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Abstract

We present a hybrid algorithm based on state and variable elimination in a dynamic
program for the multiple choice knapsack problem. The algorithm uses linear multiple
choice knapsack solutions to provide bounds on the optimal value of a state in the dynamic
program. The algorithm is competitive with the best published algorithms in run times
and is simpler to code.

OR/MS Keywords: 069 Dynamic programming, deterministic; 712 Programming, inte-
ger, algorithms

The multiple choice knapsack is a knapsack problem with exhaustive multiple choice

constraints, and is formulated:

M n;
maxZZc,-jx,-j
1=1 j=1
M n;
subject to : ZZaij:c,'j <B
i=1 j=1
n;
Yoaj=1, i=12...,M (MK, 3))

j=1

zi; €{0,1}, 1=1,2,...,M; j=1,2,...,n,.

The formulation requires that exactly one element of each multiple choice be set equal one,
while not exceeding a knapsack capacity, B. Without loss of generality, we may assume
that ¢;; > 0. If not, add a sufficient constant to the objective coefficient of each variable
in the corresponding multiple choice set. Also, without loss of generality, assume that Cki

and ai; are strictly monotonically increasing in ¢. It is well known that variables can be
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eliminated a priors if cx; > cx; and ag; < agj. The linear multiple choice knapsack problem

is the linear programming relaxation of MK (m,B) and is denoted LM K, p)-

The literature mentions several applications of the multiple choice knapsack such as
capital budgeting and menu planning (Sinha and Zoltners [1979]). We were motivated
to consider this problem during a project on shopping mall merchandising with Homart
Development Co. (see Bean, et al. [1987]). In this problem we seek to maximize the profit
from a shopping mall by selecting an appropriate set of stores for the hallways between
the department stores. A set of potential stores is considered, each having a small number
of possible sizes. In the formulation above, ¢ runs through the stores and j enumerates the
sizes for store ¢. The knapsack constraint forces us within the square footage limit of the

mall.

The MKy py and its variations have been studied frequently in the literature, e.g.,
Dyer, et al. [1984], Dudzinski [1984], Zemel [1980], Sinha and Zoltners, Nauss [1975] and
Lesso [1970]. The traditional solution approach has been branch and bound supported by
linear programming relaxations. This technique is attractive since LM Ky py has spe-
cial structural properties allowing O(n) solution. As with all branch-and-bound schemes,
these approaches have relatively high variance in computation times and can be tedious

to implement.

Lesso and, independently, Dudzinski formulated MKy p) as a dynamic program.
They develop a multiple choice knapsack function parallel to the knapsack function in
Gilmore aﬂd Gomory [1966]. Such approaches are easy to implement and have predictable
computation times, though neither author discusses implementation. However, computa-
tion times for knapsack type functions degrade as B increases and, as dual algorithms, do

not have a feasible solution until completion.

This paper presents a hybrid algorithm, similar to that introduced by Morin and
Marsten [1976], based on the dynamic programming approach. Hybrid algorithms use
characteristics of both branch and bound and dynamic programming to accelerate compu-
tation. Linear relaxations of the integrality constraints of MKy p) are used to provide

bounds on the optimal solution and eliminate nodes from the dynamic programming state
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space. The hybrid, unlike pure dynamic programming, is a primal method. A feasible
solution is maintained throughout computation. With these improvements, we present
the first implemented, computationally tractable dynamic programming algorithm for the
multiple choice knapsack problem. The hybrid algorithm is computationally competitive

with the best branch-and-bound codes and simpler to code.

In Section 1 we present a dynamic programming approach. Section 2 develops the
hybrid algorithm. Section 3 contains computational results. Section 4 shows application of
the techniques to real problems from Homart mall merchandising. Section 5 is a summary

and conclusions.

1. Dynamic Programming Formulation

In MK(p,p) let N = E,A_il n; be the number of variables. Rather than viewing the
problem as making N binary decisions, view each multiple choice set as one decision, that
is, which element to choose from the set. This view has been used successfully for the

multiple choice integer program (Bean [1984)).

