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ABSTRACT

In switching problems the efficiency of the switching circuits is
often of Qonsiderable importance. In the past the basic switching mech-
anism has been actuated by pulses or simple functions of voltage, cur-
rent, or force, and efforts to obéain increased efficiency have led to
the ﬁse of transistors, development of better relays, and the improve-
ment of other components. This dissertation considers, as an alterna-
tive or complementary approach to the problem, the optimization of the
function of time which is used for triggering so as to minimize the en-
ergy required of the triggering signal.

The general problem of determining the optimum triggering signal
for a lumped-constant, linear circuit is treated. The optimum signal is
defined as that which produces a given current through, or a voltage
across, a resistive output element at time t = T while at the same time
requiring a minimum of energy from the generator driving the circuit.

The output resistance is considered as characterizing the input terminals
of a bistable element such as a thyratron, multivibrator, or a magnetic
relay.

General equations characterizing the optimum signal are derived,
and -the conditions under which they are valid are noted. There are two
pathological types of c¢ircuits for which characteristic equations are
not obtained. However, both of these types of circuits are unrealistic
in the sense that they do not allow for generator internal resistance or
stray capacitance across the circuit input terminals. For realizable cir-
cuits and realizable generators a characteristic equation is obtained
which is always valid.

Methods of solution of the characteristic integral equations are dis-

cussed, and it is shown that the Laplace transform can be used to reduce

vii



"ABSTRACT

(Concluded)
the integral equations into algebraic ones which are susceptible of sim-
ple solution. Finally, several sample problems are proposed and the so-
lutions obtained. These examples, in addition to demonstrating general
solutions, also demonstrate a method for finding the undetermined con-

stants involved in the equations.
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CHAPTER I

TNTRODUCTION

Switching is of great importance in almost all fields of engineering
endeavor. The problems range all the way from the trivial ones of mech-
anically turning an equipment on or off to the complicated problems asso-
clated with automatic telephone exchanges. Regardless of the complexity,
however, the basic switching mechanism in the past has been actuated by
pulses or predetermined functions in time of voltage, current, or force.
In some of the complex problems in switching much attention has been paid
to the-efficiency of the switching process. However, the improvements in
efficiency have resulted from reducing the energy requirements of the ba-
sic switching elements by building better relays and other terminal de-
vices, and from increasing the efficiency of the associated circuits such
as might result through the use of transistors. Thus, improved switching
has resulted from the improvement of the switching circuits.

One mighﬁ consider an alternative or complementary apprpach to the
switching problem. In many cases it might be desirable to operate a re-
motely located switch by radio. Here the energy required of the trans-
mitter may be of primary importance and one may or may not have optimized
the receiver efficiency. Thus, in this type of problem the receiver may
be fixed and one may only be free to adjust the transmitter parameters.
Here it might be quite inefficient to select arbitrarily some given type
of triggering signal, such as a pulse, for example, and it may be of con-
siderable benefit to optimize the function of time which is chosen for the
triggering signal. This paper considers the optimization of the time

function of the signal to be used for triggering some given circuit.
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1.1 Comparison of the Optimum Triggering Signal and Signal Detection

Problems

Before attempting a solution to the optimum triggering signal prob-
lem it may be well to review some of the accomplishments in the field of
signal detection, because at first glance it appears that the solution to
the signal detection problem hight yield a solution fo the optimum trigger-
ing signal problem. However, it will be shown that the two problems are
very different in nature, and the solution to one suggests nothing in the
way of a solution to the other.

The part of the signal detection problem which bears the closest re-
lation to the optimum triggering signal problem is probably best defined
by quoting from Van Vleck and Middleton's treatment of the problem.l

"In the visual case, the best filter, in the first approximation is
that which gives a maximum value of the ratio of the peak signal to the
noige background. This statement can be formulated more precisely as fol-
lows: coming into the IF filter there is a fluctuating noise voltage and
also a signal S;(t), which is a definite function of time., After filter-
ing and rectification, the video amplitude ié not exﬁressible as a simple
sum of pure signal and pure (i.e., normal, random) noise, as there are
complicated modulation or interference effects between the two, especially
for the linear detector. If the signal is periodically repeated, there
will be a particular epoch at which the amplitude on the oscilloscope screen
is on the average a maximum. The excess of the average of the amplitude at
this epoch over the mean amplitude in the absence of signal we denote as

Sy. We say on the average, because sometimes the noise may interfere con-

1. J. H. Van Vleck and David Middleton, "A Theoretical Comparison of the
Visual, Aural, and Meter Reception of Pulse Signals in the Presence of
Noise," Research Laboratory of Physics, Harvard University, Cambridge,
Massachusetts, Journal of Applied Physics, November, 1946, pp 940-97L.




structively and sometimes destructively with the signal. We must seek,
therefore, to make sy (t) stand out as much as possible relative to the
r.m.s. deflection n; caused by the noise background."

The first theoretical treatment of this problem was made by D. O.

Northo2

He showed that to maximize the ratio of the peak signal, known
exactly, to the r.m.s. noise, the filter characteristic should be the
complex conjugate of the Fourier transform of the pulse.

In addition to optimizing the filter characteristic for the detec-
tion of signals known exactly, there have also been investigations lead-
ing to optimization of pulse widths, repetition rates, scanning rates,

1,3

ete. These optimizations lead to the choice of the parameters of

some signal of a given type. However, the.general problem of determining,
if possible, the best function of time for peaking the filter output for
a given filter does not appear in the literature.

Without a critical examination, it appears at first glance that North's
determination of the best filter for peaking the ratio of the output signal
to the r.m.s. noise might be applied conversely to the determination of the
best signal for a given filter. However, there is a basic difference be-
tween the two problems. Suppose first that we have some signal known ex-
actly and that we want to determine the best filter for maximizing the ra-
tio of peak output signal to r.m.s. noise., In this problem it is assumed
that there is some given noise level at the filter input. It is clear that

we do not want to simply select the filter characteristic to maximize the

output signal, because this in general might also peak the output noise.

2., D. 0. North, in an unpublished report PTR-6C, entitled "Analysis of
Factors Which Determine Signal-Noise Discrimination in Pulsed Carrier
Systems," RCA, Princeton, June 25, 1943.

%3, J. L. lawson and G. E. Uhlenbeck, Threshold Signals, Vol. 24, Rad.
Lab. Series, McGraw-Hill Book Co., New York, 194L8.




For example, the best circuit for simply peaking the output signal would
be an ideal transformer with infinite turns ratio. However, this trans-
former would also peak the output noise and thus would not maximize the
signal-noise ratio. In signal deﬁection, therefore, the choice of the fil-
ter involves inherently a choice of the noise output.

In the optimum triggeriﬁg signal problem noise plays no role whatso-
ever. In this case it is assumed that the filter or circuit is given.
But if the filter is given, it then follows that the noise output from the
filter is also given. The choice of the optimum triggering signal there-
fore involves no choice of the noise output from the circuit. In this
case, optimizing thé input signal to maximize the peak output also maxi-
mizes, on the average, the ratio of the peak output signal to the noise
ouﬁput. Thus, one would not expect in general that the optimum signal is,
using North's theorem in converse, the complex conjugate of the inverse

Fourier transform of the filter characteristic.



CHAPTER IT

OPTIMUM TRIGGERING SIGNALS

2.1 Statement of the Problem

The problem which is considered is that of activating a critical bi-
stable element, located at the output terminals of a circuit, with a min-
imum of energy delivered to the input terminals of the circuit. The crit-
ical element is envisioned, for example, as a biased thyratron or a bi-
stable multivibrator. These types of critical elements require that a
minimum instantaneous voltage be exceeded at least once between a sensitive
pair of tube elements in order that triggering occur and conduction take
place. Another example would be a relay which requires some minimum cur-
rent through the pull-in coil in order for the relay to be activated. 1In
general, the circuit with the critical element at the output terminals is
considered to be stable and made up of lumped=-constant, linear elements,
such as resistances, inductances, capacitances, and linear vacuum tubes.
The critical element to be triggered, without loss of generality, can al-
ways be considered as purely resistive; i.e., thyratrons, multivibrators,
and relay coils can all be considered to have a resistive component of in-
put impedance and the reactive components can all be lumped into the re-
mainder of the network. The description of the critical element as a pure
resistance always allows the activating output signal to be described in
terms of a current through a resistance. Thus this type of subterfuge al-
lows all triggering problems to be resolved into a single type in which
one desires to establish some minimum current through an output resistance

at some instant in time. It should be noted, however, that a resistive



description of the critical element is not necessary, but has been used
only for convenience. The resistive description renders the triggering of
both tubes and relays subject to a single treatment.

Consider then the circuit as characterized by the block diagram below.

11(t) — iz(t)
O—1 sgul(t)

ey (t) ea(t) & F

O—— z12(t)

Fig. 1. Block diagram characterizing the circuit to be triggered.

Here gq1(t) is the current i,(t) which flows in response to a voltage e;(t)
when eq(t) is a unit impulse. gio(t) is the current ip(t) which flows in
response to ey(t) when e;(t) is a unit impulse. With these definitions

we can write

t
@) = [ el anlemar 1)

and

t
iz(t) \]; e1(t) giz(t-T)dr (2)

I

where e1(t) is now an arbitrary driving function but equal to zero for t < O.
Note, that if R is the internal resistance of a relay to be triggered, then
we want to describe the triggering function as a current [given by equation
(2) above]. However, should R be the input resistance of, say, a fhyratron,
then we would want to describe the triggering function as a voltage as fol-

lows.,

il

R

ez(t) ia(t

)
t
R\j; e1(T)g1a(t-T)dT . (3)

L. Gardner and Barnes, Transients in Linear Systems, Vol. 1, John Wiley
and Sons, Inc., New York, 1952.




Let us now consider a time interval 0 £t £ T, where T defines both
the instant of triggering and also the allowable elapsed time interval of
the driving function. If T represents the instant of triggering, then
iz(T) or ex(T) must equal some critical minimum current or voltage which
will establish the conduction of a tube or the pulling in of a relay.

Thus we want

T
io(T) = I, = \j; e1(T) gio(T-T)dr ()

or

®

N
=
0
bt
i
H
=
n

T
c e R\/; e1(r) giz(T-T)ar . (5)

Here the prime on I, does not indicate differentiation, but is used simply

to distinguish the critical current in equation (4) from that in equation

(5).

