THE UNIVERSITY OF MICHIGAN

COMPUTING RESEARCH LABORATORY!

AUTOMATICALLY GENERATED UPDATABLE
FORM SCREENS AS A DATABASE
INTERFACE LANGUAGE

David Volk kBeard and Toby J. Teorey

CRL-TR-13-84

FEBRUARY 1984

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

!Any opinions, findings, and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the funding agencies.

s
MO ¢

TABLE OF CONTENTS

1.0 Introduction., . . « & ¢« &« o « o« &

2.0 Formal Database Models and Interface
2.1 The Relational Model.

2.2 Entity Relationship(ER) Model. . .

Languages.

.

2.3 Example Database and Schema in ER Form. . .

2.4 Database Query Languages.
3.0 Form screensS. . . « « v o o s o« o
3.1 0verview,: & v v v i e e e e e e e
3.2 Advantages of Forms. . . « « « .«
3.3 Disadvantages of Conventional Form
3.4 Specifications for a New Interface
4,0 Metaform. v o0 .

4,1 Form and Form Schema Definitions.

Screens.
Language.

4.2 Automatically Generated Form Screens

4.3 The Metaform Query Language . . .
4.4 The Metaform Insert Operator. . .
4.5 The Metaform Delete Operator. . .
4.6 The Metaform Modify Operation., . .
5.0 Analysis of Metaform
5.1 Correctness of Update Operators. .
5.2 Human Factors. « « « ¢« ¢« &+ & o o« &
6.0 ConCcluSionsS. « + ¢« ¢ ¢ 4 s 4 0 . .

References. .« « « ¢ ¢ ¢ « o o o o o o

L] L] . . .

"
13
16
16
16
17
18
20
22
23
25
28
30
31
32
32
33
34

36

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

FIGURE

Teeeeenenoesreonesscassseoscassasessneds
2ecosssssssesassessssssassassasesnesacll,
e teeectnesesssosccnscasccrsosrossssssceell,
d.iiiiiiiesetccttesscssassresssenssseelb.
. IS
S 1 -
JeeeeoonessesssonesssssssssencnassssenelBe
4 I
P cessssscencans R X I
L) I

11.....00.'00:0.‘00'000000000001000000330

12 iiieeieecrennaccnsansnns ceees

ii

Automatically Generated Updatable
Form Screens as a Database
Interface Language

David Volk Beard
Toby J. Teorey

February 1984

Computing Research Laboratory
Dept. of Elec. and Comp. Eng.
The University of Michigan
Ann Arbor, MI., 48109

Beard - 2

Abstract

Current general purpose database interface languages,
while being acceptable for computer professionals, are dif-
ficult for many other users to learn and use. They require
understanding the structure of the database, as well as com-
prehending the use of variables. Such interface languages
are especially difficult to wuse when formulating multi-
relational queries. The need for such queries has become
more pronounced in the last several years due to the trend
toward third normal form and entity relationship databases.

A new database interface language called Metaform has
been developed which automatically generates multirelational
form screen interfaces for wuse by non-computer profes-
sionals. A form screen is a hierarchical subschema of the
database schema, with a particular entity type at the apex
of the hierarchy. This system - when given an entity type -
will produce a corresponding form schema. Such a form
schema displayed as a form screen on a CRT provides a user
with a view of the database focused on a single entity type.
A user can simultaneously query and update several relations
in the database without having to know about its actual
schema. Formal definitions of form schema and forms are
given. Results from human factors experiments are shown to
illustrate Metaform's user interface potential.

CR Categories and Subject Descriptors: H.1.2 [User/
Machine Systems], H.2.3 [Database Management Lan-
guages];Query Lanquages, H.4.1 [Office Automation]

Beard - 3

1.1 Introduction

A rapidly growing way in which users interact with a
database 1is through a form-screen application program which
produces a multirelational form screen interface for the end
user. This allows the user to have a view or perspective of
the data which is easy to understand, and the user does not
have to know about the actual database schema. It also
means that the query and update languages used in conjunc-
tion with the form screen can be very simple and still be
adequate for the user performing a task.

Unfortunately, such application programs are not easily
created. A considerable amount of code is needed to imple-
ment them, Other difficulties include the usual amount of
bugs, maintenance costs, and modification difficulties.

Despite these drawbacks, a great deal of application
software is developed - at considerable expense - ignoringy
the availability of more powerful, more general-purpose
vendor-supplied interface languages such as Sequel ([1]).
The most likely reason is that such customized interface (
systems) - even written as expensive applications programs
- have been found to be more productive and cost efficient
interfaces for many users.

Conventional general-purpose database-interface lan-
guages are unacceptable in many cases because they require
the user to know about(and therefore be affected by changes
to) the database schema. With such languages, a user need-

ing multirelational interaction with a database has to think

Beard - 4

in terms of separate relations abstractly connected.
Metaform

A database interface system called Metaform has been
developed which automatically generates multirelational form
“screen interfaces for use by non-computer professionals
interacting with an entity-relationship database embedded in
the relational model. This system - when given an entity
type - will produce a corresponding form schema Such a form
schema displayed as a form screen on a CRT provides a user
with a view of the database focused on a single entity type.
By wusing several operations such as "insert", "delete",
"select", etc., a user doing a task related to that entity

can interact with the information.

