
convergence has been firstly tested. A 5 cm � 5 cm centred probe
(inner radius: 5 mm) fed patch has been used as test structure and
the input impedance variation as a function of the number of
unknowns has been considered. The obtained results are reported
in Figure 2.

In Figure 2 the input resistance behaviour has been omitted
since relative errors are much smaller than in the reactance case. It
can be seen that for a number of 12 � 10 rectangular domains and
8 basis functions for the probe, the relative errors are below 1% on
the input reactance (while they are below 0.1% on the input
resistance). These error values are usually acceptable for a wide
family of applications.

The numerical code has been then applied to synthesis prob-
lems when prescribed resonant frequencies are given. We present
a dual-band antenna design starting from the mother geometry of
Figure 3(a) as follows. Using 227 unknowns in the MoM code, the
resulting input impedance is reported in Figure 3(b). Starting from
this layout, the numerical code has been asked to find a dual-band
patch shape at 2.8 and 3.5 GHz. The resulting shape obtained with
a populations of 100 individuals, and the GA search steps are
reported in Figure 4 (for each generation best individual fitness is
shown).

Figure 5 shows the input impedance and the reflection coeffi-
cient amplitude at the input port for the antenna depicted therein.
The given requirements have been completely fulfilled.

If the patch shape had to be found without GA, checking one by
one all the possible shapes, the number of linear systems to solve
would have amounted to 17 million. Using GA, instead, only 3400
linear systems have been solved and the time employed was only
0.02% of the time needed to solve the entire system set.

IV. CONCLUSIONS

A numerical code for multifrequency antenna design has been
presented in this paper. This code employs MoM and GA to find
the optimal patch shape, starting from a rectangular geometry
discretized with a user-chosen detail level. The entire synthesis
process is wholly automatic, allowing a user of whatever skill level
to carry out satisfactory multifrequency designs.
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ABSTRACT: Generating accurate, high-resolution time-frequency dis-
tributions (TFD) is a critical aspect of dynamic radar scattering analy-
sis. Well-formed TFD’s can be used for target identification, target ac-
quisition in high-noise environments, or extending the range of radar
systems. In this paper, we diverge from traditional methods employing
complex signal-processing methods and propose a simple approach for
constructing the TFD for computational electromagnetic (CEM) targets
based on the physics of the problem. The proposed method allows for
an arbitrarily high resolution at any single look angle. Several examples
are presented to validate the method. © 2002 Wiley Periodicals, Inc.
Microwave Opt Technol Lett 35: 186–189, 2002; Published online in
Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.
10552
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moment method; Doppler

1. INTRODUCTION

The Fourier Transform has long been an important tool for pro-
viding a measure of the frequencies contained within a signal.
Time-frequency distributions (TFD) extend the functionality of the
Fourier Transform by computing the localized frequency content
at a particular time within the signal. Thus, one can obtain infor-
mation about the dynamic frequency-domain behavior of a signal
over time. Within the realm of radar scattering, one can interpret
the TFD physically as a representation of the dynamically chang-
ing Doppler frequency shifts caused by moving targets or targets
with moving components. TFDs can then be used for a variety of
applications, such as clutter reduction and moving target detection
using airborne radars [1].

As an example, consider the ẑ-directed dipole source spinning
about the origin as shown in Figure 1(a), where we wish to
measure the far field radiated in the negative x̂-direction [2]. From
Doppler theory, we know that the frequency measured at the
observation point will shift upwards when the source is approach-
ing the observer. As the source recedes, the observed frequency
shifts downward with the Doppler shift frequency given by

fD � 	2
v � x̂

�
. (1)

Since v � 2l�̂(t), where �̂ is the usual cylindrical unit vector
and t denotes time, the Doppler frequency as time increases can
then be expressed as

Figure 5 (a) Input impedance, and (b) reflection coefficient amplitude,
for the antenna shown in Figure 4
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fD � 	4l
�̂�t� � x̂

�
�

4l sin�t�

�
. (2)

A TFD of this situation would then look as that shown in Figure
1(b).