Now, the energy input into the network up to the time t; is given by

T,
k/\ Pin dt
(@]

T
j; e (t) 1(t) dt
ty t
J; el(t)[J; el(T)gll(t‘T)d;:l at . (6)

The final total energy input in the interval O <+t £ T is then

E(t1)

T t
E(T) = \]; el(t)\/; el(T)‘gll(t‘T)dT at . (7)

Expressed mathematically, then, the optimization problem becomes that

of minimizing the integral

T
B(T) - f el(t)fot e1(r) gua(t-r)ar at

subject to the constraint that



T
20) = T = [ ea(n) maa(zr) ar

or

T
e2(T) = E, R\j; e1(t) gio(T-1) a1 .

Note that the constraint equdtions can also be written with t instead of
T as the variable of integration. Thus the constraint equations can have
the same variables of integration as the energy equation. The constraint

equations therefore become

2(1) = T, = [ ealt) maalrt) a (8)

or

T
oT) = Fg = R | ex(t) mua(r-)e . (9)

2.2 Derivation of an Equation Characterizing Solutions to the Linear

Problem

General problems involving the minimization of integrals are treated
by that field of mathematics known as the Calculus of Variations. The sim-
ple variational problem involves a determination of a function appearing
in the integrand of an integral so as to minimize the integral. The Vari-
ational Calculus is also capable of treating problems involving the mini-
mization of integrals subject to the condition that secondary restraints
involving the function to be determined are also satisfied. Those varia-
tional calculus problems in which there are éecondary restraints are known
asiisoperimetrical problems. For a treatment of the Variational Calculus

see references 5 and 6. In the following treatment of the optimum trigger-

5. A. R. Forsyth, Calculus of Variations, Cambridge University Press, 1927.

6. C. Fox, An Introduction to the Calculus of Variations, Oxford University
Press, 1950.




ing signal problem the Variational Calculus will be used. e;(t) will be

selected so as to minimize the value of

T t
B - \j; e1<t)t/; ex(r) gaa(b-r)ar dt (10)

and also at the same time satisfy

T
120) = T, = [ ealt) maa(mt)at (11)

We first assume that there is some function e;(t) satisfying the above
conditions, and then examine what happens when we use a function perturbed
away from the optimum, instead of using the optimum driving function.

Thus, if we let ey(t) be the optimum driving function, we will consider a
perturbed driving functioh

e1(t) + en(t) , (12)
where € is some small arbitrary constant and n(t) is some arbitrary contin-
uous function of t with n(o) = n(T) = 0. Also, in order to incorporate both
equations (10) and (11) into a single equation, we will make use of the La-
grangian multiplier A, where A\ is an arbitrary constant to be chosen finally
to satisfy the boundary conditions of the problem.7 We therefore consider

the minimization of

E - Mao(T) = \/;T [%1(t)\/;# e1(T)gra(t-T)ar - Kel(t)glz(T‘tE]dte(l5)

Now in equation (13) let us substitute for e;(t) the perturbed driving

function given by (12). Equation (13) then becomes

T. I. S. Sokolnikoff, Advanced Calculus, McGraw-Hill Book Co., New York,
1939.




10

E - Aio(T) =LT{[e1(t) + en(t)] f‘t [es(T) + en('r)]gu(t-T)dT} at

O

T
-] Mea(®) + en(®)) gaa(r-t) av

T t
=L/ [;1(t)\/; ey(t)gy(t-T)dr - Xel(t)gla(T't{]dt

o
T t t
+E/; [é(tl/; el(T)gll(t'T)dT*'el(tl/; ﬂ(T)gll(t'T)dT"Kﬂ(t)glz(T'tE]dt
T

t
+ ez\j; n(t)\]; n(T)g11(t-T)ar dt . (14)

It can now be argued tﬁat if e;(t) is such as to minimize equation
(13), then any perturbation can only serve to increase the value of equa-
tion (14). ©Note that the first term of equation (14) is the original un-
perturbed function given by equation (13). The second term of equation (1k)
has a multiplier €. If we allow € to have either positive or negative val-
ues, then to guarantee that the perturbation has increased the original
function [this implies that e;(t) minimizes the function E - Nis(T)] the
coefficient of € must be zero. The third term has €2 as a multiplier,
which is always positive, and, in addition, the coefficient of ez.is the
energy input to the network due to the perturbing signal acting alone,
which must also be positive. Thus if we set the coefficient of e equal to
zZero, we will have established a condition on el(t)'such that any pertur-
bations of e;(t) always result in an increase in the value of equation (13).
This is exactly the condition which minimizes the quantity given by equation
(10) and satisfies equation (11). Equating the coefficient of e to zero

gives



11
T t
0 fo n(t)fo ea(rleaa(e-r)ar +fOT em)fot n(7)gas (b-r)aT at

T
- K\]; n(t)gia(T-t)at . (15)

As it stands, it would appear that solution of this equa-
tion for e;(t) would lead to a function of the network parameters, gi;; and
g12, and also of f(t). But if e;(t) is given in terms‘of the perturbation
then we have not truly found an optimizing function, but have optimized
only with respect to some particular perturbation. However, if the right-

hand side of equation (15) can be resolved into the form

o
th n(t)f [ea(t) , g21(t) , g1=2(t)] dt (16)

then we could satisfy equation (15) by insisting that flei(t), g11(t),
g12(t)] be identically equal to zero. If this is possible, then the de-
scription of eq(t) will be independent of the perturbation and will be gi-

ven in terms of only the network functions gy3(t) and gi1o5(t).



CHAPTER III

RESTRICTIONS ON g,4(t) FOR STABLE, LUMPED-CONSTANT,
LINEAR NETWORKS, AND NATURE OF THE CORRESPONDING SOLUTIONS

5.1 Restrictions on g!lgt) for Stable, Lumped-Constant, Linear Networks

Before looking for solutions to equation (15), we will first consider
some of the general characteristics of g11(t) and some of the restrictions
on e1(t) since they will be important in the mathematical treatment of
the problem.

Consider now only the input terminals of the network to be triggered.

ip(t)>
S Lumped -
Constant,
e1(t) Linear
Network
O__—..

Fig. 2. Block diégram showing input terminals
of the network to be triggered.

The ILaplace transformed equation relating input current to input voltage
is

i1(s)z1a1(s) = ei(s) , (17)

where z11(s) is a complex impedance function describing the driving point
impedance of the network. If ei(t) is a unit impulse u;(t), then i;(t) is,

by definition, equal to gy3(t). We have, therefore,

g11(s) = —f(;y : (18)

Now, because z,1(s) is a driving point impedance function, it can be writ-
ten as the ratio of two polynomials in s, subject to the restriction that
the degree of the numerator does not differ by more than one from the de-

12



13

gree of the denominator. This is in consequence of the restriction that
driving point impedances can have no more than simple poles on the imagi-

nary axis,8 Thus gi11(s) can in general be written

g11(s) = kis + ko + g 2) s (19)

where k; or ko, or both, may be equal to zero, and where N(s) is at least

one degree less than D(s). g;1(t) is therefore of the form
g11(t) = Xkjuo(t) + koup(t) + other terms (20)

where up(t) is a unit doublet and uy(t) is a unit impulse. In general,
the "other terms" in equation (20) can be expressed as powers of t times

damped sinusoids, i.e., in the form
t2e=®Psin(wt + 0) . (21)

This form results because the zeros of D(s) lie either on the negative real
axis or else appear in complex conjugate pairs. Because of this, N(s)/D(s)
can be expanded in partial fractions yielding a sum of terms of the form

N'(s)
[(s +a)2 + b2]"

(22)

where N'(s) is of degree less than that of the denominator. The inverse
Laplace transform of a function of the form (22) has the form (21).
Because of equation (20), we can characterize gi;(t) as belonging to
one of three possible classes. These are:
(1) g11(t) contains neither a unit doublet nor a unit impulse.

(2) g11(t) contains no unit doublet, but does contain a unit impulse.
(3) g11(t) contains a unit doublet.

3.2 Nature of Solutions for the Three Possible Classes of Slgft)

It was shown in Section 3.1 that for lumped-constant, linear networks

8. E. A. Guillemin, "Modern Methods of Network Synthesis," appearing in
Advances in Electronics, Vol. 3, Academic Press, Inc., New York, 195L.




1k

one could write the Laplace transform of i,(t) as
11(s) = gaa(s) ex(s) . (23)

It was also shown that because of the restrictions on driving point im-

pedances

N
g11(s) = ks + ko + 30 (2k)

where any term or combination of terms on the right side can be zero. Thus,

ii1(s) can be written

iy(s) = [kls tkp 4§ g):l es(s) (25)

where the degree of N(s) is at least one less than that of D(s). Now, be-

cause we are in general looking for solutions to the equation
G t
0= n(t)\/; e1(T)gra(t-T)dT + el(t{/; n(T)gra(t-)dr - An(t)eg1z(T-t),(26)

which we hope will be independent of n(t) and will be in terms of only
g11(t) and gio(t), we will consider e;(s) to be the ratio of two polynomi-
als in consequence of gi;(s) and gis(s) being ratios of polynomials and the
integrals being convolution integrals. Thus, we will consider some of the
implications of equation (25) under the restriction that e;(s) is the ratio
of two polynomials.

Case 1, E;_é_g [this corresponds to the third class of gii(t)].—Suppose
now that a driving signal e;(t) (not necessarily optimum) contains a unit
impulse and that k; # O in equation (25). ei(s) then contains—a constant
term, and therefore [from equation (25)] i;(s) contains an s term. Thus
i1(t) contains a unit doublet. Under theése conditions let us now compute

thé energy input contribution due to the impulse of voltage and the doublet



15

of current. The unit impulse is symbolically defined ash

w(t) = Mo ue) ~u(t-a) (27)

where u(t) is a unit step function. A sketch of the unit impulse before

the 1limit is taken appears in Fig. 3.

Fig. 3. Unit impulse.

The unit doublet is symbolically defined as)+

us(t) = iig u(t) - 2u(t - a) + u(t - 2a)

(28)

a2

A sketch of this function before the limit is taken appears in Fig. k4.

X
a2
0
0 a 2a T
L
52

Fig. 4. Unit doublet.