Figure 1.
Automatically
Generated
Form Screens

USER Query ! !
0 or Update

- - > T
/ \ . Metaform
. <===> Translation
Function

; ; v
ER Database
Implemented with

a relational DBMS

Most database 1interface languages are very concerned
with the mathematical querying power of the interface. But
the abstract power of a particular aspect of a language is

of no value if the user cannot use such a feature. In the

Beard - 5

process of creating a powerful query language, the com-
piexity of multirelational interaction greatly increases.

The production of an updatable multirelational view of
the database has been a major goal of the Metaform system.
The effect of an update operation on such a view must be
clear té the user. By using forms as a data schema, we have
forced the user to look at the data from the perspective of
a single entity. Thus all the update operations, which are
similar to verbs, have a subject. Ambiguity 1is reduced.
Forms are also advantageous because they are so ubiquitous
in every day life. Potential wusers have experience with
forms and other hierarchical data. This aides their learn-
ing the system.

Besides being very widely used as a data design lan-
guage, the entity relationship(ER) model ([2]) has an impor-
tant property which 1is essential for producing multi-
relational updatable views: the ER model 1insists that the
existence of an entity be separate from whether or not it is
related to another entity. Thus, one may delete a
relationship without héving to delete an entity.

The ER model is not semantically equivalent to the
relational model; there are ER database schemata which can-
not be expressed as relation schemata, and vice versa.
Therefore, despite some advantages of the ER model in this
context, the relational model is formally developed and a
significant number of relational database management sys-

tems (DBMS) currently exist. Embedding the semantics of the

Beard - 6

ER model into the relational model allows us to use the ad-

vantages of both and we have done so.

Our objective in this paper is to present the Metaform
system, concentrating on how the language design effects the
user interface. Section 2 gives an overview of relevant
database theory and interface languages. Definitions of the
relational model and entity relationship model are then
shown. Application form screen progress and practice is ex-
amined in section 3. Section 4 presents the Metaform lan-
guage, an overview of its operation, and formal definitions
of forms and form schemata. Details of how form screens are
automatically generated, and how queries and updates are
performed are then shown. An analysis of the language is
presented in section 5, and the correctness of the update
operators is examined. We then give an overview of the
results of a human factors evaluation of Metaform. Learning
times, error rates, and query times are given. Finally, we
draw several conclusions as to the applicability of this

language and indicate several areas of future work.

Beard - 7

2.0 Formal Database Models and Interface Languages

2.1 The Relational Model

Relational databases ([3]) are known to offer certain
advantages over other database management methods, including
a simplified user interface, and a concise formal definition
which we briefly review here. An illustrative example fol-
lows in section 2.3.

DEF A database schema is a 4-tuple dbs= <A, D, Dom, R >

where:
1) A is a set of attributes.
2) D is the domain of the database.
3) Dom: A --> D so that Dom(Ai) is the domain of A, € A.

4) R is a finite set of relation schemata R C AT, (The

"+" is the Kleene plus, see [4]).

DEF A relation r, on a relation schema Ri = <A A >

0, ..., n__1
is a finite set such that r, C Dom(Aj;) X...X Dom(A _,).

1
(The "X" is the cross-product set operation.)

DEF r is a set of relations ca.led a database on dbs. There
is exactly one relation in r on each of the relation
schemata in R.

By using ordered sets or "strings" of attributes to
denote relational schemata, we allow ourselves greater
simplicity when developing query languages because no at-
tribute renaming 1is needed. However, because of possible

duplicates, to uniquely identify an attribute one technical-

Beard - 8

ly has to use its location in a relation schema rather than
its name. Since we do not have any duplicate attributes in
our example relation schemata we ignore this.

Often it is necessary to imposes constraints on the in-
formation stored in the database. The primary method for
this in the relational model is the functional dependency.
DEF Let r; be a relation on schema R; and let B, and B, be
subsets of R.. We say that B, --> B, (the set of attributes

B, functionally determines the set of attributes Bz) IFF for

all t

; €r;and t, € r;, t,(By) = t,(B,) implies that t (B

1 2)

2)‘
DEF a subset of attributes X from Ri is said to be a key of

R, IFF X functionally determines R, and no proper subset of

X functionally determines R;.

A detailed overview of the relational model with a
somewhat different formalism may be found in [5]. 1In our
notation, we use identical subscripts and superscripts to
indicate the correspondence between an instance and a type.

2.2 Entity Relationship(ER) Model

While the relational model is the model of preference
for formal analysis of an information system, many database
designers use another approach which is more useful for the
practical side of analysing a user's data needs.

