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ABSTRACT

This paper considers the dynamic lot size problem under discounting,
allowing speculative motive for holding inventory. A variable rolling horizon
procedure is presented which, under certain regularity conditions, is guaranteed
to generate an infinite horizon optimal production plan.

A fixed rolling horizon procedure is also discussed which provides a
production plan that achieves an infinite horizon cost within a user specified
tolerance, € , of optimality. The fixed horizon length, I:, needed in this
procedure is given in terms of a closed form formula that is independent of
specific forecasted demands.

We also present computational results for problems with a range of cost

parameters and demand characteristics.



1.0 Introduction

Recent research on the Dynamic Lot Size Problem (DLSP) in a rolling horizon
environment has focused on determining study horizons long enough to ensure
optimal or near-optimal results. The study horizon is the number of periods of
problem data considered. Rolling horizon procedures involve the solution of a
series of finite study horizon problems, from which the current decision of each
problem is implemented. The plans obtained from these finite horizon problems
will, in general, be sensitive to the horizon length. That is, the "optimal"
production plan for the current period may change as the horizon is lengthened,
so that in general the solution obtained is sub-optimal. An exact approach
utilizes horizons long enough to insure that the current decision stabilizes to
the optimal current decision for the infinite horizon problem. Such study
horizons are called forecast horizons and algorithms that are assured to
discover them are called protective.

The dynamic lot size problem has the objective of minimizing the sum of
production or order setup costs, inventory holding costs, and variable unit
production or purchase costs, subject to the constraint that all demand be
satisfied. Wagner and Whitin (1958) developed a forward dynamic programming
algorithm to solve the undiscounted finite horizon DLSP when unit production
costs are constant over time. They also characterized forecast horizons for
this problem. Blackburn and Kunreuther (1974) characterized forecast horizons
for the DLSP with backlogging. Other related results for the DLSP have been
obtained by Zabel (1964), Eppen, Gould, and Pashigian (1969), and Zangwill
(1969).

Research by Chand and Morton (1983), Lundin and Morton (1975), Baker
(1977), Chand (1982), Carlson, Beckman and Kropp (1982), Blackburn and Millen
(1980), and Schwarz (1977) has contributed to the determination of horizons

which provide optimal or near optimal results.



This work has included the requirement that there be no speculative motive
to hold inventory. That is, if the decision is made in isolation, it is always
better to produce in the period of demand rather than producing earlier and
holding the product. This paper extends problem solution capability to include
cases of speculative motive.

This extension is non-trivial since cases of speculative motive occur in
actual problems. For example, if a strike can be predicted at some future time,
production costs during the strike might be sufficiently high to warrant
stockpiling product, contrary to normal production plans. This behavior is
witnessed frequently.

The aims of this paper are threefold. First, we give a rolling variable
horizon algorithm that uses forecast horizons to generate an optimal infinite
horizon production plan allowing speculative motive. Second, we provide a
formula to determine a fixed study horizon for use in a rolling fixed horizon
procedure that will generate a production plan within a cost error € of
optimality. Finally, we provide computational results for problems with a range
of parameter values.

In Section 2 we provide a formulation of the problem. In Section 3 we
discuss conditions necessary for the existence of decision and forecast
horizons. Section 4 details both rolling horizon procedures for solving the
DLSP. Experimental results are discussed in Section 5. We provide a summary
and conclusions in Section 6.

2.0 Problem Description

The discounted DLSP can be formulated as follows.

Parameters
di = demand in period t
ht = inventory holding cost per unit charged on inventory at end of

period t



setup cost in period t

ct
[}

variable unit production or purchase cost in period t

one period discount factor

QR
[}

M = a large number

Decision Variables

= inventory at end of period t

-
t
[

<
n

t production or purchase quantity in period t (decision variable)
{'1 if X, >0
Yt =
0 otherwise

The problem can be stated:

minimize g ab7l(s, ¥, *+ C X, + aniIy)
t=1
s.t. It = It-1 + Xt - dt for all t
0 <X £ MY, for all t
Y, e {0,1} for all t
I 2 0 for all t where I = 0.

