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THEORY OF PROCESSES OCCURRING INSIDE SEMICONDUCTORS
GENERAL

In the last two decades there have been developed a number of semi-
conductor devices which have already found large scale application in engin-
eering; these include copper oxide and selenium rectifiers, modulators, si-
licon and germanium detectors and mixers, thermistors for time-delay, pro-
tective and regulating devices, and the transistor amplifier and oscillator.
Such devices and their uses have been described in the technical journals.
In eight lectures we hope to present & coherent theory of semiconductor de-
vices and to explain semiconductor properties in terms of the modern theory
of the solid state. Our course will take us into a consideration of the cry-
stalline structure of solids and into a detailed study of the behavior of '
electrons inside crystals. One of the most useful tools now availeble for
such studies is the concept of electron energies. We shall use it frequently
and it is our task now to present the fundamentals of this concept.

BAND THEORY

If one plots the potential in the vicinity of an isolatel hydrogren atom
nucleus, one obtains the picture shown in Figure, 1-1. In this figure we have
presented the convention that the zero of potential 1is the horizontal dashed line
corresponding to the energy of the system when the electron is far away from the
nucleus. As the electron is allowed to approach the nucleus, since the two are of
equal but opposite charges, work is done by the system and the potential of the
configuration in practical volts is equal to -% X 9x lOll, where e is ﬁhe elec-
tronic charge in coulombs and r is the distance between the electron and the
nucleus in cms.

If we now inquire about the various ways in which the electron can reside
permanently in this "potential well" so as to produce a stable hydrogen atom we
come face to face with certain restrictions which arise from the obedience of
the system to the laws of quantum mechanics. These laws say that the electron may
reside on any one of a limited number of discrete total energy levels within this
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Figure 1-1 Plot of the Potential Energy of an Electron
in the Vicinity of a Hydrogen Nucleus,
Horizontal lines inside the "well" represent the allowed
energy levels of the atom.

potential well, and nowhere else. These discrete energy levels are represented in
Figure 1-1 by the solid horigontal lines designated by their respective spectro-
scopic term notations. When the electron occupies one of these discrete energy
levels as drawn, the picture then represents one of the several possible configura-
tions of the hydrogen atom. The binding energy of the configuraﬁion is given by
the vertical distance from the occupied level to the dashed line V = O at the top
of the diagram.
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Note that the horizontal lines represent possible total energies of the sys-
tem, potential plus kinetic. Since the sides of the well are given by the poten-
tial energy alone, it follows that the electron cannot classically be found oute-
side the well in the regions marked A, since these regions correspond to negative
kinetic energy.

One must remember that, once an electron actually occupies one of the energy
levels, the picture changes. If rnow a second electron approaches the neutral atom
it sees an entirely different energy scheme, The deep potential well would not
exist for the second electron beyond the orbit of the first, since the positive
charge of the nucleus has been practically neutralized by the negative charge of
the first electron. While hydrogen nuclei sometimes do exist in stable linkage
with two electrons simultaneously in hydride ions, the second electron is very
weakly held and the lifetime of the configuration, once it is formed, is usually
short.

In Figure ]-1 , the electron is pictured as occupying the third lowest
energy level. The configuration represented is that of a hydrogen atom in one of
its several possible energy states., It is one of the laws of nature that a system
left alone by itself will spontaneously attempt to rearrange itself in the direc-
tion of lower energy. After a short time in the energy level depicted in
Figure 1-1 the electron will fall to some lower-lying level, and will eventually
come to residence in the lowest available level, either by a single jump or by a
succession of smaller jumps to intermediate levels on the way. At every such jump
("transition,” to use the spectroscopists' language) a quantum of radiation is
emitted by the atom, and the energy of the quantum is exactly equal to the differ-
ence between the energies of the atom in its initial and final configurations. Pos-
sible spontaneous jumps of the electron to lower energy levels accompanied by the
emission of radiation are represented by the arrows in Figure 1-1 . By the
reverse of the above process, an electron in the lowest energy level can be raised
to one of the higher levels by absorbing the energy of a quantum of radiation inci-
dent upon the atom from without. If the quantum thus incident has energy greater
than the vertical distance from the lowest level to the dashed line V = 0, it may
completely remove the electron from the vicinity of the nucleus, which then becomes
a hydrogen ion. The liberated electron will have kinetic energy Ek equal to the
difference between the energy brought by the quantum and the binding energy of the
level in which the electron was initially resident: E, = hv - eV, where h is
Planck's constant and v is the frequency of the radiation. The electron thus liber-
ated wanders about freely in space until it finds something else with a potential
well to fall into.