The ER model divides information into three <classes.
Firstly, there are entities which are "things" in the real
world such as cars, parts, or employees. Secondly,

relationships are used to relate one or more entities. For

Beard - 9

example, if a database contains the entities "supplier" and
"part", then a relationship might be "supplies". We only
deal with binary relationships. A binary relationship has
the property of being either one-to-one (1-1), one-to-many
(1-n), many-to-one (m-1), or many-to-many (m-n). These are
defined as follows:

a) 1-n: Two entity schemata are in 1-n relationship
when each entity in the second schemata is related
to at most one entity in the first entity schemata.

b) m-1: Two entity schemata are in m-1 relationship
when each entity in the first schemata is related to
at most one entity in the second.

c) 1-1: Two entity schemata are in 1-1 relationship
when each entity in either schemata is related to at
most one entity in the other.

d) m-n: This relationship imposes no constraints.

Finally, the ER model has attributes which are proper-
ties of either entities or relationships. These properties
might include color, weight, or marital status.

In addition to the 1-1, 1-n, m-1, and m-n constraints
imposed by the data model an additional constraint 1insists
that a relationship exists only among exicting entities.

The ER model may be thought of as a graph with the
nodes denoting entity schemata, and the arcs representing
relationships between the entity schemata. Since form

schemata can be defined to be subgraphs of the ER graph,

Beard - 10

from the prospective of an entity schema, they are very
similar, and operations on forms can be acceptably trans-
lated into ER operations.

Though the ER model may be superior for actually
specifying real world data requirements, relational database
management systems(DBMS) commonly exist for the implementa-
tion of information systems. For this reason, we have
chosen to embed the ER model within the formalism of the
relational model.

The relational model as originally defined by Codd does
not recognize the concept of "entity". In [6], the model
was expanded to encompass the ER model and a reader inter-
ested in a more detailed treatment of this subject might ex-
amine either that paper or [7] which contains the formal
details of the Metaform system.

To embed the ER model in the relational model one may
use relation schemata to represent entity schemata and
relationship schemata. The model must then be expanded to
allow a rigorous determination of which schemata are entity
relation schemata. Relationship schemata are formed by con-
catenation of the keys of the two corresponding entity
schemata plus possibly several other attributes.

A key is defined for each entity schema in the database
schema. The key of the relationship schema is the con-
catenation of the keys of the two corresponding entity
schemata. The relationship constraints are imposed using

functional dependencies among the keys of the entity

Beard - 11

schemata in a relationship schema. A detailed analysis of
the Entity Relationship model and its applications may be
found in [8].

2.3 Example Database and Schema in ER Form

The following 1is an ER parts database and schema
defined wusing the above relational formalism. It consists
of parts which have a name, color, and number; suppliers
which have a name, base city, and number; and projects which
have a name, base city and number. These entity types are
related by binary relationships.

This example follows the above definitions. A more
conventional presentation using tables 1is given later in

Figqure 7.

The database schema PARTS = <A, D, Dom, R,> where:
Attributes A = {pnum, pname, color, snum, sname, psqty,
scity, pjnum, pjcity, ppjgty }.

In naming the above attributes "p" stands for "part",
"s" for "supplier", and "pj" for "project". Relationships
formed between two entities are named by concatenating the
entities symbols so that "ppj" stands for the "part-project"

relationship and "ps" for "part-supplier".

The function Dom is defined as follows:
Dom(pnum) = { 101, 102, 103, 104 }
Dom(pname) { nut, bolt, widget, screw }
Dom(color) { red, blue, green

Dom(snum) {9, 8, 7, 61}

Dom(sname) { acme, wacky, wolly, best }

o nwn

Beard - 12

Dom(pjnum) = { 1001, 1002, 1003, 1004 }
Dom(pjname) = { alpha, beta, gamma, delta }
Dom(scity) =

Dom(pjcity) = { detroit, ann-arbor, new-york }
Dom(psgty) =

Dom(ppjqgty) = whole numbers ("qty" stands for quantity)

The domain of the database D = Dom(pnum) U Dom(pname) U’
Dom(color) U Dom(snum) U Dom(sname) U Dom(pjnum) U
Dom(pjname) U Dom(scity) U Dom(pjcity) U Dom(psgty) U

Dom(ppjgty).

The set of relational schemata R={ P,S,PS,PJ,PPJ '}

where:
P = <pnum, pname, color> PJ = <pjnum, pjname, pjcity>
S = <snum, sname, scity> PPJ = <pnum, pjnum, ppjgty>
PS = <pnum, snum, psqgty>

P (parts), S (supplier), and Pj (project) are the en-
tity schemata. Their keys respectively are <pnum>, <snum>,
and <pjnum>, The relationship schema PPJ (parts-project)
and PS (part-supplier) have the concatenated keys of the
corresponding entities. These are respectively <pnum,
pjnum> and <pnum, snum>,

PS is a m-1 relationship and PPJ is a m-n relationship.