The energy input to the network in the interval O St resulting for

e1(t) = Kquy(t) and 1;(t) = Koup(t) is
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T
Eip = fo eq(t) i1(t) dt

~na
= lim K1 X2 gt

a>*0 Jo a a2
_ lim XK; Ko

Similarly, for ki # O in equation (25), higher order terms (unit doub-
lets, unit triplets, etc.) in e;(t) also result in infinite energy input
to the network. However, for any linear, lumped-constant network, one can
always realize a given output voltage at time t = T with a properly chosen
step function. Furthermore, any unit step function can only result in a
finite input energy to a network in a finite time interval 0 S t £ T (ex-
cept for the trivial case where there is a short circuit across the input
terminals). Thus, if g,;(t) contains a unit doublet, unbounded driving
functions cannot be optimum.
g11(t)].—As in the previous case, let us assume a driving function ey(t)
which contains a unit impulse. Then i,(s) contains a constant tefm [from
equation (25)]. 1i;(t) therefore contains a ﬁnit impulse. Now, the energy
input to the network in the interval 0 < t < T resulting for e (t) = Kyuy(t)

and i,(t) = Koup(t) is

=
]

T
in fo el(t)il(t) dt

_ 1im %K, Ko at

a~>0 o a2
= 1lim KJKg > 0 . (50)
a*0 a

Similarly, for ks # O in equation (25), higher order terms (unit doub-

lets, unit triplets, etc.) in e;(t) also result in infinite energy input to
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the network. As in the previous case then, if ks # 0, we conclude that the
optimum signal is some bounded function in the interval 0 <t < T.

Case 3, ky =k

——

O [this corresponds to the first class of gi;(t)].—

For this case

=

5) (31)

i1(s) = ei(s)

g

where N(s) is at least one degree less than D(s). Thus an input impulse
of voltage results in only a bounded current. Let Ko be the maximum value

of i;(t) on the interval 0 £t < T. Then the energy input is

T
Ein = L el(t)il(t) dt

lim

&k
1 —
a+0 Jo . Ko dt = K3Ko & (32)

Thus, for this case, we see that an impulse is admissible in the optimum
driving function because an impulse results in only a finite energy input
to the network. From equation (31) we see, however, that if e;(t) con-
tains a unit doublet or higher order function, then i,(t) will contain a
unit‘impulse or higher order function, and just as in the previous cases

the energy input to the network would be infinite.

Conclusions
Because of the above input energy considerations, we conclude that:
THEOREM 1 An optimum driving function can never be of higher
order than a unit impulse;
and
THEOREM 2 A sufficient condition for the optimum driving func-
tion to be bounded is for gp,(t), the input impulse
response of the network, to contain a unit impulse or

a unit doublet.



CHAPTER IV

EQUATTONS CHARACTERIZING SOLUTIONS TO THE OPTIMUM TRIGGERING
SIGNAL PROBLEM FOR THE THREE CLASSES OF g11(t)

4.1 General Considerations

The basic equation characterizing optimum driving signals for linear,

lumped~-constant networks was derived in Chapter II. This equation was

T t t )
Lo e mestns ), 1(FJesa(e-rler - (a(e-2)as 0
(33)
It was also suggested in Chapter II that if this equation could be written

in the form

T
j; n(t)f[el(t),811(t):812(t)] dt = 0 2 (5’4)

we could set

flei(t),g11(t),812(t)] = O (35)

and obtain solutions independent of n(t). Whether or not we can resolve
equation (33) into the form of equation (34) is critically dependent on
the nature of g;;(t) and e;(t), i.e., in the treatment of integrals, if
the integrands are continuous, then certain mathematical theorems apply.
If, however, we have integrands with discontinuous, or perhaps even un-
bounded, integrands then we will have to be very careful in the treatment
of them.

In Chapter III the nature of the functions g;;(t) and ey (t) [factors
in the integrands of equation (33)] were discussed and resolved into dif-
ferent categories."”it was shown that there are definite restrictions on

g11(t) resulting from the fact that this function has the nature of a

18



19

driving point admittance. It was also shown that there are definite re-
strictions on e;(t): imposed by the nature of the problem, i.e., ey(t) is
to be a minimum energy type signal.

Except for the class of networks which do not contain a unit impulse
or a unit doublet in the input impulse response function, the optimum sig-
nal was shown to have a boundedness requirement. Incidentally, this boun-
dedness requirement exists for any problems of practical significance, be-
éause one in general cannot realize practically a voltage generator without
an internal resistance, and also, any real circuit will have some stray
capacitance across the input terminals. This input configuration guaran-
tees the appearance of an impulse of gi1(t). Thus, in general we will
consider e;(t) to be bounded except for pathological circuits. In addi-
tion, if e;(t) is finally to satisfy equation (33), then it must be capable
of being written in terms of the bounded factors appearing in gi1(t) and
g12(t). But these bounded factors all have the form of equation (21) and
are thus continuous, well-behaved functions in the interval 0 < t S T. vIn
equation (33) we will therefore consider e;(t) to be bounded 'and continu-
ous in 0 £t S T. Note, that for g;;(t) continuous, an impulée is admis-
sible in e;(t). Therefore, if we mechanically treat equation‘CBB) under
the assumption that e;(t) is continuous and later find a discoﬂ%inuous so-
lution, we must be suspicious of the validity of that solution and subject
the particular problem to further investigation.

Finally, then, we will consider discontinuities in equation (33) as
resulting only from discontinuities in.gll(t) and glg(t), We now consider

the three classes of gy;(t) as separate cases.

4.2 Derivation of Characteristic Equation for gy11(t) Continuous

Note that the first and third terms of equation (33) are already in
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the form of equation (BH), but the second term is not. In the second term
of equation (33), n appears inside the inner integral. The order of inte-
gration can be reversed if e;(t), n(t), and g11(t) are continuous functions,
allowing the second term on the left-hand side of equation (33) to be writ-

ten in the form of equation (34). We first write

T t ‘ Trt
\/; el(t{/; n(T)g1a(t-1)ar dt = ;/;\/; ey (t)n(r)gyyr(t-r)ar at . (36)

This simply states that because the inner integration does not involve t,
e1(t) can be taken inside. In this integration we are summing first in T
from O to t and then summing in t from O to T. We are thus integrating

over a region defined by the shaded area in Fig. 5.

Fig. 5. Region of integration in the T,t plane.

We could equally well reverse this order of integration by integrating
first in t and then in 1. Note, however, that in order to do this we must
change the limits of integration, because if we integrate first in t, t
will vary from T to T, and T will then range from O to T (see reference T,

pp 131-136). Thus,
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. Tt
JF JF e (t)n(r)gyy(t-T)dr dt
oJo

TPpT
j;fr e1(t)n(T)ga(t-7)dt ar

T T
\/; W(T{/; ey(t)gya(t-r)at ar . (37)

JFT t
o el(t{/; U(T)g;l(t“T)dT at

I

Finally, we can interchange the names of the variables of integration, so

-

that the final form of equation (37) will be of the same form as the other

two terms of equation (33). Thus equation (37) can be written

fo Tea(t) fo C(T)gra (b-r)aT dt = ﬁ%(t) j;Tem)gu('r-t)aT at .(38)

Equation (33) finally becomes

Nt T
fo Fne) [ [Festmgaatenar + | ertmgaatr-viar - xglz(T-tﬂat _o.

(39)
This can be satisfied independent of n by setting

t T
f e1()grs (t-1)aT + f o1 (g (T-t)dT = rgia(T-t) .  (40)
0 t

It is sometimes convenient, when attempting numerical solutions, to have

the second integral of this equation expanded as follows:

T ’ t
f er(r)gra (T-t)ar = f Ter(r)gaa (r-t)ar - f eq(r)gaa (T-t)ar . (b1)
t 1) o}

Equation (40) then becomes

thel(T)gll(t'T)dT ijptel(T)gll(T't)dT41/\Tel(7)811(7-t)d7 = M812(T-t) .
o 0 o
(k2)

In general, if solutions of this equation for e1(t) exist, the solutions

will be in terms of the network functions gii(t) and gi;o(t) and these so-
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lutions will be optimum in the sense as characterized by the statement of
the problem. Note that if e;(t) is discontinuous, which is possible in
this case, then equation (37) is not valid, and the problem requires spe-

cial treatment (see Chapter VII, Example 2).

4.3 Derivation of the Characteristic Equation for gllgt) Containing a Unit

Impulse Plus Continuous Terms

For this case we write
g11(t) = kyui(t) + kegi1.(t) (hj)
where g31,(t) contains only continuous terms. Using this expression in

equation (33), we get

T t
b/\ {b(t) u[\ e1(T) [kyup(t-1) + kegyi(t-7)] dr
o o

.t
+ el(t)k/; W(T)[klul(t'T)4'k28110(t-T)]dT"Nﬂ(t)glz(T't{}dt =0 . (kb)

We now write the above integrals of sums as the sum of integrals.

nt
k/;T[}<t)\/;t e1(T)kyug(t-7)ar + ﬂ(t)‘jo e1(T)keg1a, (t-T)dT

t t
+ el(t)‘/; N(T)kuy (t-r)dr + el(t)k/; (T )kag11c (t-T)aT

-M(t)glz(T-t)} dt = 0 . (45)

As in the previous case, we would like to write equation (45) in the form
of equation (5&), if possible. Except for the third and fourth terms of
the integrand, the equation is already in the desired form. Now, the in-
tegrand of the fourth term is continuous; and we can therefore resolve

this term into the desired form just as was done in Section 4.2, The
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fourth term then becomes

. . | )
[ e [ nte s (emar at - [ Tne) [ eatnlgaag (r-tesres . u6)

Now, the third term contains a discontinuous function in the integrand;
therefore, we cannot simply interchange the order of integration as in

Section 4.2. Instead consider simply the integral
t
b/\ n(7)ug(t-7)ar
o

using the definition for u,(t) as given by equation (27).