Let us look now at the energy level scheme for a more complicated atom. A
sodium nucleus contains an excess positive charge equal to 11 proton charges. Con-
sequently & neutral sodium atom has 11 electrons. The energy profile of the atom
may be as shown in Figure 1-2 , In complicated atoms such as this the discrete
energy levels are not, in general, arranged with any obvious order, If we take a
sodium nucleus and start, in our imagination, adding*%he 11 electrons one by one
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Figure 1-2 Plot of the Energy Level Scheme for a Sodium Atom

the first two will shortly come to residence on the lowest possible energy level

(K electron shell, to use the X-ray designation). With the addition of the third
electron another quantum mechanical law comes into effect. This law forbids more
than two electrons* to occupy the same energy level in a singie system. The name
of M"exclusion principle” has been applied to this law. This third electron will there-
fore occupy the second lowest energy level (LI shell), as will the fourth. The
fifth electron will occupy the third lowest level (LII shell), and so on. This
third lowest level shows a population of six electrons: it may be considered as a
-coincidence of three energy levels which are not separated enough for atoms of low
atomic number to show as separate lines on the diagram. With the addition of each
electron the shape of the profile of Figure 1-2 will change, as will the positions
of all the energy levels contained by it, since the addition of another electron
changes the net charge of the system. The energy levels have been drawn to repre-
sent the state of affairs just as the llth electron is added to complete the neutral
atom, and the potential has been to take into account the screening effect of the
various inner electron shells. A twelfth electron, looking at this atom from

*These two electrons must have opposite spin.
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nearby, would tee rc potential well at all, and would consequently experience no
electrical urge to add itself to the atom. In fact, should it attempt to do so,
its additional charge would so distort the profile of the atom that it would be
repelled. This statement is not generally true for all atoms. Some electronegative
atoms, for example, oxygen, can take on one or more extra electrons in addition to
their normal complement. In order to present information which would otherwise be
lost, license has been taken in not drawing Figure 1-2 to accurate scale. Com-
pared with the separations shown between uppermost occupied levels, the distance
down to the lowest level should really be several feet off the bottom of the page.
An idea of the positions of the various levels in different atoms can be obtained
experimentally by observation of their optical and X-ray spectra. It has been
found that the binding energy of an electron in the lowest level of a hydrogen atom
is about 13 electron volts., For sodium it is about 1100 electron volts, while for
the most complicated atom of all, uranium, it is of the order of 100,000 electron
volts.

Note that the uppermost occupied level in sodium contains one electron. This
is the valence electron upon whose behavior depend most of the chemical and optical
properties of the atom,

Suppose we now bring a large number of sodium atoms together to form a small
sample qf a sodium crystal. We might be justified from analogy in drawing the
energy profile along a line of atoms something like that shown in Figure 1-3 .
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Figure 1-3 Energy Level Scheme for a Sodium Crystal as it Might be Inferred
(Naively) from the Energy Level Scheme of an Isolated Sodium Atom



Because the atoms are now close together the potential between them cannot rise to
V =0 as it does outside the surface of the crystal. As the figure is drawn the
potential hills between the atoms do not rise even as far as the uppermost energy
level which is occupied by the single valence electron in each atom. There is thus
nothing to prevent the valence electron originally belonging to one atom from leav-
ing its parent atom and wandering freely through the crystal. The only requirement
on the exercise of such freedom by the valence electrons would be that nowhere in
the crystal would there there be at any time many more or many fewer such electrons
than would correspond to reasonable over-all neutrality of net charge.