A relational database called "parts" on the database
schema PARTS is defined as follows. Let parts = {p, s, ps,

pj, ppj} a set of relations where:

p = { <101, nut, red>, pj ={ <1001, alpha, detroit>,
<102, widget, blue>, <10C2, beta, detroit>,
<103, bolt, red>, S <1003, gamma, ann-arbor>}

<104, screw blue -,
<10%, nai', green-}

Beard - 13

s = { <9, acme, detroit>, ppj={ <101, 1001, 100>,
<8, wacky, ann-arbor>, <101, 1002, 111>,
<7, best, new-york> } <102, 1001, 92>,

<102, 1003, 132>,
<103, 1002, 45>}
ps= { <101, 9, 10>,
<102, 9, 12>,
<103, 8, 12>,
<104, 7, 23>,
<105, 7, 14> }

2.4 Database Query languages

General purpose database interface languages have been
developed in conjunction with relational database management
systems in order to allow end users to be able to have ac-

cess to the stored information. These languages are normal-

ly based on either the relational calculus or the equivalent

relational algebra, where the wuser 1is required to know
something about the structure of the database schema. We
examine two relational-calculus-based query language:

developed by researchers at IBM. A user interface study

comparing these systems is discussed in [8].

Sequel ([1]) is a commercially-available line oriented

tuple relational calculus (variables denote tuples) query

language which is relationally complete. It was developed

by IBM. It is very similar to the tuple relational calculus

with English key words used to increase comprehension. For

experienced database users with a good math background, this

is a very efficient query language. Very complex queries

may be formulated by an experienced user in a short amount

of time,

Beard - 14

While novice database users with weak math backgrounds
can be taught to create simple gueries using Sequel, a long
learning time is needed. Additionally, complex queries seem
to be beyond the scope of many users. Researchers recog-
nized that several problems encountered with line-oriented
query languages such as Sequel could not be solved without a
drastic change 1in approach ([Zloof76]). In particular,
users with a limited math background seemed to have trouble
correctly using variables.

Query-by-example (QBE) ([Zloof76]) was developed in an
attempt to allow a "visual editor" approach to database
interface without having the understanding needed to use
variables. Variables have been found to be a difficult con-
cept for users to comprehend. To use the system, a template
for a relation is displayed on a CRT screen. The user fills
in blank spaces with information, constructing a query, and
the DBMS then selects the tuples which <correspond to the
query. It 1is called Query-By-Example because instead of
variables, as used in Sequel, the user gives a generic ex-
ample of what information is desired.

However, QBE 1is really just a different and possibly
more efficient method for formulating Sequel type
queries., It is still a relational-calculus-based query lan-
guage. The user still has to know about the structure of
the database schema, while multirelational information must
still be thought of as several relations abstractly con-

nected.

Beard - 15

The trend in the last several years toward ER or third
normal form relational databases has greatly increased the
number of multirelational interactions of the typical user.
Thus many database administrators (DBA) have had to develop

other methods of interaction to databases.

Beard - 16

3.0 Form Screens

3.1 Overview

Because of the interface problems with the general pur-
pose language tools mentioned above, application programs
with prescribed screens are often written. The purpose of
these programs is to provide a special purpose form screen
interface that is easy to learn and use. The user is shown
a form screen on his terminal which displays all the infor-
mation from the database needed to complete the task. The
user does not need to know much about the database schema,
and so is shielded from many changes to it.

Figure 2. An example "supplier" form screen.

Supplier Form Screen Form | | of []
sname snum scity psqgty
| [] l l
num name color
Page | | of | |
/ /
// /
/ /

3.2 Advantages of Forms

What aspects of forms make them so useful and prevalent
in computer information systems? A possible reason is that
they are so ubiquitous in non-computer situations that many

first-time computer users are able to recognize and under-

Beard - 17

stand forms quickly from their non-computer experience.
Another underlying reason might be due to the nature of
human information interaction. The vast majority of ques-
tions seem to involve simple combinations of related infor-
mation.

A form schema may be considered to be a subgraph of an
ER diagram. This means that from the perspective of a par-
ticular entity type, the ER diagram and a form schema are
semantically very similar.

Still another insight into the applicability of forms
to human information interaction is available by comparing
the form (and possibly the whole ER database) to an English
sentence. Relationships are very similar to verbs. Entities
correspond to nouns. Attributes can be either adverbs or
adjectives. Sentences have a subject, and usually have only
one verb and possibly several relative clauses; they typi-
cally deal with closely related information.

Querying the database is a very similar activity. The
query has a subject, verb, and several relative clauses. In
the wvast majority éf cases, only simple queries involving
closely related information are ever composed, despite the
theoretical possibilities of the relational calculus. Forms
allow a view or "chunking" of the database information which
is simple, has a subject, and combines closely related in-
formation.

3.3 Disadvantages of Conventional Form Screens

Clearly, from the prospective of a typical end user,

Beard - 18

specialized form screens are - in most cases - superior to
general purpose interface tools, but they have several major
flaws. First, they are very expensive to develop initially
and even more expensive to maintain. Second, such programs
are hard to test. Errors in specification, design, or im-
plementation are common and costly. Third, application form
screens are specialized interfaces which are inflexible and
difficult to change. They take too much time to develop, so
one cannot quickly develop a prototype application nor
modify an existing application form screen.

3.4 Specifications for a New Interface Language

What is needed 1is a combination of the comprehen-
sibility of form screens without having to create costly
programs - an interface language which automatically
produces form screens for human computer interaction.