In practice, to generate Figure 1(b) we use the scattered signal
from the rotating object. The simplest and most well known
method for generating a given signal’s TFD is the windowed
Fourier transform known as the spectrogram [3]. Basically, to find
the signal component associated with frequency � at a certain time
t, the received signal s(t) is multiplied by a windowing function
h(t) centered at time t. The result is then transformed to fre-
quency domain to yield

St��� �
1

�2 	 e	j�ts�t�h�t � t� dt. (3)

Here St(�) is the spectrum of the windowed signal at time t.
From Eq. (3), it is evident that a compact windowing function h
will increase localization in time domain but lower resolution in
frequency domain. Conversely, a wide windowing function will
lead to high frequency resolution and low time localization. This
uncertainty principle, present in all signal-processing TFD ap-
proaches, ultimately limits our overall resolution and forces us to
settle for a compromise between time and frequency resolution. It
is, of course, desirable to remove this restriction and allow for an
arbitrary resolution in both domains.

In proceeding to remove such a restriction, we note that Eq. (3)
neglects information from the individual currents J, which are the
source of the scattered field (see Fig. 2(a)). In this paper we present

a physics-based approach called the Direct TFD (DTFD) for
computing each column of the TFD from knowledge of the indi-
vidual currents upon the geometry and its velocity at a single look
angle. In this manner, the intermediate calculation of the scattered
field is bypassed (see Fig. 2(b)), thus avoiding the uncertainty
principle and allowing for much higher resolution. Further, DTFD
has O(N) complexity and requires little memory.

2. DIRECT TFD FORMULATION

Computation of the scattered fields (as required for signal-process-
ing methods) requires lumping all induced currents into a single
field value, therefore forfeiting much detail about the target’s
electromagnetic characteristics. In the DTFD method, we instead
use information about the geometry’s instantaneous velocity to
localize (in frequency) the contribution from each current source.
From Doppler theory, we know that the velocity of the geometry
upon which the source resides will determine the apparent fre-
quency shift as seen by a stationary observer. We can also account
for any frequency shift of the induced currents due to the geom-
etry’s motion through the incident field by expressing the localized
current as

J��r, fd�� J�r���fd �
r̂s � v�r�

�
�

r̂o � v�r�
� � (4)

where � is the Dirac delta function, � is the carrier wavelength, fd

is the Doppler frequency shift, r̂o and r̂s are unit vectors in the
direction of the observer and source, respectively, and v(r) is the
velocity of the geometry at point r. For the monostatic case, r̂o �
r̂s and thus Eq. (4) simplifies to

J��r, fd�� J�r���fd � 2
r̂o � v�r�

� � (5)

By modifying the currents as shown, we restrict the radiation
integral to include only those currents which appear at a given
Doppler shift fd, and thus extend our usual computation of the

Figure 2 (a) Standard signal-processing methods such as the spectro-
gram. (b) The proposed Direct TFD (DTFD) method

Figure 1 (a) Z-directed dipole source spinning about the origin. (b) TFD
representation of the radiated field in the negative x-direction
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scattered field from time-domain to frequency-domain. We there-
fore construct a subset of the original currents J as

Jfd

�f�r��	
fd	
�f
2

fd�
�f
2

J��r, f � df (6)

The resolution in the frequency domain is therefore based solely
on the choice of �f. As usual, the scattered field (for the chosen
range of Doppler shift) is found by employing Jfd

�f�r� in the radi-
ation integral. Since the currents upon the geometry can be calcu-
lated for any given time, we note that unlike traditional signal
processing methods, the user’s arbitrary choice of time and fre-
quency allows for any desirable resolution within the DTFD.

3. EXAMPLE

Geometry
As an example, we present the TFD generated by a 0.3� � 5.0�
metallic plate rotating in the xy plane about the center at one end
(see Fig. 3). The incident field is a plane wave in the xy plane and
traveling along the positive x-axis.

To compute the DTFD, currents are first evaluated via the
moment method at each look angle. The currents are then modified
using Eqs. (5) and (6). Since the plate rotates about the origin, the
velocity of the geometry at a given point r is

v�r�� 2�r��̂ (7)

where v is then substituted in (5). For reference, the monostatic
RCS of the geometry (as it moves through a rotation of 360°) is
shown in Figure 4(a). Note the sharp specular response at 90° and
270° and the broader traveling wave responses at about 20°, 160°,
200°, and 340°. The corresponding discrete Fourier transform of
the scattered field is given in Figure 4(b), showing all frequencies
present throughout the plate’s entire rotation.

From (7) and Figure 4(b), we observe that the maximum
Doppler frequency is 
63 Hz, occuring when the blade is at 90°
and 270°, respectively. Thus, a well-formed TFD should give us
some physical insight into these behaviors.

Figure 5 shows the TFD of the plate using the spectrogram
method described above. From this image, we can clearly see the
large specular and traveling wave returns but the physics of the
behavior are unclear, largely due to the “smearing” in both time-
and frequency-domain resulting from the uncertainty principle.
Overall, the image doesn’t show much more detail than the RCS
plot of Figure 4(a).