Formulate a dynamic program with states consisting of ordered pairs, (k,3), where
0 <k <M, 0<pB< B. The multiple choice knapsack function, f(k, ), is the optimal
value for M Ky gy. That is, f(k, ) equals

k n;
max Z Z CijTij

1=1 j=1

kK n;
subject to : Z Zaijiﬂij <B

1=1 j=1

ng

ZI,']'=1, 1=1,2,...,k (MK(k,g))

i=1

zi; €{0,1}, 1=1,2,...0k; 7 =1,2,...,n;.

Thus, f(M, B) is the optimal value to M K g). We recursively solve a collection of these
problems to determine f(M, B).



From a state (k, 3), the residual problem is the multiple choice knapsack of size B — 8
considering sets k + 1 through M. Define f'(k + 1, B — ) as the optimal value to this
problem. Lesso and Dudzinski imply, though do not state, the following Theorem.

Theorem 1: If an optimal solution to M K (s, g) has a subcollection of items from multiple

choice sets 1 through k having aggregate size 8, this subcollection must be optimal for

MK()C’ﬂ), that is, f(M,B) = f(k,ﬂ) + f’(k +1,B- ,3)

Theorem 1 implies that the optimal value, f(k,8), can be found from the solution to
f(k—=1,b) for b < B. The optimal value, f(M, B), is found by solving forward with the

recursive equations:

Boundary Condition:
f(1,8) = max{l?-‘?‘ (c1j:a1j < B),0},8=1,2,...,B; f(k,0)=0,allk (1)
S)sm

Functional Equation:

For k = 2 to M solve

f(k,B8) = lg}gﬁk{f(k — 1,8 —ak;) +ckjakj < B, f(k—1,8 — ax;) > 0}, (2)

Solution:

£(M, B) = max{f(M, )}, 6

The dynamic programming network implied by these functional equations has arcs
from state (k — 1, 8 — a;j) to (k, ), with value ¢;j, for j =1 to ng. If no combination of
items from the first k sets has size exactly 8, then f(k,3) = 0. Lesso and Dudzinski solved
this recursion with a recursive fixing algorithm. Below we define a reaching algorithm
for the same network (see Denardo [1982] for a discussion of fixing versus reaching). For
the recursion stated above, fixing and reaching result in exactly the same computations.
However, reaching allows pruning of nodes and arcs as described in Section 2. The following

algorithm solves equations (1) to (3) by reaching.
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Algorithm 1: (Dynamic Programming Algorithm)
Step 0: (Initialize) Set
f(1,) = max{ max (c1; : a1 = B),0},
for 4 =1,2,...,B. Set =1, k=1. Go to Step 1.

Step 1: (Reach from (k,B)) For j = 1,2,...,nk41, if B + ax; < B, f(k,5) > 0 and
f(k,B) + ckj > f(k + 1,8 + agj), then let f(k + 1,8+ a;) = f(k,B) + ci; and
soln(k +1,8+ ax;) =j. Let B =+ 1. If § < B then go to Step 1. Else, go to Step
2.

Step 2: Let k=k+1and B =1. If k < M, then go to Step 1. Else, go to Step 3.

Step 3: (Find optimal solution) Let optimal value equal max; << f(M, ). Let b be the
argument of this maximum. Let ¥k = M and 8 = b. Go to Step 4.

Step 4: (Recover solution) Let =k soin(k,g) = 1,8 = B — @k son(k,g), k = k—1. Ik >0
then go to Step 4. Else, stop.

Computation in such algorithms increases in B. This effect is limited by the fact that
if B> 5 " max;a;; then the problem is trivial.

To enhance computation, we would like to eliminate nodes before reaching from them.
The following Theorem allows elimination of some nodes. It is a variant of the “further but

cheaper” pruning criteria used frequently in capacity expansion and equipment replacement

(see Bean and Smith [1985)).