The following are the set of goals we have attempted to
meet in the creation of the Metaform system.

Language:

1) No programming activity needed to create an inter-

face for a user.

2) Automatic adaptation to <changes in the database

schema.

3) Formal syntax and semantics.

Human Factors:

1) Very quickly learnable by a wide variety of users

including secretaries, vocational trainees, systems

analysts, etc.

2)

3)

Beard - 19

Initial learning time to be able to perform very
simple queries: computer professionals - less than 5
minutes, secretaries - less than 15 minutes.

The 1interface language should be layered ([91]).
This means that a minimal subset of the langquage 1is
taught first, with other aspects of the language
added later in several stages or layers. Ideally,
The "learning 1inertia" (wunwillingness to learn
something new) of a new layer is much less than the
perceived benefits of the new layer.

Average learning time for the above group - less

than 30 minutes, with 80% correctness.,

Beard - 20

4.0 Metaform

Metaform is a database interface language that provides
updatable multirelational form screen interfaces to the sys-
tem's end users. A simple but reasonably powerful query and
update language is provided to be used in conjunction with
the form screens. No specific knowledge of the database
schema is needed.

Since Metaform is a general purpose tool, generating an
individual user interface does not require any new computer
code to be written. Therefore there 1is wvirtually no
development cost for an individual form screen.

Metaform works in practice because the vast majority of
user queries seem to be localized. Only a small part of the
graph representing the ER schema is generally considered for
a query. A reach-N subgraph of an ER schema graph consists
of the entity type in question, and all the entity types
which are each related to the entity type in question by at
most N relationships. In most cases a query about an entity
type can be contained in a reach-one or reach-two subgraph.
This assessment is difficult to demonstrate empirically, but
a human factors study ([11]) indicates that the complexity
of a query (based on time) increases dramatically as the
number of relations in a query increase. A great deal of
time was needed for even experts to understand an English
query involving more than four or five relations.

Figure 3 shows a flow diagram of the Metaform system.

A database administrator (DBA) analyzes the real world

Beard - 21

situation and produces the database schema. Metaform then
automatically generates a form screen (schema) for each en-
tity type in the ER schema. These screens may be modified
by the DBA in various ways if needed.

Figure 3. An Overview of Metaform.

DBA designs
0 >===---=m-—---- > Tatabase Schema I ————— >Database
.-+_
| v \/
/ \ METAFORM| |------- >DBMS----
i /\
User v DB
o Set of Form schema -- query
-+- result
| requests a entity type v
/ \ >==mm—mmmm e >]METAFORM|
Y v \
CRT form | METAFO_RMJ_
formulates a - screen
query <Cmmm=mm——— -
-— form
——————————————— > /---/ ==-==--=--=---->|METAFORM| query
/---/ form query
result
/\ v

A session may begin when the wuser requests a form
screen which corresponds to an entity type. Metaform dis—
plays this on a CRT. A form query is formulated on the form
screen by the user, and the system is requested to perform
this operation. The form query 1is translated into a
relational database query by Metaform and passed on to the
DBMS. The DBMS processes this relaticnal calculus operation
using the data stored 1in the database, and obtains a
relational query result. Metaform translates this

relational query result into a set of forms, and displays

Beard - 22

the result for the user. Updates are processed in a similar
manner.,

4,1 Form and Form Schema Definitions

While forms and form schemata are very familiar to the
information processing community, some readers will prefer
the more rigorous description. . The following are the
definitions of a form and form schema. A more detailed

presentation of this is given in [7].

1]

Let dbs <A, D, Dom, R > be a database schema with

database r. F is the set of form schemata defined as fol-

lows:
1) Fo € A7, Fy = <Ay, ..., A _,> is a form schema 1i.e.

F, € F.

0

2) if {Fy,, ..., F__,} CF and <A ¥

0, * 00y An_1>eA 7

then ,<A0, eee, A F > € F.

n-1’' FO' S
3) Nothing is in F except by 1 and 2.

Domain of Fq € F.
We extend the definition of the function Dom (from

section 2.1) for FO € F. Dom(FO) is defined as follows:

1) if Fo = <Ay, «vos A > € A+, then Dom(FO) = Dom(AO)

X...X Dom(An_1).

2) if {FO, ceey Fm_1} C F and <Agr eees Aoy

then Dom(<Ay, ..., A _,, For eeer Fpoyg®) = Dom(A

X ... X Dom(A _, X Power(Dom(F,y)) X ... X Power (

Dom (F)) where 'Power' denotes the power set

m-1

operation,

Beard - 23

Forms
Let f be the set of forms on F. fo € f is a form on

schema Fo € F IFF fo € Dom(FO) and fo is finite.

4,2 Automatically Generated Form Screens

A form schema is automatically produced for each entity
type in the database schema. This schema includes the entity
type and its attributes; all directly related (reach-one)
entity types and their attributes; and the corresponding
relationships and their attributes.

From the perspective of an entity in a database, it is
related to either one other entity of an entity type(1-1 or
M-1) in the database schema which we call a single

relationship, or to many entities of an entity type(1-M or

M-N) which we call a repeating relationship.