't ot N e
L/; n(T)uy(t-t)ar = \j; n(7) iig u(t-71) au(t T-a) a4

, "t
) llmi_j n(r) [u(t=r) - u(t-r-a)lér . (47)

The justification for taking the limit outside the integral is based upon

an interpretation of the meaning of the limit. In a strict sense,

lim wu(t) - u(t-a)
a0 a,

does not exist. Equation (L47), however, can be interpreted variously as
the response to the limit of a function or the limiting response to a
function. ‘In the physical sense these two interpretations have the same
meaning. We proceed then to the evaluation of equation (h7). Notice that

the integrand is zero except between t - a <7< t, and there it is Jjust

n(t). Thus,

th n(r) ar . (48)
t-a

Now we use the mean value theorem of integral calculus, which states that

t lim
[ neustenar - 18

0N o



2l

if the integrand of an integral is continuous, then the integral is equal
to the product of the length of the interval times the value of the func-

tion at some point within the interval. We have, therefore,

t .
j; n(T)uy(t-t)ar = ;]3:3;1(;1 'Jé:- an(t - a + 6a) , (49)

where 0 £ 6 S 1. Now if we take the limit we get
rt
PRGINCO R IORE (50)
0
Finally, then, equation (45) becomes:

| Faee [ | et (rar + [ eumkagang (b-rar

~T
+ kyeq(t) +\/t e1(T)kag11p(T-t)aT - xglg(T-tg]dt = 0. (51)
We can now satisfy this gquation independent of n by setting
t NPT
e1(T)g11(t-T)dT + kiey(t) +\/t e1(T)kog11,(T-t)AT = Ag12(T-t). (52)
o)

Solutions of this equation for e;(t) will be in terms of only g;;(t) and
g1o(t) and optimum in the sense as characterized by the statement of the

optimum triggering signal problem.

4.4 Derivation of the Characteristic Equation for g,i(t) Containing a

Unit Doublet Plus Possibly a Unit Impulse and Continuous Terms

For this case, we write
g11(t) = kyua(t) + kouy(t) + kagizy(t) (53)

where gllc(t) contains only terms continuous in t. Using this expression

in equation (33) gives
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i"T t t
\/o [;(t)‘/; e1(T)gri(t-T)dr + el(t)\j; N(T)kqus(t-7)dT

t
+ el(t)\/;tn(T)kgul(t—T)dT + el(tl/; N(T)811c (t-T)arT

-M(t)glz('l‘—t)]dt = 0 . (54)

We now subject the third and fourth integrals to the same treatment as in
Sections 4.2 and 4.3. This allows these terms to be written with n(t) as
a factor. However, we will now consider the second integral separately,

using the definition for us(t) as given by equation (28). Thus

t .
\/;tﬂ(T)Uz(t—T)dT \/; n(t) iig é% [u(t-1) - 2u(t-t-a) + u(t-t-2a)ldr

. t
ifcr)l a%L n(m)lu(t-r) - 2u(t-t-a) + u(t-r-2a)lar

a»0 a2

_ lim 1 {ft n(t) [u(t-t) - u(t-r-a)lar
o .

t
\j; n(r) [u(t-t-a) - u(t-T-Ea)]di} . (55)

Now, the integrand of the first integral on the right-hand side of equa-
tion (55) is zero except between t - a < 1 < t and there it is n(t). The
second integrand is zero except in the interval t - 2a S TSt - a and

there it is likewise n(T). We have, therefore,

t . t t-a
L n(t)ug(t-r)ar = 112 %ma n(r)dr -fc_aa nmow] (56)

Just as in Section 4.3, we again use the mean value theorem and write

Ltn(T)u2<t-T)aT - Unen(bcavoe) an(t - -fe) ()
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where 0 £ 9= 1 and 0 §.¢ < 1. Therefore

Jctn(T)Uz(t-T)dT Lo %) -t - 2 tfa) (s

But this is the definition of the derivative of a function. Thus

t
ARG R (O (59)
o "
Therefore, we can finally write equation (54) as follows:
T
JF {; )811(t'T)dT4'k291(t)4'k3\/; el(T)gllc(T't)dT"Kglz(T'tg]
+ klel -T_L(_t_} dt = . (60)

In this case we see that the integrand of the characteristic equation can-
not be written as the product of n(t) times a function of only e;(t), g11(t),
and gyo(t) because of the appearance of [dn(t)/dt]. However, let us now

set

t T
£(t) =\]; ex(Dgan(b-)ar + koo (8) + ks [ ea(Mgasc(r-t)ar - Agaalr-t) .
(61)

Equation (60) then takes the form:

\/;Tn(t)f(t)dt +\/;T 9%&;1 kieq(t)at = 0 . (62)

We can now integrate the first integral of equation (62) by parts if f(t)

is continuous. This gives:

T o
- S (t)at| at . (63)
[awwas [E(t)\jpf(t>a%]o e f

Now, f(t) is the sum of a number of terms, each of which is a current

flowing in responée to a continuous function e;(t) plus terms in g;o(T-t).
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Therefore, f(t) is continuous if g;5(T-t) is continuous. Under these con-
ditions, because n(0) = n(T) = O, the first term on the right-hand side of

equation (63) is zero. Thus, equation (62) becomes

T i%%l E{lel(t) -ff‘(t)dt] at = 0. (64)

o]

This equation can be satisfied independent of n by setting

kieq(t) -ff(t)dt = 0 . (65)

Finally, equation (65) can be differentiated with respect to t, giving:

t ,

kq ggéézl -\/; e1(T)g11(t-7)aT - koey (t) - kq/;Tel(T)gllc(T't)dT4‘Kglz(T-t) =0,
(66)
Thus if gyo(T-t) is continuous in this last and final case, we can solve

for e;(t) in terms of only gi:(t) and gi1o(t). Moreover, the solution will
be optimum in the sense as characterized by the statement of the optimum

triggering signal problem.



CHAPTER V
METHODS OF SOLUTION OF THE CHARACTERISTIC EQUATIONS
FOR THE THREE CLASSES OF gi11(t)
5.1 Introduction

Characteristic equations for the three classes of gp;(t) were de-
rived in Chapter IV. The nature of the characteristic equation was shown
to depend intrinsically on the nature of g11(t). Thus there are three
separate equations for the three classes of gi1(t):

(1) gq11(t) continuous;

(2) g11(t) contains an impulse plus continuous terms;

(3) gi11(t) contains a unit doublet plus other terms of (2) above.

The characteristic equations for the above three cases are given re-
spectively by equations (42), (52), and (66).

Several methods of solving the characteristic equations have been in-
vestigated. However, only one of these appears powerfﬁl enough to allow
solutions for other than very simple cases. One rather crude method of
solution, for some given gi;(t) and gyo(t), is that of examining the
terms of the appropriate characteristic equation with the hope of being
able to guess at the general form of the solution. If one could guess the
general form of the solution in terms of undetermined coefficients, one
could then substitute this form into the chafacteristic equation and de-
termine the coefficients so as to satisfy the equation. This method of
solution might work in some very simple cases. However, if gll(t) and
g12(t) take on any complexity whatsoever this approach would break down
because of the complexity of the characteristic equation itself.

A second approach to the solution of a characteristic equation would

28
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be that of_attempting to reduce the integral equation to a differential
equation. If this could be done, then the characteristic differential
equation might be susceptible of solution by previously established meth-
ods. This approach is also fruitless as can be simply shown by differ-
entiating some of the characteristic terms of the integral equations. To
differentiate these terms one must use Leibnitz® ruie, which is stated

below.7 Iet

uy (o)
o(a) = k/;O](-a) f(x,a)dx ,

where uy and u; are differentiable functions in a closed interval (Qg,01)3
Sx =

f(x,0) and fy(x,Q) are continuous in the region Oy S @ S 0y, ug(a) =

us(®). Then,

ulOt
ae O (x,0 du du
- [ o Bt B 6D

Consider now,

t
L/; e1(T)gra(t-T)ar

a typical term appearing in all three characteristic equations. Differen-

tiating this term gives:

v \ gy g (t-1)
é%\/; e1(T)gra(t-T)dr = \/;t eq(T) mglgé L oar + e (t)g11(0) . (68)

Similarly, differentiation of the other inteérals leads to new integrals.
Thus, differentiation of the integral characteristic equations lead to
new integral equations\which are not inherently any simpler than the orig-
inal equations. In fact, differentiation of the equations leads to dif-

ferentiation of g;; and gio, thus increasing the complexity. It can also
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be seen by inspection that repeated differentiation would only lead to

equations involving higher order derivatives of g;; and g;o.

5.2 The Laplace Transform Method 9£ Solution

One method of solution, however, which is sufficiently powerful to al-
low solutions, even in cases where g;; and g,o are complicated funetions,
is that of taking the Laplace transform of the characteristic equation.
This reduces the original integral equation into an algebraic equation
which is always susceptible of relatively simpie solution. Note that
there are two possible exceptions to the above statements. These are cases
where gy;(t) contains a unit doublet and, in addition, gio(t) is a discon-
tinuous function, and the case where e;(t) is discontinuous. For these
cases characteristic equations independent of n were not obtained. Meth-
ods of solution for these special cases will be discussed at the end of
this chapter.

First, it will be noted that all characteristic equations contain
only three different types of terms. These are:

(1) Direct functions of tj
Nt

(2) Convolution integrals of the form o f(r)g(t-r)dr;
a) T

(3) Integrals of the form.\_/t e1(T)g11,(T-t)ar.
The Laplace transform of terms of the first type are taken directly. For
terms of the second type, we use the theorem which states that "The La-
place transform of a convolution integral is the product of the Laplace

transforms of the convoluted functions.”" Thus

;f[JCt f(t)g(t—T)d{}

1
v
=
d_
=
X
®
o
=
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For terms of the third type we first expand the integral as the difference

of two integrals as follows:
T Bl ' 't
& el(T)gllc(T't)dT = \j; e1(T)g11c(T-t)ar -\/; el(T)gllc(T't)dT , (70)

and treat each of the resulting integrals separately. The second inte-
gral on the right-hand side of equation (70) is in the standard form of
a convolution integral. In this integral, however, e;(t) is convoluted

with gi1(-t) and not with gy1(t). Thus

0]

5([;/Wt el(T)gllc(T't)d{] = F(s) - Llga(-t)] . (71)

The first integral on the right-hand side of equation (70) is not a con-
volution integral and must therefore be treated in a different manner.