Theorem 2: If 8, < 3, and f(k, ;) > f(k, 52) then not all optimal solutions include the
subset of items in f(k,32). We say that f(k, ;) dominates f(k, f2).

Proof: If there does exist an optimal solution that includes the items corresponding to
f(k, B2), then replace the knapsack of weight 82 with that of weight 4;. By assumption,
the knapsack will have higher value, at a lower weight (neither strict). By Theorem
1, their exchange will not necessitate a change in the solution to the residual problem.

Therefore f(k, B2) can be replaced by f(k,3;) without loss of optimality. ®

Theorem 2 implies that only states that constitute strict monotonic increases over the
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previous states need be considered in the next stage of the algorithm. We can improve
computational performance by modifying Step 1 of the algorithm so that reaching is only
performed if f(k,B) > f(k,B') for all B’ < 8.

2. Hybrid Algorithm

Hybrid algorithms were developed by Morin and Marsten [1976]. They combine
bounding techniques common to branch-and-bound algorithms with a dynamic program-
ming structure. The result is a computationally effective pruning technique to reduce the
number of arcs and nodes that must be considered in the algorithm. Below we develop a

hybrid technique for the multiple choice knapsack problem.

Define LP(;41,5-p) to be the optimal value of the linear multiple choice knapsack of
size B — B, including items from sets k + 1 through M. That is, the linear counterpart
to f'(k+1,B — ). Then LP(41,8-p) is an upper bound on the optimal value of any
completion of a state (k, ). Define LB to be the best known feasible solution to M K (M,B)-

Theorem 3: If f(k,B)+ LP41,5-p) < LB, then (k,8) cannot be in an optimal solution
to MK(M’B).

Proof: We have

f(k,B)+ f'(k+1,B - B) < f(k,8) + LPr41,8-p) < LB < f(M,B).
Hence, by Theorem 1, (k, 8) is not on an optimal path. m

To determine LB, Dantzig and Van Slyke [1965] show that the solution to LP11 p— g
has at most two fractional variables, and that these variables come from the same multiple
choice set. A lower bound on the optimal solution can be obtained by setting to one the

fractional variable with smaller q; I?

The hybrid algorithm uses the optimal linear completion from each state of the dy-
namic program to eliminate states which can be shown to have only suboptimal com-
pletions. Computational performance is enhanced by continually updating the value of

LB. The algorithm requires solution of a sequence of related LP41,B-p). We solve the
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first such linear program, LF(; p), by the method of Sinha and Zoltners. All subsequent

solutions are simple updates.

Algorithm 2: (Hybrid Algorithm)
Step 0: (Initialize) Set
f(1,8) = max{ max (c1;: a1 =B),0},
for =1,2,...,B. Set =1, k=1. Find LB. Go to Step la.

Step la: (Node qualification) If f(k,B) = 0 then go to Step lc. Else, if f(k,B) < f(k,B')
for any B’ < f, then go to Step lc. Else, if f(k, ) + LPx+1,8 < LB, go to Step lc.
Else, go to Step 1b.

Step 1b: (Reach from (k,B)) For j = 1,2,...,ng41, if B+ ax; < B and f(k,B) + cxj >
f(k+1,6+axj), thenlet f(k+1,8+ax;) = f(k,B)+ckj and soln(k+1, 6+ ax;) = J.
Go to Step lc.

Step 1c: Let # =B+ 1. If B < B then go to Step la. Else, go to Step 2.

Step 2: Let k=k+1and B =1. If k < M, then go to Step la. Else, go to Step 3.

Step §: (Find optimal solution) Let optimal value equal max;1<g<p f(M, ). Let b be the
argument of this maximum. Let k = M and 8 =b. Go to Step 4.

Step 4: (Recover solution) Let g soin(k,8) = 1,8 = B — @ soin(k,8),k = k—1. f k>0
then go to Step 4. Else, stop.