We make the conventional assumptions that setup costs and production or
purchase costs are incurred at the beginning of the period, while inventory
holding costs are incurred at the end of the period. We also assume that
there are no production or storage capacity constraints (i.e., M = @),

Observe that this problem can be modeled as a single-source, concave cost
network flow problem. Zangwill (1969) has shown that the optimal solution to
such problems is an extreme flow. In the context of dynamic lot sizing
problems, this means that the optimal solution satisfies XtIt-1 =0 for all t.
Therefore, production occurs only when there is zero inventory so that each
production quantity satisfies demand for an integral number of consecutive

periods. This property is sometimes referred to as the Wagner-Whitin property.



We utilize this result in the remainder of the paper by examining only solutions

that satisfy this property.

3.0 Conditions for the Existence of Forecast Horizons

Bean and Smith (1984) show that sufficient conditions for the existence of
forecast horizons for a very general class of discounted infinite horizon
problems are (1) finiteness of the number of options at each decision epoch, (2)
sufficient discounting, and (3) a countable set of potentially optimal
strategies. With these conditions, forecast horizons exist for all but at most
a countable number of interest rates. The first two conditions are needed to
ensure that an optimal solution exists. The third condition ensures that it is
unique for all but at most a countable number of interest rates. Since the DLSP
is a special case of the problem class they considered for all parameter values,
we may establish existence of forecast horizons for almost all interest rates by
first establishing when conditions (1), (2), and (3) hold.

In order to establish existence of an optimal solution, some preliminary
conditions related to finiteness of lot sizes and costs are necessary. These
finiteness conditions are discussed in Section 3.1. Existence results follow in

Section 3.2.

3.1 Conditions Related to Finiteness

Two preliminary conditions must be satisfied: finite candidate lot sizes
and sufficient discounting. These conditions are discussed in sections 3.1.1
and 3.1.2.

3.1.1 Finiteness gg Candidate Lot Sizes

We must determine conditions which will ensure that all candidate lot sizes
are finite to guarantee a finite number of options in each period. This can be

achieved by determining a relationship among the various costs such that for



each time period t, there exists some j < « such that it is preferable to set up
in period t + j than not to set up.

The existence of positive setup costs encourages less frequent setups. The
presence of positive inventory holding costs encourages more frequent setups.
Variable unit production costs may encourage either depending upon the relations

among

2
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Lemma 2 in the Appendix gives conditions leading to finite candidate lot
sizes. We henceforth assume that these regularity conditions are satisfied; namely,
that %}q.iyp dt > 0 and that there exist bounds h > 0, S < o  and C < = such
that hy > h, Sy <5, and Cy < T for all t. In section 4.2 we demonstrate how to
calculate this uniform upper bound on the periods covered by one lot. There
are other non-economic conditions in a more general framework which can provide
an upper bound on lot sizes. If the item is produced, capacity constraints may
limit lot sizes. Even if we assume that one setup occurs and production
continues indefinitely without another setup, planned maintenance, unplanned
breakdowns, model or style changes, etc., all will precipitate another setup,
hence limiting the lot size. If the item is purchased, warehouse capacity or

vendor capacity surely will limit the maximum lot size.

3.1.2 Finiteness 9£ Total Discounted Costs

The condition that guarantees convergence of total discounted costs is
analogous to the convergence criteria in Bean and Smith (1984). Cost flows must
be sufficiently discounted. For most realistic problems we will see that
sufficiently means any o < 1. This condition is used to prove the existence of

forecast horizons, but is not necessary to implement the algorithm that follows.