We recall now that gy;,(t) is a sum of terms of the form %% gin (wt+9).
wa, the integral of a sum can be written as the sum of integrals with
eaéh term treated independently. Moreover, each term will be of the same
geﬁefﬁl fdrm so that we need only treat one such term. We therefore con-

sider:

\];T el(T)(T-t)nea(T_t)sin (ot - wt + ©) ar

Now,

n-2 2
-t - nn-1)r °t
('r-t)nea(T )sin(wT -t +0) = [}n-nTn L4 g! +...4—t§]}x

®Te™" [sin (wr + 6) cos ot - cos (ot + 8) sinwt] . (72)

e

Notice that this expression contains only terms of the form:

ke-at

K[t sin (ot + 6)] * [T%e®T sin (o7 + B)] .

Hence, T and t can be separated, resulting in the product of two functions,
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one containing only T and the other containing only t. Thus,

JFT el(T)(T-t)nea(T_t) sin (ot - wt + @) ar
o

can be written as the sum of terms each of which is a function of i times

a definite integral integrated between constant limits (becausé the inte-
gration does not involve t).' Each term of this sum is therefore some func-
tion of t times some (as yet undetermined) constant. Thus, using this ex-

pansion and factoring scheme, the Laplace transform of
T
5 e1(T)811c(T-t)dr

is readily obtained.

The methods outlined above can be readily applied to any of the char-
acteristic equations, thus reducing the integral equations to algebraic
equations. However, there are two special types of network for which char-

acteristic equations are not obtainable. These are: (1) @he type where

“.

g11(t) contains a unit doublet and gio(T-t) is not continuous, and (2)
e1(t) is discontinuous. We will now take up the first special case.

We first examine the way in which a unit doublet gets into gi1(t).
It was shown earlier that the Laplace transform of this function has the

nature of a driving point admittance, and can therefore be written as

g11(s) = D(s] (73)
where N(s) differs in degree by no more than one from the degree of D(s).
The appearance of a unit doublet in gy;(t) results when N(s) is one de-
gree larger than D(s), thus resulting in a pole at infinity. But a pole
in admittance implies a zero of impedance. Now, except for short circuits,

the only way of obtaining a short circuit at infinite frequency is for
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there tolbe a purely capacitive path between the input terminals, such as

in Figs. 6 and 7.

L
T

Fig. 6. Circuit containing a doublet in the input impulse response.

T
T T

Fig. 7. Circult containing a doublet in the input impulse response.

Note now that for the circuit of Fig. 6 the transfer impulse response,
g12(t), contains an impulse. For the circuit of Fig. 7, however, gio is
continuous in 0 St ST, Thus, the characteristic equation (66) can be
used to solve for the optimum signal for Fig. 7. Because g;s(t) is dis-
continuous for Fig. 6, equation (66) cannot be applied.

Now in any practical problem one is never concerned with circuits
having the nature of those of Fig. 6 or Fig. T, because of the necessity
of working only with voltage generators having an internal resistance.
With practical generators, therefore, the circuit to be triggered is al-
ways characterized as having an input series resistance. But if the net-
work contains a series input resistance then gi;(t) cannot contain a unit
doublet, because the resistance prevents the‘appearance of any zeros in
the input impedance. Thus, in practical problems the question of the ap-
plicability of equation (66) does not arise.

The problem of obtaining the optimum driving function for a circuit

similar to that of Fig. 6 is therefore a purely academic one. However, it
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still seems intuitively reasonable that an optimum signal exists. The dis-
cussion in the above paragraph suggests a method of solution for this case;
i.e., we can assume first that there is a series resistance in the input
impedance of the circuit. This allows us to use equation (52) to find the
optimum signal for the modified circuit. This solution will, in general,
involve the added input resistance. Having the solution, we can then let
the input resistance tend toward zero and obtain the solution for the orig-
inal unmodified circuit. An example illustrating this method is presented
in Section 7.1l.

The characteristic equation for the case where gi;(t) is continuous
was given by equation (42). This equation was derived assuming that eq(t)
is continuous. However, it was shown in Chapter IIT that, for this case,
discontinuous terms are admissible in e;(t). However, it was also shown
that these terms could be of no higher order than a unit impulse because
they would result in infinite energy input to the circuit. Thus, to begin
with, an attempt can be made, using equation (42), to obtain a solution.

If the solution should turn out to be nonsensical then it is obvious that
the equation is not valid, and that in all pfobability the true solution
contains a unit impulse. We can then go back and examine the behavior of
the circuit when an impulse is applied and look for a solution by other

means. An example illustrating this type of problem is presented in Sec-

tion T.2.




CHAPTER VI

AN ALTERNATIVE FORMULATION OF THE PROBLEM; THE OPTIMUM DRIVING CURRENT

6.1 General Discussion

In the previous discussion the optimum driving signal has been charac-
terized as being generated by an ideal voltage generator. The question
now naturally arises concerning what happens if, instead of an ideal volt-
age generator, we have an ideal current generator. That is, the optimum
triggering signal problem can equally well be stated as that of finding the
current which if applied to é given linear, lumped-constant circuit results
in some specified output voltage at time T, such that the energy delivered
to the network is minimum.

For the optimum current case we proceed in a manner analogous to that
for the optimum voltage case. However, we now describe the circuit in
terms of the resbonses to an input impulse of current rather than an in-
put impulse of voltage. Thus, let z;;(t) be the voltage across the input
terminals of the circuit which results from a unit impulse of current
‘flowing into the input terminals, and let z12(t) be the voltage across
the output terminals of the network which results from a unit impulse of
current flowing into the input terminals. With these definitions we can

write:

ey(t)

t
k/; i1(T) zaa(t-m)ar (Th)

and

t
ea(t) &/; i1(7) z12(t-T)dT , (75)

35
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where i,(t) is any input current, e;(t) is the input voltage resulting from
i3(t), and ex(t) is the output voltage resulting from i;(t). We now want
to specify that the output voltage at time t = T is some given constant.

Thus,

T
o) = B = | et (76)

In equation (76) we now change the variable of integration from T to t

and obtain:

T
e2(T) = E, = \/; 11(t)z12(T-t)at . (77)

Now the energy input to the network is given by:

1‘t1
k/ Pin at
o}

E(t1)

by
j ey (t)ig(t)at

(e}

i

by %
L/ il(t)L/; i1(T)z11(t-7)aT dt . (78)

O

The final total energy input in the intervallo <+t < T is then

T 't
T NS B P o Y )

O

Expressed mathematically, then, the optimization problem becomes that of

minimizing the integral

T 1 ;
E(T) = J; il(t) j; il(T)le(t-T)dT dt 3

subject to the constraint that
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Thérefofe, it can be seen that there is exact symmetry between the optimum
triggering voltage and the optimum triggering current problems, and that
the mathematical statements of the two problems are identical except for
the change in symbols. This implies that the two mathematiéal probléms
are one and the same, and that the statements regarding the optimum eq(t)
in relation to gi1(t), g12(t), and is(T) would be exactly those regarding
the optimum i;(t) if the same conditions existed in z3;;1(t) as in g11(t),
in z;o(t) as in g1o(t), and in es(T) as in i(T). Thus we can simply re-
state the results of the preceding chapters in terms of the optimum driv-.

ing current and the network functions z11(t) and z;5(t).

6.2 General Equation Characterizing Optimum Driving Currents

This is equation (15) written in new symbols., Thus,

T t T t
0 = ‘/; n(t)\/; i1(7)z11(t=T)dT At +L/; il(t)\/; N(1)z11(t-1)dT at

T
- xfo n(t)z12(T-t)dat . - (80)

6.3 Restrictions on the Nature of z11(t) for Lumped-Constant, Linear

Networks
Because driving point’impedances have the same general characteris-
tics as driving poiﬁt admittances we can use the conclusions of Chapter
ITI but stated now relative to z;;(t) instead of gi1(t). Thus, we can
characterize z,;(t) as belonging to one of tﬁree possiﬂie classes. These
are:
(1) z31(t) contains neither a unit doublet nor a unit impulse;
(2) 2311(t) contains no unit doublet, but does contain a unit impulse;

(3) 2711(t) contains a unit doublet.
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6.4 Nature of the Optimum Triggering Current for the Three Classes of -

zaa(t)
The conclusions of Chapter III, stated in terms of optimum driving cur-
rents, are:
THEOREM 1' An optimum driving current can never be of higher
order than a unit impulse;
and
THEOREM 2' A sufficient condition for the optimum driving cur-
rent to be bounded is for z;;(t), the input impulse
response of the network, to contain a unit impulse

or a unit doublet.

6.5 Equations Characterizing Solutions to the Optimum Triggering Current

Problem for the Three Classes of z11(t)

Case 1: 233(t) Continuous and i,(t) Continuous.—Equation (L42) of

Chapter IV becomes

% £ '
JF i1(7)z11(t-7)ar -‘jp i1(T)z11(T-t)adr +\jpTil(T)le(T-t)dT = AZ12(T-t)
o o 0
| (81)

Case 2: z11(t) Contains a Unit Impulse Plus Continuous Terms.—Equa-

tion (52) of Chapter IV becomes

t "
L/; 11(T)z22(t-7)aT + kyiq(t) +\/t 11(7T)21a,(T-t)dT = AzZ12(T-t) . (82)

Case 3: z11(t) Contains a Unit Doublet Plus Possibly a Unit Tmpulse

and Continuous Terms.—If z,5(T-t) is bounded, then equation (66) of Chap-

ter IV becomes

K, diy(t) 1j;til(t)zll(t-T)dT-'kzil(t)"k%/;Til(T)lec(T’t)dT*'kZl2(T't) =0,

at
(83)
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Finally, in addition to being able to translate the optimum driving
voltage equations into optimum driving current equations, we can also use
the same Laplace transform method of obtaining solutions to particular equa-

tions. This method was discussed in Chapter V.



CHAPTER VII

EXAMPLES DEMONSTRATING SOLUTIONS TO PARTICULAR PROBLEMS

The purpose of this chapter is to demonstrate the applicability to
particular problems of the theory contained in the preceding chapters.
Many notions of practical significance are difficult to discuss in gen-
eral terms. One such notion, for example, is that of the minimum energy
requirement necessary to cause triggering. One can.only examine a minimum
energy requirement after having found an optimum driving function, and, of
course, one cannot find such a function unless gj; énd élg are specified.
One particularly interesting facet of the optimum triggering signal problem
is the study of the relationship between energy required and the time al-
lowed forltriggering. In the following examples solutions to particular
problems will be found, and the energy input to the network for the opti-
mum signal will be discussed. In some cases solutions will be found in
terms of some particular parameter of interest such as time allowed for

triggering, or, perhaps, some particular circuit element of interest.