3. Variable Elimination

Variable elimination methods have been used successfully to reduce the number of
variables in a multiple choice integer program prior to the implementation of an algorithm.
Sweeney and Murphy [1981] show that we can determine, a priori, that some variables
cannot be in an optimal solution, and hence can be eliminated from the problem. Variable
elimination can be easily implemented in the hybrid algorithm since we can quickly obtain

an optimal solution to LM K g).

Let ¢;; be the optimal reduced cost for the variable z;; in the linear program LM K ).

Since the multiple choice knapsack problem is a special case of the multiple choice integer
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program, we can use the following results from Sweeney and Murphy directly.

Theorem 4: If ¢;; < f(M, B) — LP; py then no solution with z;; = 1 can be optimal to
MKy p).

Corollary: Let LB be any lower bound on f(M, B). Then if ¢ij < LB — LP; p) then no

z with z;; = 1 can be optimal.

This result can be implemented to accelerate the hybrid algorithm. At each stage
of the algorithm, only items, j, with ¢;; > LB — LP,p)y need be considered. Theorem
4 can be implemented in Step la of the hybrid algorithm. Note that the duality gap,
maxo<g<B{f(k,8) + LP(k +1,B — 8)} — LP p), gets smaller as k increases, therefore,
elimination should not only occur only at the beginning of the algorithm, but immediately

prior to reaching from each multiple choice set.

Implementation of variable elimination requires little information beyond that calcu-
lated for the hybrid algorithm. The only additional work is solving LM K(pm,B) to obtain

¢ij. The algorithm for LPy p—g) works for this as well.

Table 2 shows the percentage of variables eliminated for the set of randomly generated
test problems described in Section 4. On average, 76% of the variables were eliminated

due to this result.

4. Computational Tests
4.1 Randomly Generated Problems

The algorithms above were coded in C. Computational tests were run as described in
Sinha and Zoltners. Times reported in Table 1 are in milliseconds on a VAX 780. Times
reported are the median computation times for randomly generated problems for each of
three algorithms: Sinha and Zoltners implementation of branch and bound (25 problems
per cell), pure dynamic programming (Algorithm 1, 40 problems per cell) and the hybrid
algorithm (Algorithm 2) with variable elimination (40 problems per cell). Although Sinha
and Zoltners times were obtained on a different computer, their times were converted to

equivalent times using a conversion factor of obtained from Dongarra [1987]. The values
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are an estimate of what compﬁtation times might be were their algorithm run on a VAX

780.
TABLE 1

The characteristics of each cell are M, n; (constant for all ), and maz a, where a;; and
¢;; were uniformly distributed over the integers 1,2,...,maz a. As in Sinha and Zoltners,

maz a was set at 2n; and 8n; for each combination of M and n;.

The hybrid algorithm shows substantial computational savings over dynamic program-

ming. The times obtained are of the same order of magnitude as Sinha and Zoltners branch

and bound times.

Table 2 shows the percentage of variables eliminated during solution of the test prob-
lems. The columns labeled “constant” correspond to a single elimination pass at the
beginning of the algorithm. Those labeled “variable” allow repeated elimination as the
duality gap is narrowed.

TABLE 2

4.2 The Homart Problems

In a project with Homart Development Co. we sought optimal merchandising plans
for shopping malls. One subproblem involved analysis of a single subspace of a mall, for
example, the area near the central fountain. Given a list of potential stores, e.g., jewelry
store, women’s apparel store, etc., choose the set of stores that maximizes the return to
the developer for this area. Each store could be set at several discrete sizes and the size
must be chosen concurrently with store selection. The discretization of sizes is caused by

the nonlinear relationship of return to size.

In each problem, each multiple choice set corresponds to a potential store. Each item
in that multiple choice set is a potential size for that store. If multiple stores of one type
are possible in this space, for example jewelry stores, a multiple choice set is constructed
for each possible store. The maximum number of stores of any type is set by market and
policy constraints. Then a;; is the number of square feet taken by a store, 1, if set at size
J- And ¢;; is the return to the developer of scenario 7j. The overall size of the area to be

planned is B.