A form schema for an entity type in a database schema
is an unnormalized (not in first normal form) relation
schema. The base entity type (and its attributes) form the
apex of the form schema. Other related entity types form
repeating groups.

When an entity type is related to another by a repeat-
ing relationship, that other entity type (and the cor-
responding relationship) forms a repeating group in the
form. When an entity type is singly related to another en-
tity type, that entity type and the corresponding
relationship become attributes of the base entity type in

the form schema, and along with the base entity type they

Beard - 24

are placed in the apex of the form schema.

Using the parts database in section II and the form
schemata definition given above, we can formulate an example
part form schema. Since there can be several projects using
a particular part, the project entity type and the attribute
ppjaty from the relationship between part and project
together form a repeating group. Because there is at most
one supplier for a given part, the form schema allows only
for only one supplier.

Figure 4. Example part form schema.
p rel s rel ps rel

| | l I |

<pnum,pname,color,snum,sname,scity,pnum,snum,psqgty

pj rel ppj rel

| | |

<pjnum,pjname,pjcity,pnum,pjnum,ppjqty>>

Because of the constraint that a relationship cannot
exist unless the two corresponding entities exist, we find
that the duplication of keys - from the entity types, and
from the corresponding relationship schema - can be
eliminated.

Forms which are generated in this manner are subgraphs
of the actual entity relationship database schema. These
are very simple subgraphs which - from the perspective of a
particular entity type - behave the same as the ER database
schema under updates.

We show the final part form screen as it would be dis-

played on a CRT.

Beard - 25

Figure 5. The Part Form Screen.

Part Form Screen : Form | | of | |

Pname Pnum Color Sname Snum Scity PSqgty

i | | | | I l I
Pjname Pjnum Pjcity PPijgty

Page | of | |

/|Select Union| [Difference| [Complement | /
/ |Insert Delete| [Modify| [Intersection] /

4.3 The Metaform Query Langquage

In Figure 6 the part form screen 1is displayed along
with a form query which corresponds to the English sentence:
"Display all the parts which are not 'red',6 are supplied by
suppliers based in 'detroit', and are used by EITHER the
'alpha' OR the 'beta' projects".

The wuser moves the cursor around the form screen and
fills in the appropriate boxes with constants. When the user
presses the "select" function key, the Metaform system
translates this form query into a relational-calculus query
and the DBMS retrieves the result which 1s translated by
Metaform into a set of forms which are displayed to the
user.

Figure 7 shows the current database(in table form) and

Figure 8 displays the result set of part forms which would

Beard

be shown to the user after making this query.

Figqure 6. An Example Form Query.

Part Form Screen Form | [of []
Pname Pnum Color Sname Snum Scity PSgty
1 I [~red | | |detroit] [

Pjname Pijnum Pjcity Ppijgty
alpha
beta

Page | | of | |

/|Select| [Union| [Difference| [Complement]
/ |Insert| |Delete| [Modify| [Intersection]|

/
/L //
/ /
Figure 7. The Example Database in Table Form.
P<pnum, pname, color> S<snum, sname, scity>
101 nut red 9 acme detroit
102 widget blue 8 wacky ann-arbor
103 bolt red 7 best new-york
104 screw blue
105 nail green
PS<pnum, snum, psqty> PJ<pjnum, pjname, pjcity>
101 9 10 1001 alpha detroit
102 9 12 1002 beta detroit
103 8 12 1003 gamma ann-arbor
104 7 23
105 7 14

PPJ<pnum, pjnum, ppjqty>
101 1001 100
101 1002 111
102 1001 92
102 1003 132
103 1002 45

26

Beard - 27

Figure 8. The Part Form Screen Query Result,

Part

Form Screen ' Form |1| of |1|

Pnam

e Pnum Color Sname Snum Scity PSqty

{wid

get [101 [blue [acme [9 [detroit[12 |

Pjname Pjnum Pjcity PPigty
alpha 1001 [detroit 100
gamma 1003 |ann-arbor |132

Page [1]| of [1]

Select| [Union| [Difference| [Complement] /

Insert| |Delete| [Modify| JIntersection] /

As
divided
1)

2)

3)

4)

an aid in teaching, the form query language is
into four levels or layers ([9]).

The first 1level allows queries which involve one
constant placed in one data field.

The second level allows queries which have several
data fields filled in with constants. A constant in
a field corresponds to a simple term in the
relational calculus. An "and" condition occurs be-
tween different "terms". An "or" condition occurs
between the rows ("and-ed" gqroups of terms) of a
repeating group.

The third level uses inequalities such as "<", ">",
"~=" etc. to produce terms.

The forth and final level allows several result sets

of forms to be combined into a single result set

Beard - 28

using set operators. A stack of previously obtained
results is kept. The set operators are applied in a

postfix manner to produce new result sets.

The above query language is not relationally complete,
but it is very easy to learn and use, and seems to deal with
the vast majority of user query situations.

4.4 The Metaform Insert Operator

To insert a form into the database, the user fills in
the fields of a form screen with constants and presses the
"insert" function key. The key of any entity type displayed
on the form screen must then be specified.