Defn: For some sequence {at}z=1, define
e <y 0 b |- im0 L ke |
t t

From Bean and Smith (1984) the total discounted costs converge if a < ey
where Y = Y(Kt) where Kt = Sth + ctxt + ahtIt. In most realistic applications
this restriction is very mild. If the costs increase as any polynomial, this
restriction reduces to a < 1. In particular, since there is a uniform upper bound
on xt and hence on It from the previous section, uniform upper bounds on St, Ct’
and ht reduces the restriction to a < 1. Traditionally, the DLSP is undiscounted.
In the case above simply use infinitesimal discounting to ensure existence. Hence,
the requirement of sufficient discounting is actually a regularity condition.

3.2 Existence Results

We have obtained the regularity conditions on costs and demand so that the
conditions in (1) and (2) in Section 3.0 are satisfied. From Bean and Smith
(1984), condition (3) will be satisfied whenever the problem data is eventually
cyclic. In any problem that is expressed in finite information, all data
sequences are eventually cyclic. Hence, any problem solved on a computer is

addressed by the following result.

Defn.: A sequence {at}:=1 is eventually cyclic if and only if there exists a

time T and period p such that for allt > T, a;,, = a;.

For example, if a; becomes constant, p=1. If a; becomes 5,4,3,7,5,4,3,7,5,4,3,T...
after some T, it is eventually cyclic with p=4,

By Lemma 2 in the Appendix, for any realistic problem the optimal
production schedule is eventually cyclic.

Hence, there is a one-to-one correspondence between all such schedules and
the rationals. Then, the set of potentially optimal strategies is countable and

condition (3) is satisfied. Hence, we have proven the following theorem.



Theorem 1: If {S.}, {d¢}, {h¢}, and {C¢} are eventually cyclic and uniformly
bounded away from zero and infinity, then forecast and decision horizons

exist for all but countably many a < 1,

Any problem solved digitally must be expressed in finite information and hence
must be eventually cyclic. One consequence of the above result is that, within the
mild regularity conditions above, a discounted DLSP solved by this code will stop
in finite time for all but a countable number of interest rates. The rate of
convergence, however, is still an issue.

The next section discusses an algorithm for finding forecast horizons in a
rolling horizon procedure.

4,0 Rolling Horizon Algorithms

4.1 An Optimal Procedure

From Section 3.1.1 we know that there is a finite maximum potential lot
size for all times, t. Let m(t) be the maximum potential lot size at time t in
number of periods of supply. An algorithm for calculating m(t) is clear.
Compare the relevant costs of satisfying the demand for periods t through ¢t +m = 1
by a) setting up once at time t, versus, b) setting up at time t and some
intermediate time t' where t < t'<t +m. If for any such t' the latter cost
is less than the former cost, then m(t) is this value of m. Otherwise, increment m
and repeat.

Having determined the maximum candidate lot size for each period, we can

use this information to find forecast horizons. Let wt(T) be the policy for
period t in a T period problem. For the DLSP, wt(T) represents the optimal
production quantity in period t for the T period problem. We want to find a
period T* such that n1(T*) = mq(®) = n?, where n? is the infinite horizon
optimal policy for period 1.

For any finite T, the Eppen, Gould and Pashigian (1969) algorithm can be

used to determine w?(T), provided that the conditions on unit production costs



required for their algorithm hold. If not, a network algorithm such as Zangwill
(1968) can be used to determine u?(TL

Given some Tg, let T, =min(t : t + m(t) > Ts).

Theorem 2: For any Tg > m(1), if HT(T) = w:(Ts) for T, < T < Tg then
ﬂ:(T) = nr.

Proof: By construction there is no production level at time t < T, that carries
the system beyond time Ts. Hence, all infinite horizon strategies have a
production point in [Tw, Ts]. Because production points are dynamic
programming state variables, any infinite horizon optimal strategy begins
with the optimal strategy from time zero to that production point in [Tw’

T.]. If all of these begin with the same current production level, so must

S

the infinite horizon optima. [

The following is a forward dynamic programming algorithm which uses the

result of Theorem 2 as a stopping rule. (A weak forecast horizon is a study

horizon for which solving the problem for any T beyond that horizon gives the

infinite horizon optimal solution for the first decision. A strong forecast

horizon is a horizon for which demand and cost information beyond that horizon
has no impact on the optimal first decision for any well-defined problem.)