Figure 6 shows the TFD of the plate using the proposed DTFD
method with �f � � fmax � fmin�/300 � 0.42 Hz. In this graph,
one can clearly see that the large traveling-wave returns are caused
by 10 discrete scattering centers distributed along the outer por-
tions of the blade. As one might expect, these ten discrete scatter-
ing centers correspond to the ten �/2 sections �10 � �/2 � 5�� of

the blade. Another curious feature is the apparent absence of the
large specular return generated by the spectrogram in Figure 5.
However, it is not difficult to conclude that the specular returns are

Figure 3 A 5.0� � 0.3� perfectly electrically conducting plate

Figure 4 RCS of PEC plate in (a) time-domain. (b) Frequency-domain

Figure 5 TFD of a spinning 5.0� metallic plate generated by the spec-
trogram method [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com]
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created by the in-phase summation of many relatively small cur-
rent elements located along the entire leading-edge of the blade—
thus, the energy of the specular return is spread evenly along the
entire blade and therefore appears at all Doppler frequencies. The
spectrogram result suggests, incorrectly, that the specular return is
caused largely by currents located at the center of the blade.
Obviously this is not true and is a direct result of the uncertainty
principle.

4. CONCLUSION

We presented the new Direct TFD method for generating TFD
graphs with arbitrary resolution using only the computed currents
and knowledge of the velocity of the geometry at each time step.
The TFD of a spinning metallic plate was computed to demon-
strate the much higher resolution of the proposed approach.
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ABSTRACT: A single-ended gate mixer with a high conversion gain,
low dissipated power, wide dynamic range and good isolation factor is
designed and tested. The mixer is composed of a hairpin-line band-pass
filter, an input/output matching circuit, a GaAs MESFET transistor, and
a lumped element low-pass filter to convert the radio frequency (RF)
into an intermediate frequency (IF). In the non-linearity analysis of a
GaAs MESFET, the novel method with a harmonic balance technique is
used to analyze the operating characteristics of a mixer circuit. The de-
signed mixer outperforms a general mixer for a down converter in wire-
less applications. © 2002 Wiley Periodicals, Inc. Microwave Opt
Technol Lett 35: 189–193, 2002; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/mop.10553
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1. INTRODUCTION

The performance and the sensitivity of a receiver in a wireless
local application are largely dependent on the mixer throughout in
the microwave frequency range. A mixer is used as a nonlinear
device to achieve frequency conversion of the input signal (radio
frequency, RF) into the intermediate frequency (IF). A microwave
diode or a field effect transistor (FET) is most commonly used as
the nonlinear element in a mixer [1, 2]. Recently, a low-noise and
high power GaAs MESFET transistor is being used in the micro-
wave frequency band to improve the noise figure (NF) of the
system. The MESFET mixer utilizes the non-linearity in the trans-
conductance, the capacitance in the gate-source and the conduc-
tance in the drain-source of a MESFET to generate an output
spectrum, consisting of the sum and the difference signal of the RF
and the local oscillator (LO) signals. To analyze the non-linearity
of the MESFET mixer accurately, Curtice used the harmonic
balance technique with Newton’s method [3]. The references [4]
and [5] describe many advantages of the circuit simulators using
the harmonic balance technique. The harmonic technique is also
compared with the time domain simulation using SPICE [6].
Furthermore, Camacho-penalosa [7] utilized the Newton-Raphson
algorithm for the nonlinear analysis with an improved harmonic
balance technique using Jacobian partial derivatives to reduce the
computing time of the MESFET gate mixer. The Serenade simu-
lator [8] using the harmonic balance technique is used for analyz-
ing the non-linearity characteristics of the GaAs MESFET mixer in
this paper.

This paper presents a composite technique for designing a
single-ended gate mixer having an excellent performance (with
high conversion gain, low dissipated power, wide dynamic range
and good isolation factor between ports) with low local power
levels using a GaAs MESFET. To obtain these excellent perfor-
mances, this mixer consists of a hairpin-line band-pass filter
(BPF), two input/output matching circuits, a GaAs MESFET and a
Tchebycheff low-pass filter (LPF). A general mixer has an IF
amplifier at the IF port, but this mixer proposed in this paper does

Figure 6 Direct TFD of a spinning 5.0� metallic plate [Color figure can
be viewed in the online issue, which is available at www.interscience.
wiley.com]
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