7.1 Example 1

Consider the circuit shown in Fig. 8.

R

Fig. 8. Circuit of Example 1.

10

Let us now determine e;(t) so that the energy delivered to the cir-

Lo
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cuit is minimum and so that i5(T) has some given value. In this problem
we will leave T unspecified and attempt to determine e;(t) in terms of T.
If this is possible, we will finally be able to study the dependency of
the minimum triggering energy on T. In addition, we will also leave R
unspecified so as to demonstrate a solution to the type of problem in
which gy1(t) contains a unit doublet and gio(t) is unbounded. For this
particular type of problem no characteristic equation was obtained, but a
method of solution was suggested in Chapter V. If R = O in Fig. 8 then
the circuit becomes that of the above indeterminate type. Thus, we will
find a solution in terms of R and then let R go to zero as was suggested
in Chapter V.

We proceed first to a determination of g;1(t) and gio(t) for the cir-
cuit of Fig. 8. To do this, we first let e;(t) be a unit impulse. Now,
if e;(t) is a unit impulse, then i,(t) and is(t) are, by definition, gy3(t)
and gi2(t), respectively. Thus, the Laplace transformed equations for the

circuit are:

su(e) (14} - ea(e) £ - 3 (8%)
- &12(s) L + g1a(s < > - o (85)
These equations have the solutions:
1 s+ 1 1 1 1
g1i(s) = = = = <= ) (86)
Rg,y R+1 R R4 ,R+1
R R
and
1
g12(s) = % R+ 1 ° (87)
S + R

Taking the inverse Laplace transforms of equations (86) and (87) gives
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_R+ 1 %
1 1 R
g1a(t) = = up(t) - 7 © ) (88)
and
- R+ 1 £
R
g12(t) = Ze : (89)

Thus, we see that this problem is of the type discussed in Section
h.3; i.e., gll(t) contains a unit impulse plus continuous terms. We there-
fore want to use characteristic equation (52) for this problem. Thus,

ey (t) must satisfy
T

Nt
jL e1(T)gr1(t-T)dr + kyep(t) +\]; e1(T)kog11, (T-1)AT = Ag12(T-t) . (90)
In this case it is convenient to have the second integral of equation

(90) expanded into the sum of two integrals. Thus, we rewrite equation

(90) as

t T
\/;tel(T)gll(t'T)dT + kyey (t) -\/; e1(T)gry, (-t )kadr +\/; e1(T)kagry (T-t)dr

= Ag12(T-t) . (91)
We now take the Laplace transform of equation (91) and obtain:
11 1 1,1 1 -Rng
ei(s)|lg - 72 R+r1+xr 't g2 +1 R—zel(T)e
s + s
R R
R+ 14 R g 1
= Lle T e (92)

This reduces to:



2 <R+l>2+<R+l)
- R R2 MR 1
e;(s) =
1( SZ_R+12 ) S-R;l b (95)
R
where
_R+1ng T R+ 1_
A R lf R i
Moo= ge + 25 Jo ei(T)e dr . (9k4)
Whence,
R + 1
}\'l
el(s) ——-2-— (95)
+ 1\2

T

Now, the right-hand side of equation (95) can be expanded into partial

fractions, giving

R+ 1 R+1 1
=4 2R IR
2 «](R+l)2_(R+l) 2 (R+l)2 (R+l)
! = 2
ea(s) = AF i - L |. (%)

X

+ 1

+l

-+
1

Ni

= +s+\l ) - &)

—

Finally, taking the inverse Laplace transformation of equation (96) gives

"R+ 1 1)2 _ (ﬁ + 1>t
e(t)_l‘_“_i 2R R
* S e R + l R+1
- ()
-
R+ 1 R +1)? +1>JC
+ (% - i RE (97)
\2 <R+l)2_R+l
R \RZ 1

This can also be written
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e (t) = % coshx/<R+i\ <R+l> t o+
R + 1

\/(Ru) R+l““h\/<R+l <R) |

Now, e1(t), as given by either equation (97) or equation (98), still has
the undetermined multiplier \'. We now solve for is(t) and then deter-

mine A' in terms of io(T). The Laplace transform of is(t) is given by

ia(s) = ei(s)gia(s) (R + ]_) (R + 1) (99)
Now, this can be expanded into partial fractions, giving
B 1 1 ]
o R + 1\2 R + l o R + 1\2 R + 1
. AT 100
ia(s) = 73 1/(RH) <R+l)" N/Q“l) <R+l> (100)
s +

The inverse Laplace transformation of equation (100) evaluated at t = T

B A T
T T

2«/@”) ( l)smh»\/ (N e

y 2\/(“92-(%%)1@
o [T~ (22

is

Thus,

(102)
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Finally, using this value for A' in equation (98) and factoring (R+l)/R

out of all the radicals, we obtain:

),f 1 1
(R+1W1l - is(T) —
ei(t) = R+l - mmhRgl l-Rilt+ 1 1 sﬂm&%& -§%Tt°
R+1 1 "R+ 1
)

sinh R 1 - A1 T

(103

Let us now consider the behavior of equation (103) as R tends toward zero.

If R becomes very small compared to unity, then:

ex(t) i%%l et/ - apmetIR (104)

Now, as R tends toward zero the above function will be very small for t < T
because the exponent will tend towards minus infinity. However, as t ap-
proaches T the numerator of the exponent also tends toward zero, and, in
the limit, if t tends toward T at the same time as R tends toward zero,
the function becomes exactly zero for t < T, but indeterminant at t = T.
Equation (104) therefore suggests that the optimum driving function is of
such a nature that it is zero except for the time t = T. The functions
which have this nature are unit steps, impulses, doublets, etc. In addi-
tion we know that for finite energy input, impulses and higher order func-
tions are not admissible. ILet us now go back and examine the physical
circuit of Fig. 8 when R = 0. It becomes quite clear that the optimum
signal in this case is indeed a unit step. The voltage across the load
exactly equals the driving voltage, and thus a unit step starting at t =T
produces an instantaneous voltage across the load. Moreover, this voltage
across the resistive load exists for zero time in the interval 0 < t < T;
therefore, there is no energy dissipated in the load resistance. Also,

the nature of the circuit and the problem dictates that at time t =T a
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voltage will appear across the capacitor. Thus, if i5(T) = 1, then the

energy delivered to the circuit is given by equation (105).

c B2

el i

Energy

= % joule . (105)

Let us now return to equation (103), where R # 0, and determine the
energy input to the network when driven by this optimum function. Also,
in order to simplify the mathematics let us consider the network when

R = 1. For this case, e;(t) becomes:

e.1(t) = s_—fﬁ%l% (cosh N2 t + 2 sinn '\/Et)

Jo/2 ip(T) J2 J2

2t -N2 t
el (RGN o | a0s
We now determine i;(t). The Laplace transform of i;(t) is given by

i1(s) = ei(s)gar(s)

EEEEEEY e

After combining terms and performing the indicated multiplications, this

equation can be expanded into partial fractions, giving

_ i) We+1 e -
11(s) = 2 sinh~f§.T [% -Af§ + s + ;] ) (108)

Taking the inverse Laplace transform of equation (108) gives

i(t) = —2(® [(«/_2_ +1) e’“/Et + W2 - 1) e_JE ﬂ .(109)

2 sinh a2 T

We can now find the energy input to the network as follows:
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=
I

T .
fo eq(t)iy(t)dt

V2 1,2(1) T[ 2 2Net _ 5. ge-eJEt]

i

i

; zg - _ T
8 siihzT}ET]}&Jrl)a ngEtJ’ W2 - 1)% e EJE{L
12(T)[(3 + gJ—e) 22T, (3 - 242) e2N2 T 6]

p2N2T  2N2T ° (120)

We can now examine this energy as a function of T, the time allowed
for triggering. In particular, we are interested in determining T so as
to minimize the energy requirement. To do this we take the derivative

of E with respect to T. Since ip(T) is constant, we have

aE "8i22(T)

aw = \/’é‘(eQN/—E_T_E_l_e-E\/_E_T)

(111)

Now this function is zero only at infinity. Moreover, we see [from equa-
tion (110)] that as T goes to infinity E approaches a finite limit. Also
it can be shown that this limit is not a maximum, and thus minimum energy

results when T is infinite. Thus,

E.. = i22(T) (3/2 +N2) . (112)

min

A plot of equation (110) appears in Fig. 9. From Fig. 9 we see that the
function has essentially reached its minimum value by T = 2 and, there-
fore, there is no advantage in allowing more than 2 seconds for the trig-
gering to take place. If we were able to choose T = 2, then the optimum

driving funetion would become

ey(t) = 0.0835 15(T) (coshn2 t +42 sinhw2 t) .  (113)
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One other interesting result of this problem is that the energy re-

quired varies directly with the square of i(T). Thus, if anything can

be done to reduce the is(T) requirement, a considerable saving in the

input energy requirement might result.

It is interesting now té compare the energy required of the optimum

triggering signal with that required of a more familiar type of signal.

For the sake of comparison, let us examine the energy input of a step of

voltage of sufficient amplitude to cause triggering at time t = T.

this case, we let

e1(t) = k

Now,

g12(s) eai(s)

k

= 5(s +2) °

iz(s)

This can be expanded into partial fractions, giving

. _ k|11 _ 1
12(s) = 5[’5 s+2]

The inverse Laplace transform of equation (116) is

is(t) = k E- e‘gﬁl o
2
Thus,
ip(T) = % [l - e-gﬂ ’
2 ,
from which we get:
2io(T)
ei(t) = k = .
1 - 2T

Now,

For

(11k)

(115)

(116)

(117)

(118)

(119)
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11(s) = gi1(s)es(s)

k(s + 1)

S+ 8] (120)

Equation (120) can be expanded into partial fractions, giving

i,(s) = E[LL l] . (121)

2 1s s + 2

The inverse Laplace transform of equation (121) is

. -2t
i (t) = = [1+ e_gﬂ . 12(m)@ +2; ), (122)
1 -e”

For this signal the energy input to the network is the integral between

0 and T of the product of e;(t) and i;(t), or

21,2(T) ! -2t 1,2(T) (27 + 1 - eT2T)
e

This equation is also plotted in Fig. 9. From this figure it can be seen
that the optimum triggering signal always requires less energy than a
step of voltage.