(1) Find m(1).

(2) Set Tg =m(1) + 1 and t' = 1.

(3) Find m(t, Tg) = min{m(t), Tg} for t' < t < Tg.

(4) Set t' =Tg -1,

(5) Find min{t : t + m(t, Tg) > Tgl = T,.

(6) Find m;(t) for T, <t < Tg.

*

If v}
(7) "1(Tw) = .. = nf(rs) then 7} = nf(Ts). T

W is a weak forecast

horizon and Ts is a strong forecast horizon. Otherwise set Ts = Ts +

1 and go to step 3.



Note that to find m(t, Ts) no information beyond T4 1s necessary. The
algorithm to find m(t) need only be run to m(t), or to discover that m(t) > Ts'

whichever comes first.

4.2 An e-Optimal Fixed Horizon Procedure

The following algorithm uses a general result in Bean, Birge, and Smith
(1984). They showed that in a sequential decision making problem, under mild
regularity conditions, a rolling fixed horizon algorithm using horizon 1: will

achieve a discounted cost within € of optimality where

K
. In(1 + rey
Tg = =mm=mmme-
In(-)
a

where K corresponds to the largest single decision cost that one can feasibly
incur. It should be noted that in this procedure we must roll forward 2;
periods. In the optimal variable horizon algorithm we rolled forward to the
decision horizon (also called planning horizon).

We will use this result to establish a horizon sufficiently long to
guarantee a given relative error bound € expressed as a percentage of optimal
total discounted costs. Following are bounds on K and the infinite horizon cost
which can be used to select € corresponding to the maximum allowable percentage
error. The upper and lower bars on C, d, h, and S denote the upper and lower
bounds of the respective parameter values where we here assume d > O.

We make two observations. First, the maximum savings of variable

production costs to be gained by producing dt+m in some period t rather than in

period t+m is _
(o™C - C)d.

Similarly, the minimum holding cost incurred by producing dt+pm in period t

rather than in t+m is

hda(1 - o™y / (1 - a).



Therefore, an upper bound on the largest lot size, in periods, would be the
largest value of m such that
Sa®> hda(l -a® /(1 -a)- (aC-C)d > 0. (1)
Let m be a uniform upper bound on the time supply covered by one lot. Then
K<S + m(m-1) hd/2 + mCd (2)
We also make the observation that if Ct = Q0 for all t, then for the infinite
horizon problem
K<28 (3)

since otherwise it would be more economical to setup twice.

We turn now to determining a value of € which ensures that total discounted
costs are within a specified percentage of optimality. Observe that if we can
obtain a lower bound on total cost per period, we can discount this stream of

cash flows to the present to obtain a lower bound on total discounted costs.

Let TC represent total discounted costs. Then,
TC > [1/(1-a)] (S/m + Cd)

The term in brackets discounts the infinite stream of cash flows to the present.
Since m is the largest time supply, the average setup cost per period is at
least §/E. Observe that since the setup cost is incurred when the lot is
produced, the average cost per period, discounted to the present, représents a
lower bound on the actual cost. The average variable production cost per period

is greater than or equal to Cd.
We therefore only need to find, m, the largest value satisfying (1),

compute K according to (2) or (3) and to choose € such that

[1/(1-a)1[S/m + Cd]

The value of T: will ensure a rolling horizon solution within the specified

10



percentage of optimality.

5.0 Experimental Results

We constructed sets of problems in an attempt to ascertain characteristics
of forecast horizons under a variety of conditions. Specifically, we had the
goal of answering the following questions:

(1) In discounted problems, are forecast horizons found within a
reasonable period of time for problems in which forecast horizons do
not exist for the undiscounted problem?