The picture of 1-3 , however justified, is somewhat over-simple, and the
actual situation of the electrons in the atoms of a crystal requires further elabo-
ration. Observe that the valence electrons of the various atoms all have the same
energy in Figure 1-3 . Since they no longer belong to any particular atoms they
must be considered as belonging to the erystal at large, with the crystal itself
considered as a single system. Having all these electrons with the same energy
in a single system would be a violation of the exclusion principle. Actually, when
atoms come together to form a crystal, the discrete energy levels normally occupied
by the electrons in the individual atoms split up into bands, as shown inFigure 1-L.
Each band consists, itself, of a large number of closely spaced discrete energy
levels. There are as many such levels in each band as there are atoms in the crys-
tal specimen, and there are as many such bands in the crystal as there are energy
levels in an isolated atom of the same substance. There is now no trouble with the
exclusion principle, since each level within each band can accommodate two electrons.

3p BAND
(RARTLY FILLED)

3s BAND
(RARTLY FILLED)

/s BAND(FILL ED)
Na Na M Na Na
CRVSTAL /ISOLATED
ATOM

Figure 1-4 Correct Energy Level Scheme for a Sodium Crystal, Showing how
the Bands of the Crystal Arise from the Discrete Levels-of the Isolated Atom
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In the case of sodium the splitting-up of the higher-lying bands is such that the
3s band and the 3p band overlap each other. In a crystal specimen with n monovalent
atoms, there are n valence electrons. The valence electron band in the crystal has
n closely spaced levels, with accommodations for 2n electrons. The band should be
half filled, just as in the isolated atom of sodium the valence electron level is
half filled with the one valence electron. Actually, in sodium the bottom of the
overlapping 3p band comes at a lower energy than the halfway filling point for the
3s valence band. Consequently some of the original 3s electrons spill over into

the 3p band, and from that point upward both bands fill equally to the limit of the
number of valence electrons available.

There are a number of higher-lying spectroscopic levels in the isolated atom
above those shown in Figure 1-2 . These give rise to additional higher-lying,
overlapping bands in Figure 1-4 which have been omitted in the interest of keep-
ing the presentation as simple as possible.

It may seem artificial to say that the discrete energy levels of individual
atoms split up into bands when the atoms are brought together to form a crystal,
merely in order to avoid violation of the exclusion principle. The complete explan-
ation lies in the realm of quantum physics, but a part-way satisfactory insight into
the mechanics of the splitting-up can be had by considering a mechanical analogy.
Consider a row of n mechanical oscillators, all identical, all independent and all
oscillating at the same frequency. Now suppose that a mechanical coupling is im-
posed between each oscillator and its neighbors in the line. It will now be found
that the previously independent oscillators form a single system whose vibration
frequency may have any one of n different values in a spectrum of n closely spaced
frequencies grouped about the original single frequency of the isolated oscillator.
The greater the coupling between the oscillators the broader will be the band and
the farther apart in the band will be the n frequencies available to the system.

Similarly, in the crystal, a quantum-mechanical coupling exists between the
electrons of one atom and those of its neighbors. This coupling is strongest in
the higher lying electron levels. Consequently the splitting-up of the energy
levels in the higher-lying bands of the crystal is greatest, and these bands are
broadest from top to bottom. Because of the potential hills between the atoms in
the crystal, the quantum mechanical coupling between electrons of lower-lying levels
from one atom to the next is much smaller, and the lower-lying bands are narrower.
For the lowest band of all, for the innermost shell of electrons in the atoms, the
coupling is almost completely nonexistent, since these electrons are shielded from
the outer world by the outer shells of electrons. Consequently, the lowest band is
very narrw - hardly any wider than the discrete level for an isolated atom. An
attempt has been made in drawing Figure 1-4 to show the relative breadths of these
various bands.