It is also seen, however, that for T small the energy required of
the step function approaches that required of the optimum function. This
behavior results because e;(t) is a sum of exponentials which is not equal
to zero at t = 0. Thus, for t or T small the optimum function is very
similar to a step function. For this reason, if separate considerations
should dictate that the allowable triggering time is small, then there is
little advantage té the optimum signal and oﬁe would expend very little
more energy by using a step function approximation. It should be remem-
bered, however, that the above statements'apply to a particular example

and are not necessarily true for some other circuit to be triggered.
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7.2 Example 2

The previous example demonstrated. the solution to a problem for which
there was no characteristic equation. There is also another type of cir-
cuit, with a different behavior, for which there is no characteristic
equation. This second type éf problem results when g;;(t) is continuous
and where e, (t) may be discontinuous. It was suggested at the end of
Chapter V that if gi1(t) is continuous we can try using equation (L42).
If we get a discontinuous answer then the answer may or may not be valid
because equation (42) is not valid for e,(t) discontinuous. However,
equation (42) is only invalid for e;(t) discontinuous; therefore, we can
suspect the appearance of an impulse in e;(t). The following example il-

lustrates this type of difficulty. Consider the circuit shown in Fig. 10.

— TN

1lh

69 ) w3

Fig. 10. Circuit to be. triggered.
We proceed first to the determination of gi11(t) and gi2(t). In this case
g11(t) = gia2(t) - (124)

The Laplace transformed equation for gi;(t) is

gua(s)(s +1) = 1 . (125)

Therefore,

gi1(s) = __1 . (126)



52

Taking the inverse Laplace transform of equation (126) gives
gua(t) = eb . (127)

Using this expression in equation (42) finally, results in

-T
1 1 - A\ - K
%“)Q+1-S-D =TT (129
where
AT
K = \j ey(T) e Tar .. (129)
o)

Solving finally for e;(s) we have

ex(s) = -(s+1)7 2 - (130)

Now, the inverse Laplace transform of equation (130) is

-T
ex(t) = - 22" Flua(t) + wi(t)] . (131)

We know that an optimum triggering function cannot contain terms of higher
order than a unit impulse and thus the solution contained here is nonsen-
sical. This means that e;(t) must contain a unit impulse. In fact, we
can see that an impulse is the optimum function. An impulse of properly
chosen amplitude will result in the desired triggering current in zero
time. Moreover, it is obvious that a step of. current beginning at t = T
will result in zero energy dissipation in the interval O S,t’i T, and the
only energy delivered to the circuit is stored in the inductance. This
energy is

By, = %L i22(T) . (132)

For this simple case then, we see that a solution is obtainable.

However, the solution was obtained through other than the theory contained
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in this paper. In some more complicated examples the theory also breaks
down, and in some cases one is not able to guess at the answer as in the
case above. It might be emphasized again, however, that g11(t) is con-
tinuous only in circuits without practical significance. It is seen by
inspection that gy1(t) is coﬁtinuous only when all of the input current
to the circuit is forced to flow through inductive paths. In practical
problems one can use only voltage generators with internal resistance,
and, in general, the circuit to be driven can always be considered as
containing a stray capacitance across the input terminals. For practi-
cal circuits, therefore, the input impulse response contains a unit im-
pulse and the characteristic equation (52) should be used. Note also
that equation (52) is always valid.

Thus, for g;;(t) continuous, one cannot always obtain solutions.
However, one can obtain as good an approximation to the solution as is
desired by simply adding an arbitrarily large but finite shunt resistance
to ground across the input terminals, thus creating an impulse in the in-
put impulse response. Because the true solutipn is unbounded, however,
one cannot, after obtaining a solution with the added resistance, let the
resistance go to infinity and expect the limit of the solution to approach
anything which is recognizable. Therefore, a solution only has meaning
for the input resistance finite. Obviously, a resistance of 10001°9° is
finite and for all practical purposes one would not be able to determine
its existance. A resistance of this magnitude, however, placed across
the input terminals of a circuit, with g;;(t) continuous, allows solution

for the optimum triggering signal.
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7.3 Example pl

Having discussed two examples with pathological circuits, we will
now spend the remainder of this chapter with a meaningful circuit of
practical significance, i.e., a circult containing an impulse but not
a doublet in the input impulse response.

A type of problem which might be of practical interest is one in-
volving vacuum tubes. Let us now consider the optimum driving voltage
to be applied to a single stage RC coupled amplifier whose output is
used to trigger a biased thyratron. For purposes of simplicity we will
use simple values for the circuit constants. Consider the circuit of

Fig. 11.

Fig. 11. Circuit to be triggered, containing an
RC coupled amplifier and a biased thyratron.

In this case we wish to establish some critical i, (t) at some given
time t = T with a minimum of energy delivered to the input circuit by
the generator e;(t). We proceed first to the determination of the input
impulse response, gq1(t), and the transfer impulse response, gi(t). The
transfer current in this case is iy(t). For e;(t) equal to a unit impulse,

we have
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1
H

i1(s)(L + 1/s) - iz(s) 1/s

]
@]

-ig(s) 1/s + dia(s)(1 + 1/s)

These equations have the solutions

0
+
-

11(5) = =+ 5
and

. 1

is(s =

2( ) S + 2

Now, because the grid leak resistance is one ohm we have
eg(s) = iz(s) ,
and

-8m

ip(s) = -guegls) = T

For the plate circuit we have the following“equations:

. . . -8m
1a(s) + 1a(s) = 1p(s) = o
and
-ig(s) 1/s + i4(s) = 0 -
These equations have the solutions .
ia(s) = “8m®
(s +1)(s + 2)
and
_gm
1q(s) (s + 1)(s + 2)
Therefore,
s + 1 1

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(1k0)

(141)

(142)

(143)
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and

. -§
g12(s) = iu(s) = ar l)?é e (1hk)

Taking the inverse Laplace transforms of equation (143) and equation
(14k) gives

g11(t) = uy(t) -e ’ (145)
and

ot '
g12(t) = -gme + gye . (146)

For this problem, then, g;;(t) contains a unit impulse plus con-
tinuous terms. We therefore want to use characteristic equation (52).

In using this equation it is useful to have the following:

-2t

B110(t) = -7E (147)
g11(-t) = -e0 (148)
g1, (T-t) = T (149)
g12(T-t) = -ge e + gue Tlelt (150)

Substituting the above values in equation (52) results in

en(s) (2o L4 L) ._L jTe (1)ear - et &
1 S+2 s-2 s-2Jo 1 - ®mis -1 " 5-2

(151)

Now we let

T -2
k = \/; e1(T)e Tar . : (152)

Equation (151) then reduces to
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ei(s) = 52 (kngge "7 -)»gme'T) + s(k+>\.gme-2T) + (lmgme_T -’2}\.gme—2T - 2k)
2(s - 1)(s -~2)(s +42)
(153)

This can be expanded into partial fractions, giving

1 ’Mme_ir_ (1/2 +N2/2)k+ (14N2/2)hgme T + (1/2+42/2 )gge 2T
el(s)=2 S-l+ s_\/E

(1/2 -N2/2)x + (1 -N2/2)nge™T + (1/2 - J_é/e)xgme'QT]
+ . (154)
s +42

The inverse Laplace transform of equation (154) is

t

ex(t) (3/2) Agme T le

| [(1/h +N2/h)k + (1/2 +N2/unge™ + (1/% + J-E-/h)xgme'ET]eJE ¢

+

[(1/% -2/ + (1/2 -N2/h)gge ™ + (1/% - «/_2'/1;)xgme'gT]e"\EJG :
(155)

+

We have now two undermined constants, k and . We proceed first to

the determination of k using the definition given by equation (152).

T 2T
k = ‘jp ei(t)e < ar
o

-G/2) Aege T [-e7T 4 1]

_e-(2-~/_2_)T+J
+ [@/h+N2/u)k+ (1/2 +~/_2-/h)>\gme'T+ (l/h+~/§/h)xgme_2T] T T

_e-(2.+~/-2_)T+l

(/b -N2/1)k+ (/243 Mg ™ (14 N2/t Ingye 2]

+

L 2+~/E

(136)

From this equation one can solve for k. k turns out to be
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o [56—2% T e R P T R o T e T A G
(s 3Be @ VDT (1 5 ppen(@ FYR

+ (-1 + 3J§/u)e-(lt +2)T }
(1+ 30B/em ~NRIT L (1 L 5 (2 442

(5 - \/— 5+~]- )
=>\€m5 5/2‘*/—) (-3/2 +~2)e” }_kgme 21
(1+53 J_YM Ye~ N/_:E)T + (1 - 5’J_74 Je~ (2 +‘J§-T
(157)

Substituting this value into equation (155) gives for e;(t)

ey (t) = [(3/2-9J_/8 (3 -Ne)r 5/2+9J—/8 5*“/_J
L+ 342/k)e” 2'\/—2_) _ 33/ )e(2 +42

(51 + 5B s oy -AEeC YR | B
..(l+ 5\/5/11-)8-(2 —J—E-)T + (l - 3\/3/4)6_(2 +‘\/—2-)T_
[ (5/4 - 542/ o (1/h4 +«/§/l+)e'(5'~/-§)T 76_\/51_}
Ll+3'\]—/}-l- 2 J_ + (1'3’\/5/)4-)6-(2 +'\/-5)T

(158)

Now, we still have one undetermined constant left, namely, \. We select
A so as to satisfy the boundary condition that the output current, i, (t),

is some specified value at time t = T. To find i (t) we use the equation
is(s) = giz(s)es(s) - (159)

Now e;(s) is given by the Iaplace transform of equation (158), or
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A&

(1. + 5«/’2‘/h)e'(2 -Jo)r + (1 - 3@/4)e'(2 +N2)r ¥

ei(s) =

[(-5/2 - 921" N2, (3o 4 9 Eg)en3 <RI

s -1

N (5/4 + 5E/h)e'2T + (1/4 —'JE/Me’(B +2)T

s -2
, A5/ - 5B/t 1/ eNf)e” ‘3'@1 , (160)
5«2

This reduces to

sL(5/2)e"2 4(-5/4-7N2/8)e "B VBT, (Lo s 7 JB/mYe” BV
[ (l+3 \[E/)-i-)e-(Q-"/_E')T_I_ (1_5 ,\]E/h)e"(E'i' \/E)T] (S-l)(s _J’é')(s’!- \/E)

e1(s) = rgp(s+2) {

 (=5/2)e P (145 B )BT, (/45 T3 e (B4R e
[ s (BRI (1 5 B 1) BRI (5 1) (o 2) (o)