(2) How does T: vary with the discount factor a?

(3) What is the relationship between the forecast horizon and the natural
cycle (the average number of periods between setups)?

(4) How does the performance of this algorithm compare with other

algorithms?

For problems used to answer the third and fourth questions, we assumed
o = 1 (no discounting), and demand is randomly generated for the entire horizon,
so we cannot ensure the existence of forecast horizons. However, as noted
earlier, it has been observed empirically that forecast horizons usually exist
even in undiscounted problems. Since most experimental results in the
literature involve undiscounted problems, we selected similar problems to
facilitate qualitative comparison of results.

We present results from an algorithm proposed by Chand and Morton (1983),
and the algorithm outlined in Section 4. These are abbreviated as "CM" and
"BSY," respectively, in the tables that follow. When applicable, we determine
both strong and weak forecast horizons.

We constructed a small set of problems for which decision horizons do not
exist in the absence of discounting. Specifically, we determined conditions

necessary for the absence of decision horizons when the natural cycle is 2 and

"



used these conditions to construct a problem set. The natural cycle is the
average number of periods between setups or Y 25/dh. We set St = 20, C¢=0 and
ht =1 for all ¢, dt =10 for ¢t > 3, and d2 and d3 s0 that undiscounted forecast
horizons did not exist. Note that for d1 > 0, the timing of production runs is
independent of dq since a setup is requifed in period 1.

The problem data and forecast horizons for a = .985 are exhibited in Table
1. It is evident that the forecast horizons (when found) are relatively long
but that they can be found in most cases by including some discounting. Recall
that these are contrived problems, and therefore one would expect better results

in real problems.
TABLE 1

These problems also are used to demonstrate the effect of the discount
factor, a, on I:. We first note that these problems have the characteristic
that it is uneconomical to produce to satisfy demand for more than two periods.
Since d, and d3 are at most 19, from (2), K for all 20 problems is 39.

We observe next that with the exception of the first 2 periods, the
undiscounted cost incurred per batch is S + 10h, or approximately 30 every other
period. By calculating the present value of this infinite stream, and adding
the discounted costs for the first two periods, we can obtain a bound for total
discounted costs of an optimal solution. We use these values to choose
appropriate values for €.

Table 2 lists upper bounds for TZ expressed as a multiple of the natural
cycle as a function of a and the percentage e above optimal, or € /total
discounted costs. The discount factors a = .995, .985, and .975 correspond
roughly to annual discount rates r = .06, .181, and .304, respectively, if one

assumes that the data reflect monthly demand. The values of T; are upper
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bounds because we have used K = 39 which exceeds the actual values for these
problems.
TABLE 2

The results indicate that even a small tolerance for suboptimality
significantly reduces data collection requirements. Moreover, data requirements
can be reduced further by using rather modest discount rates, particularly when
the tolerance for suboptimality is low. The results corroborate the rule of
thumb that five EOQ's worth of data will provide results within one percent of
optimum (Schwarz (1975)). However, they also indicate that no more than three
to four EOQ's of data are needed to obtain the same results with moderate
discount rates.

We next constructed a set of problems with constant costs and randomly
generated demands to test the performance of the algorithm and to evaluate the
relationship between the forecast horizon and the natural cycle. We set d=200,
h=1, c¢=0, and S so that the natural cycle takes values of 2,3,4,6, and 8 (i.e.,
S=400, 900, 1600, 3600, 6400, respectively). For one set of problems, demand is
distributed uniformly around 200 with a range of 75, which is the same as in
Baker (1977). In the second set of problems, demand is distributed normally
with u = 200 and ¢ = 20.

The median forecast horizons for 5 randomly generated problems for each
combination of natural cycle and demand distribution are presented in Table 3,
expressed as a multiple of the natural cycle.