I1f the entity specified for the form already exists in
the database, the insert request is rejected. Otherwise, we
may assume that it does not exist and because of constraints
on the database schema, no relationship contains that en-
tity.

If any of the single or repeating related entities al-
ready exist in the database and conflict with those being
proposed by the user, the insert request is rejected and the
user is given an appropriate error message. Otherwise, the
DBMS is requested to insert the apex entity, all the single
or repeating entities, and all the relationships.

In Figqure 9 we show an insert request, and in Figure 10
we show the database given in Figure 7 after the insert re-
quest is applied. A new part, supplier, and project has to

be added. it is not necessary to add the alpha project since

it already exists in the database.

Figure 9. An Example Form Insert.

Beard - 29

Part Form Screen Form | [of | |
Pname Pnum Color Sname Snum Scity PSqty
[bar |106 [yellow|able {10 |detroit|22 |
Pjname Pjnum Pjcity PPijqty
alpha 1001 Jdetroit[43) |
delta 1006 |newyork |56
Page | | of [|
/|Select| |Union| |[Difference| [Complement] /
/ |Insert Delete| |[Modify| [Intersection] /
/ /
/L //
L /
Figurel10. Example Database after Insert.
P<pnum, pname, color> S<snum, sname, scity>
101 nut red 9 acme detroit
102 widget blue 8 wacky ann-arbor
103 bolt red 7 best new-york
104 screw blue 10 able detroit
105 nail green
106 bar yellow
PS<pnum, snum, psqyt> PJ<pjnum, pjname, pjcity>
101 9 10 ' 1001 alpha detroit
102 9 12 1002 beta detroit
103 8 12 1003 gamma ann-arbor
104 7 23 1006 delta new-york
105 7 14
106 10 22
PPJ<pnum, pjnum, ppjqty>
101 1001 100
101 1002 111
102 1001 92
102 1003 132
103 1002 45
106 1001 43
106 1006 56

Beard - 30

4.5 The Metaform Delete Operator

Metaform deletes a form from a database by deleting the
corresponding entity and deleting any relationship that
deals with that entity. No other entities are deleted.
Since the form and corresponding entity are uniquely iden-
tified by the key of the apex entity, only the attributes in
the key need be specified.

It should be emphasized that an ER database is neces-
sary for the delete operation to function in an acceptable
manner. A user expects the deletion of an entity to delete
its existence, and delete any relationship it might have had
with another entity. No other entity can be deleted. A
conventional relational database does not insist that the
existence of an entity be separated from its relation with
another entity.

Figure 11 shows an example delete request and Figure 12
shows the database in Fiqgure 10 after the update has been
performed. The delete request in Figure 11 may at first ap-
pear to be the inverse of the insert request in Figure 9,
but the entities added in the insert example are not removed

in the delete example.

Beard - 31

Figure 11. An Example Form Delete.
Part Form Screen Form | | of |]
Pname Pnum Color Sname Snum Scity PSgty
| 1106 | | I l I
Pjname Pijnum Pjcity PPigty
Page | | of | |
/|Select Union| [Difference| [Complement] /
/ lInsert Delete| [Modify| [Intersection] /
/ /
// //
/ /

Figure 12 Example Database after Delete.

P<pnum, pname, color>

101 nut red 9
102 widget blue 8
103 bolt red 7
104 screw blue 10
105 nail green
PS<pnum, snum, psqgyt>
101 9 10 1001
102 9 12 1002
103 8 12 1003
104 7 23 1006
105 7 14
PPJ<pnum, pjnum, ppjgty>
101 1001 100
101 1002 111
102 1001 92
102 1003 132
103 1002 45

4.6 The Metaform Modify Operation

alpha
beta

gamma
delta

S<snum, sname, scity>
acme
wacky
best
able

detroit
ann-arbor
new-york
detroit

PJ<pjnum, pjname, pjcity>

detroit
detroit
ann-arbor
new-york

As currently defined, the modify operation is a delete

operation followed by a insert operation.

Beard - 32

5.0 Analysis of Metaform

5.1 Correctness of Update Operators

When one tries to develop a new database interface lan-
guage which allows a user to modify the information 1in a
view which is not in the actual schema, there is always the
possibility that this language allows the user to express
something which cannot be expressed in the language of the
actual database update operations. In short, the semantics
of the new update language cannot be embedded into the
original database update language.

In order to insure correctness of the Metaform update

Operators, we have to be able to unambiguously express both

the Insert and the Delete operators in terms of sets of in-
sertion and deletion operations on the actual database.

The definitions of the Metaform insert and delete
operations given in section 4 provide a unique set of insert
or delete relational database operations for each of the
Metaform insert and delete operations.

There is another side to correctness, however, which
has generally been ignored in the literature. A beginning
database interface language user has preconceived notions as
to the meanings of the various operations on the database
view, It is essential that:

1) The user expects the form update operations to have

exactly one meaning.

2) These operations have the user's expected meaning.