Therefore, equation (159) becomes

o ggea(s)
1a(s) = (s+1) (s+2)

= gy {S[(5/2)e'2T+(-5/h-7 J_g'/g)e“@- JE)T+(-5/1L+7 ~/_2-/8)e'(5+ «/_E_)T]

(1438278 )e"C-VDIT, (15 amge B+ V2)Ty (1) (g41) (sB) (5:4B)

+

(-5/2)ev'.‘2”.‘},(7/n+5 JE/u)e'(?‘ @T,,W fue5 83 /n)e” O J2) T
[(1+3 \E/h)e‘.(z' 'JE)T*'(l-B \/E/h)e'(m' JEF)T] (s-1)(s+1)(s-2)(s+ V2)

(162)

This expression can be expanded into partial fractions and the inverse

Laplace transform taken. We have then for i, (T)
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¢
1,(T) = _)\gmg[(l-lj J2/16)e" (2 “E)T+(1+15 J2/16)e"(3* “/E)T+(5/2+17 J2/16)e (- Ja)r
(143 N2 /4)e -2 'JE)T*r (1-3 2/u)e" (3 Ve)r

. (/2 - 1742, /16)e (e S2)7 _ g5 ]
@+ 342/m)e (@ -J2)1 - 5~/_2_/1&)e'(2 +\2)r

This equation can now be solved for A\, giving

~14(T) [(143 ‘/E/]*)e-(z- JE)T+(1—3 \/E/h)e'(2+ "/E)T]

-(2-v2) - (N2 -(sw2)T -
2[ (1-13V2/16)e @ VQ)T;(1+13JE/16)e (2+@T+(5/2+17~E/16)e ( 2)T+(3/2-17J§/16 Je (h2) -Se 3T]

Finally, for e;(t), we have

ey(t) =

_1y(r) L L(3/2- 9\[_/8)e (321 +(=3/249N2/8)e” -Gl Tletal (5/bsoBM)e > s (1/h-B M)e '(5+J—T oVer
&m | (1132/16)e” 2-2)T, +(1+4132/16)e -(erl2)e +(3/2417W2/16)e -(- J— +(3/2- 17~/_/16) ]HJ_)T

[(5/4-5 NB/4 )e 2 (1 /1 N2 /1) (5" J_

* (1-13@16)e‘(2'*[5)'1‘+(1+15JE/16)e‘(z"“}a— 5/2+17J—/16)e"4"l_ (3/e- 17~f_/16 ()““E)T-se'w} '

-3T

(163)

(164)

(165)

We can now go back and examine the input energy for the optimum driv-

ing voltage. To do this we must first find i,(t). Now the Laplace trans-

form of i,(t) is given by

i1(s) = gi1(s)es(s)

(166)

g11(s) is given by equation (143) and e;(s) is given by equation (161).

Using these expressions in equation (166) gives:
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S
wol (e oy O o VB0 O VP e )

&m L(1-13~/5/16)e'(2‘”]2_)1'+(1+13~/2_/16)e‘(2‘”“/E)r'['+(3/2+17«I5/16)e'(I‘L"/’a)']:1+(3/2-17~/§/16)e'(]‘”"E)T-se'5T

iy(s) =

[(1/243 NB/8e~ 3" “/E)T+(1/2-3 Jz/8)e" 3 JE)T] (s-l)s(sz-z)

(1-1345/16)e'(2'5)T+(1+13~/5/16)e'(2“’5) A (3/2+17J2_/16)e'(h'J5)T+( 3/2-17N2/16)e

+

-(h+J§)T_5e-3T

1
L(-5/2)e (715 VB )~ B~ VDL, (705 JB e Ot V) Gy ey } :
¥ (1-13\/27.16)e'(2'@T+(1+13~15/16)e'(a‘“‘E)Taf(5/2+17~/'2_/16)e'(h'@T+(3/2-17~/§/16)e°(l*+‘[2)T-5e°5T

(167)

This expression can be expanded into partial fractions and the inverse

Laplace transform taken. This gives:

14(t) - (T (a3 OB, s e O Pty (5 rasg8)e 2T -1 undzfre”PHR T2
(1-13J2_/16)e'(2'“/2_)r'[1+(1+15~/E/16)e'(2'“/5)'11(3/2+17~/§/16)e'(I‘L"E)T+(3/:2-17«:‘2_/16)e'()‘““ja)'rﬁe'3T

. [ (55 B /B)e s (w1 v NE/mpe™ 3 V2T 2 }
(1-13@16)e'(2’@T+(1+13~/?/16)e'(2+JE)T+(3/2+17~/E/16)e'("*'“]?)T+(3/2-17~IE'/16)e'(1‘+'E)T-5e'3T
(168)
Now the input energy can be found from
T
E = e (t)is(t)at . (169)
0
Upon performing the above integration one obtains
) 122(1) [ (1/6 +35/32)-(11/32)e ™2 V22 (3316130 B /30)e ™" JET+(-99/6u-55-J5752)e'2T+(3/52)e'(2+2J§)T]
8,2 [(1-1342/16)+(1413 V2/16)e 2 VoL, (570417 J2/16)e 204 (3/2-17 N2 /16)e™ (242 J2)r o -(1W2) T2
12200) [(=99/6 + 3748/520e" @ VBT o (512115 /8)e" M VI, /150 JBj16)e~ 43 Y2,
+
g2l (1-1342/16)+ (1413 J2/16)e™2 ‘ET+(5/2+17 J2/16)e T4 (3/2-17 «IE/JLé)e,f(z‘”g‘]z_)'r—se'(1"‘]2—)1']2
(170)

This equation is shown plotted in Fig. 12.
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Let us now compare the energy delivered to the network by the opti-

mum signal with that delivered to the network by a step of voltage of suf-

ficient amplitude for triggering at time t = T.

For the step of voltage we have
el(t) = k

Now,

i = - s
4(s) g12(s)ea(s) s(s + l?(s + 2)

(171)

(172)

This can be expanded into partial fractions and the inverse Laplace trans-

form taken. We get
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ig(t) = kg (-1/2 + et - 1/0 72ty | (173)

From equation (173) we get

k = ' = ey(t) . (17%)

Now,

k(s + 1)

i1(s) = gri(s)es(s) = (s + 27 ° (175)

This equation can be expanded into partial fractions and the inverse ILa-

place transform taken. This gives

1. (T)(1 + e=2b)
&n (-1 + 27T 4 -2T)

i(t) (176)

The input energy for the step of voltage is the integral between O and T
of the product of e;(t) and i;(t). Performing this operation gives, for

the input energy,

g - LZ(m)(er - el 1) (177)
gr2(1 - 2e7T 4 ¢=2T)2

This equation is also plotted in Fig. 12. It can be seen from this fig-
ure that the energy for the optimum signal is always less than that for
a unit step. As in the first example we see‘that for T small the energy
required of a step function approaches that required of the optimum sig-
nal. This again results because for t or T small the optimum function
approaches a step function. Thus, if separate considerations dictate a
small allowable triggering time, there is little advantage to the opti-

mum function, and a step function becomes a very good approximation.
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Again, however, these statements cannot be considered to be applicable

to any problem, but have only resulted for a specific example.



CHAPTER VIII

CONCLUSIONS

8.1 Summary

The general problem of determining the optimum triggering signal
for a lumped-constant, linear circuit has been treated. The optimum sig-
nal is defined as that which produces a given current through, or a given
voltage across, a resistive output element at time t = T, while at the
same time requiring a minimum of energy from the generator driving the
circuit. The output resistance is considered as characterizing the in-
put terminals of a bistable element such as a thyratron, multivibrator,
or a magnetic relay.

General equations characterizing the optimum signal were derived,
and the conditions under which they are valid were noted. There are two
pathological types of circuits for which characteristic equations were
not obtained. However, both of these types of circuits are unrealistic
in the sense that they do not allow for generator internal resistance or
stray capacitance across the circuit input terminals. For realizable
circuits and realizable generators a characteristic equation was obtained
which is always valid.

Methods of solution for the characteristic equations were discussed,
and it was shown that the Laplace transform éan be used to reduce the in-
tegral equations into algebraic ones which are susceptible of simple so-
lution. ‘Finally, several sample problems were proposed and the solutions
obtained. These examples, in addition to demonstrating general solutions,
also demonstrated a method for finding the undetermined constants involved

in the equations.
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8.2 Suggestions for Further Work

In this dissertation the circuits treated have been restricted to
those composed of only linear, lumped-constant elements. It is probably
true that many areas of endeavor, involving the notion of triggering,
are concerned with circuits having either nonlinear or distributed-con-
stant circuit elements. For this type of circuit the linear theory may
provide a first approximation to the optimum signal for specific circuits.
However, for exact solutions a separate treatment must be made for cir-
cuits containing either nonlinear or distributed-constant elements.

The linear theory in this dissertation has been worked out in terms
of electrical circuits. However, it is well known that mechanical sys-
tems have electrical analogues, and vice versa. Thus, a mechanical sys-
tem in which the problem is that of obtaining some minimum displacement
in a given time interval by means of a forcing function could be analyzed
in terms of its electrical aﬁalogue, and the optimum forcing function de-
termined. 1In fact, the whole linear theory could be rewritten in terms
of the mechanical elements of mechanical systems.

Finally, the optimum triggering signal‘theory might have application
to the field of measurements. It is well known that the accuracy of meas-
urement of a physical phenomenon is limited because the measurement it-
self introduces a disturbance into the phenomenon. It is usually of great
importance to introduce as little energy change as possible into the sys-
tem being measured. In some physical systems it might be satisfactory to
know only whether some maximum or minimum condition exists or not. Now,
this yes-no type of information can be determined in terms of whether or
not a measuring circuit is triggered. Thus, if the phenomenon being meas-

ured can be made to generate a minimum energy triggering signal for a
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carefully chosen measurement circuit, then perhaps energy changes intro-

duced by the measurement can be minimized.
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