR (12/2)*° (— + — - —+—); JTT (12/2)8 (—++—++—);
and PAM250 (12/2)® (—).
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Fig. 3. A: Expected number of false positives of different score
matrices as a function of the number for protein sequences pairs
(Coverage) for the COG test dataset of distant homologs. The plots show
the fraction of the homologous pairs with fewer than a given number of
false positives of higher score (E) expected for D = 100,000. B: Similar
plot for the PFAM test dataset of distant homologs. C: Coverge vs.
number of false positives for the COG test dataset of distant homologs.
For this plot, we calculated the E values for each homologous and
non-homologous pair of proteins in the test set, and then ranked these

(p(S,. > x)), the average probability that any random score
would be higher than the homolog, as well as (P), the
average probability that at least one random score is
higher than the homolog, are both substantially decreased
compared with other matrices.

Figure 2 shows the cumulative distribution of C values
for COG distant-homolog test set with the different score
functions. As shown, the greater discriminatory power of
the OPTIMA score function is represented by the larger
fraction of the protein sequence pairs having larger values
of C. That implies a substantial improvement in our ability
of making confident predictions compared with other
standard score functions.

Figure 3A and B show the coverage or fraction of true
positives vs. the estimated number of false positives per
query for the distant homolog COGs and PFAM test sets,
respectively, where the estimated number of false posi-
tives per query represents the expected number of random

M. KANN ET AL.
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values from lower to higher. We then considered all matches with a value
of E lower than a given cut-off value, and calculated the fraction of the true
positives included in this set (Coverage) as well as the fraction of
non-homologous pairs also included (Fraction of false positives). These
two values were then plotted as a parametric plot. This approach, applied
to homology detection by Brenner et al.,'* is related to the Receiver
Operating Characteristic (ROC) measure.?®2* D: Similar plot for the
PFAM test dataset of distant homologs. All of the curves are designated
as in Figure 2.

sequences with a score greater than the pair of homologous
sequences. The better performance of OPTIMA can be seen
from the large number of homologous pairs with a lower
estimated number of false positives.

As a further test, we constructed a parametric plot
where we calculated the fraction of true positive homologs
identified (coverage) and the fraction of non-homologous
pairs identified incorrectly as homologies (fraction of false
positives) as a function of the cut-off value of E. The results
are shown for the distant homolog COGs and PFAM test
sets in Figure 3C and D, respectively. While this paramet-
ric plot may be compromised by the presence of true
homologs incorrectly labeled as non-homologs (false false-
positives) in the test sets, the qualitative agreement with
the previous plots further supports the performance of
OPTIMA compared with the other score functions.

Although OPTIMA was optimized for the detection of
distant homologs, the resulting matrix was still among the
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top score matrices in terms of (C), (p(S, > x)), and (P)
when applied to the test sets of closer homologs (percent-
age identity between 28 and 40%), as shown in Table II.

DISCUSSION

Most methods for constructing a score function rely on
creating a dataset of reliably aligned sequences or se-
quence fragments and gathering statistics on the relative
number of times that each possible pair of amino acids are
aligned. In practice, however, we are interested in distin-
guishing optimally (but possibly incorrectly) aligned ho-
mologs from optimal alignments of non-homologs. Our
approach towards generating a score matrix is to optimize
the ability of this matrix to do what we want to do:
discriminate between homologs and non-homologs. In
order to do this, we derived a measure of merit of the score
function, the average confidence of the homolog identifica-
tion, and maximized this measure over a set of homologous
and non-homologous pairs of proteins. Different measures
of merit can be handled in a similar way. Our score
function still represents statistics derived from real homolo-
gous protein sequences, and can be analyzed in terms of
evolutionary substitutions and the physical-chemical prop-
erties of the amino acids. In contrast to standard deriva-
tions, the gap penalties can be treated as additional
parameters to be optimized. In tests with two disjoint set
of test proteins, we are able to demonstrate that this score
function achieves greater success at discriminating be-
tween homologs and non-homologs compared with stan-
dard score matrices.
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