One advantage of wusing form screens 1is that such

Beard - 33

screens have a subject or focus, so that an operation such
as "delete"(a verb) has the subject of the form as a object.
"delete" becomes, in the user's mind, "delete a part".
Little or no human factors testing of database update
operations has been recorded in the literature. Considering
that a large part of database interaction involves updating
the database, this is a potential area for future research.

5.2 Human Factors

A user-interface study was conducted to determine
whether the Metaform language could be used by a wide
variety of end users ([12]). The experiment involved teach-
ing a group of subjects how to use the form-screen interface
and then testing their knowledge. Times for 1learning and
doing query tasks and the number of errors made in doing
these tasks were collected. The query tasks involved trans-
lating queries 1into corresponding English sentences anA
translating English sentences into Metaform queries.

In order to avoid a biased database, we used one from
[13]. It was translated into ER form and four form screens
were extracted. Both queries from [13] and others were used.

Subjects ranged from engineers, physicists, and math
students, to secretaries and elementary schoo' teachers who
had no math background. These subjects lez.ned how to use
the Metaformvsystem(levels 1 through 4) in an average of 20

minutes, with a correctness of about 85%.

Beard - 34

6.0 Conclusions

The Metaform system allows a new approach to the design
of database interface languages. It presents automatically
generated form screens as updatable views of multirelational
information stored in an ER database embedded in the
relational model.

Users are more likely to interact with a database
using an information system language which is easily
learned. For these reasons the Metaform system was designed
to be learned in a minimal amount of time.

Clearly there are user/task combinations which are not
appropriate for the Metaform system. For example, multi-
relational queries (those involving several relations)
which do not have a single entity as a subject or focus are
troublesome; such queries are contrary to the assumptions
used in developing Metaform.

Additionally, more difficult gqueries involving vari-
ables and/or universal quantification cannot currently be
dealt with by Metaform.

However, expert relational calculus users would probab-
ly still find the Metaform interface superior in many cir-
cumstances. A programmer might be able to develop a superi-
or form screen, but Metaform can generate 1its screens
automatically, in almost no time, and with 1little cost.
Thus 1is it ideal for many small database systems which cur-
rently are not cost efficient. Additional uses might in-

volve being able to prototype a database design quickly in

Beard - 35

order to generate user feedback to a database administrator
(DBA) .

Even if a more customized form screen were needed for a
particular user situation, screens generated by Metaform
could serve as a starting place. Plans are underway to
develop extensions to the system so that a DBA could cus-
tomize form screens to include more entity types, or to have
a modified layout.

In developing Metaform, we have concentrated our ef-
forts on a particular hypothetical user: one who deals with
closely related information, and who needs to learn quickly
how to query and update the database. In the final
analysis, the overall usefulness of Metaform depends on the
ubiquity of our hypothetical user. Our experience, and the
large number of form screen database application programs in
current use tends to indicate the widespread need for such a
system, but careful field studies on this guestion would be
helpful in validating our assumptions,

Acknowledgments

We wish to thank Prof. Bernard Galler for taking the
time to proof read this manuscript. His comments on both
content and writing style have been immeas_:rable. We also
wish to thank Prof. Marilyn Mantei for her help in undertak-

ing the human factors research mentioned in this paper.

Beard - 36

References

[

1]

9]

10]

11]

12]

13]

Chamberlin, D. D., et al. "SEQUEL 2: A wunified ap-
proach to data definition, manipulation, and con-
trol," IBM Journal of Research and Development,
vol. 20, pp. 560-575, Nov. 1976.

Chen, P. The Entity-Relationship Model - Toward a
Unified View of Data, ACM TODS, vol. 1 no. 1, 1976,
pp. 9-36.

Codd, E. F. A Relational Model for Large Shared Data
Banks, CACM, vol. 13, 1970, pp. 377-387.

Hopcroft, J. E. and Ullman, J. D. Introduction to
Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading, Mass., 1979 418 pp.

Maier, D. The Theory of Relational Databases. Com-
puter Science Press, Rockville, MD., 1982,

Codd, E. F. Extending the Database Relational Model
to Capture More Meaning, IBM research report, San
Jose, California, RJ2472 (32359) 1/31/79, 1979

Beard, D.V., "The Formal Aspects of Metaform", Work-
ing Paper, 1984,

Tsichritzis, D. C., Lochovsky, F. H. Data Models,
Prentice-Hall, Englewood Cliffs, N.J., 1982, 381 pp.

Reisner, P. Human Factors Studies of Database Query
Languages: A Survey and Assessment, Computing Sur-
veys, vol. 13 no. 1, 1881, pp. 13-31.

Zloof, M. M., "Query-by-Example," AFIPS Conference
Proceedings, National Computer Conference 44,
pp. 431-438, 1975.

Beard, D. V., "The Effect of the Number of Relations

on Database Query Formation", Working paper, April,
1981.

Beard, D. V., "A Pilot User interface Study Evaluat-
ing A form-Screen Database-Interface Language",
Working Paper, March, 1983.

Reisner, P. Use of Psychological Experimentation as

an Aid to Development of a Query Language. IEEE
Transactions on Software Engineering, SE-3, 1977,
pp. 218-229,

T