The appropriate formulation here is not exactly the multiple choice knapsack as de-
fined. It is possible that some potential stores are not placed in this area at any size.
Hence, the multiple choice constraints should be inequalities. This can be handled by
adding a dummy variable to each multiple choice set. It is computationally more efficient

to alter the algorithm to allow inequality interpretation.

A generalization of MK (js p) in which at most one item is chosen from each multiple

choice set requires modification of equation (2) to

f(k,B) = max{f(k — 1,8),max[f(k — 1,8 — axj) + ck; : axj < B]}.

This equation results in inclusion of an item from the k-th multiple choice set only if it

results in a higher value knapsack than one of the same weight with fewer items included.

The problems tested represent six areas from three actual malls owned by Homart.
These problems are very difficult for dynamic programming based codes due to their large
right hand side values; as large as 28,509. In all cases, three sizes were considered for each
store, i.e.,, n; = 3 for all .. The times reported are milliseconds on a VAX 780. Table
3 gives details for the six test problems. Results show that even for extremely difficult

examples, the hybrid algorithm is capable of solving realistically sized problems.

TABLE 3

As another test, we reran the problems with all values of a;; and B divided by 10.
Since the {a;;} and B must be integers, we truncated B and rounded the {a;;j}. The
objective of such scaling is reduction of computation time. The potential danger is loss of
optimality and/or feasibility. On average, computation times were reduced by 11%. An
optimal solution to the original problem was discovered in four of the six problems. The
other two resulted in less than one half percent error. All solutions found were feasible in

the original problems.

5. Conclusions and Extensions

This paper presents a simple dynamic programming formulation for the multiple choice
knapsack problem by defining and solving multiple choice knapsack functions. Computa-

tional tests are competitive with the best published techniques. An advantage of this
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technique, relative to the common branch-and-bound algorithms, is its ease of coding.

The code is available from the authors.
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TABLE 1: Computational Results on Randomly Generated Problems

m | n; | Number of 0<a,c < 2n; 0<a,c <8n;
variables || B&B | DP | VEHyb || B&B | DP | VEHyb
10 | 10 100 22 135 33 54 | 264 53
10 | 20 200 49 [ 553 68 94 | 1060 97
10 | 50 500 | 121 | 3387 207 || 263 | 7104 307
20 | 10 200 54 | 691 65 (| 107 | 1650 120
20 {20 400 | 112 | 2698 135 | 254 | 6645 213
50 | 10 500 | 174 | 4579 184 || 245 | 14323 338

Median times on a VAX 780. The first column reports Sinha and Zoltners
results (median of 25 problems) converted by a factor of 6.42/1.44 as given in
the Dongerra paper on “Performance of Various Computers Using Standard
Linear Equations Software in a Fortran Environment.” The second column
gives median times for a Algorithm 1 and the third column gives median
times for Algorithm 2 with variable eliminiation (median of 40 problems).



TABLE 2: Percent of Variables Eliminated by Variable Reduction

0<a,c < 2n; 0<a,c <8n;

m | n; | Number of || %Var elim | %Var elim || %Var elim | %Var elim

Variables constant variable constant variable
10 | 10 100 32.5 70.2 26.8 64.4
10 | 20 200 28.8 75.2 26.7 71.1
10 | 50 500 15.3 717.9 17.0 73.2
20 | 10 200 40.3 76.3 20.6 74.1
20 | 20 400 25.0 82.1 33.6 82.6
50 | 10 500 32.0 79.0 33.6 82.0

When variable elimination using the inital duality gap is used, the percentage
of variables eliminated is given in the first column of each pair. When a vari-
able (decreasing) duality gap is used, the percentage of variables eliminated

increased significantly (second column of each pair).




TABLE 3: Computational Results for the Homart Problems

Computation Times
m | n; B || Without With
Var elim | Var elim

T 3| 5841 70.0 55.0
11] 3| 8382 385.1 383.5
12| 317772 573.3 658.6
14 | 3120592 547.8 543.1
16 | 3| 21766 141.4 407.7
191 3128509 491.9 334.3