TABLE 3

We also randomly generated a set of problems using the same demand
distributions, setup costs, and production costs as described above, but with
speculative motive for holding inventory. This was accomplished by randomly

generating inventory holding costs having a normal distribution with mean 1.0

13



and standard deviation 1.0. This resulted in approximately 1/6 of the periods
(on average) having negative holding costs, and thus speculative motive for
holding inventory. Median forecast horizons are expressed as a multiple of the

natural cycle.
TABLE U4

We make several observations concerning the results. First, the Chand and
Morton algorithm and the algorithm presented here perform almost identically on
problems that fit within the more restrictive assumptions of the former. Our
algorithm locates weak forecast horizons no later than the Chand algorithm.
This is evident in the medians but the statement is true for all specific
problems as well since Chand and Morton locate the minimum strong forecast
horizon. This results from the fact that our algorithm finds the minimum of
weak forecast horizons while the Chand procedure locates one weak horizon. On
the other hand, the Chand algorithm locates a strong forecast horizon no later
than our algorithm. This is true both for the medians and for each specific
problem. This relationship arises because our procedure is designed to handle
more general cost structures and thereby loses some of its power when applied to
specific cases that do not require all the generalities. Nevertheless, the
differences between the horizons found by the two algorithms tend to be small.
Since the Chand algorithm could be easily altered to also find the minimum weak
forecast horizon, the merit of our procedure rests with its ability to handle all
dynamic lot size problems including those with speculative motive for holding
inventory.

Second, the ratio of the forecast horizon to the natural cycle does not
appear to be monotonic. This creates some difficulty in selecting a rule of
thumb horizon length which is either a constant multiple of the natural cycle,

or a multiple which is a function of the natural cycle.
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Third, the forecast horizons for problems with speculative motive for
holding inventory are the same order of magnitude as for problems without
speculative motive. In fact, in many cases, the median forecast horizons are
smaller. This is partially attributable to the fact that while inventory
holding costs could be negative, they could also be larger than the mean. These
large holding costs contribute to reducing the length of the forecast horizon by
limiting the the maximum economic lot sizes. Overall, the results indicate the
forecast horizons do exist when there are time-varying inventory holding costs
with speculative motive, and that the algorithm can find them.

Our final observation is that the coefficient of variation for all these
sets of problems is small, so demand is relatively smooth. Forecast horizons
would be discovered more quickly, on average, for problems with "lumpier" demand
since demands much larger than average tend to induce setups. Most real-world
problems have lumpy demand. Therefore, one may view these results as

representing conservative estimates of the length of forecast horizons.

6.0 Summary and Conclusions

We have developed conditions for the existence of decision and forecast
horizons for the dynamic lot size problem with discounting and have presented a
rolling variable horizon algorithm which is guaranteed to find these horizons
when they exist. The conditions for forecast horizon discovery are milder than
required by other approaches. We also make no assumption about the lack of a
speculative motive for holding inventory (i.e., that Cy + hy > Ci+q for all t)
as required in most of the other algorithms.

We therefore are able to locate decision and forecast horizons for a very
general class of problems. Experimental evidence indicates that forecast
horizons typically are located within reasonable periods of time even in

contrived problems and in the absence of discounting.
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We also provided a rolling fixed horizon procedure that is guaranteed to
achieve a cost within a user specified error. The procedure is unique in that
the selection of horizon time can be made in the absence of specific forecasted
demand information.
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Table 1

Forecast Horizons Given Various Demand Levels in Problems Where
No Horizons Exist in the Undiscounted Case

d2 d3 Forecast Horizon
11 9 35
12 1 17
13 10 61
14 9 > 100
15 6 18
15 12 63
15 14 17
16 10 >100
16 12 >100
16 15 17
17 8 18
17 13 >100
17 16 19
18 9 18
18 15 65
18 17 19
19 10 18
19 18 19
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Table 2
Upper Bounds for T:

(expressed as a multiple of the natural cycle Tt)

a

e (% Above Optimal) j995 ) +985 2975
.1 22.0 10.2 6.9
5 10.7 6.0 4.4
1 7.0 4.4 3.3
2 4.2 3.0 2.4
5 2.0 1.6 1.4
10 1.0 9 .8

n
n

Note: =

18



Table 3
Median Forecast Horizons for Problems with
Randomly Generated Demands

(expressed as a multiple of the natural cycle T)

Uniform Demand Distribution

1 cM BSY
Weak Strong Weak Strong

2 1.5 1.5 1.5 1.5

3 7.7 8.3 7.1 8.3

u 3.3 3.7 2.7 3.7

6 6.5 7.2 6.2 7.5

8 7.4 8.1 7.0 8.3

Normal Demand Distribution

1 cM BSY
Weak Strong Weak Strong

2 2.5 3.0 2.0 3.0

3 5.3 6.0 5.0 6.0

4 3.0 3.5 2.5 3.5

6 3.8 4.5 3.7 4.8

8 6.9 7.7 6.8 8.0

19



Table 4
Median Forecast Horizons for Problems with
Randomly Generated Demands and Speculative Motive for
Holding Inventory

(expressed as a multiple of the natural cycle t)

Uniform Demand Distribution

z Yeak Strong
2 2.0 3.0
3 1.7 2.3
4 1.8 3.0
6 2.7 3.7
8 2.0 3.0
Normal Demand Distribution
i Yeak Strong
2 0.5 1.0
3 1.3 2.3
4 1.3 2.3
6 2.7 3.7
8 3.9 5.1
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APPENDIX

The following lemma states that if problem data is eventually cyclic, then

so are the production schedules.

Lemma 1: If {S.}, {dt}’ {ht}’ {Ct} are all eventually cyclic then so is the
optimal production schedule.

Proof: Let Pg» Pg» Ppo and Pc be the periods of the above sequences and Ts, Td,
Th’ and TC be the times where periodicity beginsf Let p = Pg P4 Pp pCf
From T = max(Ts,Td,Th,TC), consider the sequence of times {T + ip};=1.
Since production is uniformly bounded, so is inventory. Assume that bound
to be I. At all times inventory is an element of the set {0,1,2,...,I}.
Some inventory level in this set must occur infinitely often in the
sequence of times {T + ip}?=1. At each of these occurrences the problem
encountered is identical. Hénce, the optimal decision made will be
identical. Then the optimal production schedule is eventually cyclic with

period some finite integral multiple of p. [

In the following we establish conditions for the existence of a uniform
upper bound on the number of periods of demand in a single production run. Let
r: be the optimal production size at time t, in periods. Recall that n: is the

optimal production quantity.

Lemma 2: If d' = %igsup dt > 0 and there exist bounds such that hy

Iv

h>o0,

¢ < S <=, C, <C <=, then there exists m < ® such that T: <m for

Proof: It suffices to show that at any t, the cost to produce the demand for
period t + m in period t and hold it for m periods is greater than the cost

to set up and produce in period t + m. A sufficient condition for this is
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t+m-1 .
1-C+ m
Cedgam * dpam 4Ly Py > (Sgap * Crapdpepla

But the left hand side of this inequality is bounded from below by

t+m=1
m
o™(Cedgay * dpam 4L, By
Hence, a sufficient condition is that
t+m=1 :
dt+m > St+m (Ct - Ct+m * i;t hi) ¢ (4)

Now
t+m=1 1 _ _—
St+m (Ct - Ct+m * i;t hi) S S(mﬂ - C) >0
as m goes to infinity by the hypotheses. Since d' > 0 , there exists anm

where (U4) is satisfied.

To this point, the upper bound on production time length depends on t. If
the additional condition is imposed that the number of consecutive periods
with zero demand is bounded, then the conclusion can be strengthened to

a uniform upper bound. This corresponds to the assumption made in Section

3.1.1. O
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