Figure 1-5 shows the valence band scheme for a more complicated material,
copper,'! and illustrates how the bands develop from the energy levels of the

=

H. M. Krutter; Physical Review, Vol. 48, p.664, 1935.
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Figure 1-5 Band Scheme for Copper

isolated copper atom. , The 10 electrons in the 3d level and the one electron in the
4s level of the isolated atoms cause a filling of the corresponding bands in the
80lid to a point slightly above the top of the 3d band as shown.

In our further consideration of band pictures we shall simplify the presen-
tation in the figures. Since the deeper-lying electrons belonging to the inner
shells of the atoms are quite tightly bound and do not contribute to the ordinary
electrical behavior of the substance, we shall no longer include the lower-lying
bands in the pictures we draw. Also we shall omit drawing separately the closely
spaced energy levels in the bands and merely draw horizontal lines to denote the
top and bottom edges of the bands. And rather than show the individual electrons
by separate dots, we shall merely indicate by cross-hatching how far the bands are
filled with electrons. This presentation has already been given in Figure 1-5 .

Figure 1-6 shows a band scheme in cuprous oxide,ano. In this compound the
copper atoms are farther apart than in s=0lid copper, hence the appearance of the cop-
per bands is different from that of Figure 1-5 ., The copper atoms are so far apart
that the 3d and 4s bands do not overlap. The oxygen2p band m & y 1lie below the 3d
band of copper as shown, and has accommodations for six electrons per atom. The electron
structure of oxygen gives normally only four electrons per atom in this band. How-
ever, if each of two copper atoms contributes a ks electron to each oxygen atom in
the 2p band of the latter, the structure of Figure 1-6 results, in which the



THEORY OF PROCESSES OCCURRING -INSIDE SEMICONDUCTORS 9

oxygen 2p and copper 3d bands are

completely full and the copper is

band is completely empty. Observe Cu 4s
that in the cases of metallic cop-
per and sodium there are empty
electron levels immediately above

the top of the electron distribu- XXXX XX XX RX XXX XX XXX Cu 3d
tion, while in Cu20 there is an

filled 3d band and the bottom of
the empty 48 band. As we shall

see in the next section, the dif- LOWER-LYING BANDS OF Cu
ferences between metals and non- AVL O WNoT Showw
metals can be explained in terms VL

of the arrangement and degree of

filling of the energy bands in

the solid. The picture presented Tentative Band Scheme

in Figure 1-6 1is that for sto=- Figure 1-6 for Cuprous Oxide
ichiometrically pure cuprous oxide. The presence of impurities, departures from
stoichiometry, or lattice defects complicates the simple picture in a way which will
be discussed later.

BEHAVIOR OF ELECTRONS IN BANDS, ELECTRICAL CONDUCTIVITY IN METALS, INSULATORS,
AND SEMICONDUCTORS

Having seen how the bands of allowed electron energies come about, let us
investigate the behavior of electrons in these bands and show how the electrical
conductivity properties of various types of material can be accounted for.

For reasons of fulfilling the minimum energy requirement, the electrons in a
partly filled band occupy the lowest levels in the band and fill the band, as far
as their numbers permit, from the bottom upward. At the absolute zero of tempera=-
ture the top of this electron distribution will be quite sharp in the sense that all
levels, up to the limit of the electrons available, are full, and all higher levels
are completely empty. However, at temperatures above absolute zero the top of the
electron distribution is "fuzzed out," in the sense that on a statistical basis
some of the levels below the top of the distribution will be empty, while some
levels above the top of the distribution will be occupied. The extent of this fuz-
zing out increases as the temperature increases, and the fuzzed out region has a
breadth in energy of the order of kT, where k is Boltzmann's constant, and T is
absolute temperature. For 300°K, kT is about .025 electron volt.

The electrons are constantly moving about, helter skelter through the crys-
tal lattice, the energy, momentum, and velocity of each electron being specified by
the quantum mechanical requirements associated with the particular level the .elec-
tron occupies. On the average, and in the absence of electric fields, there are as
many electrons going one way as another at any instant, and the net current due to
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Figure 1-7 Band Scheme for Sodium Showing Mechanism
of Electrical Conduction in a Metal

their motion is zero. The electrons are continually colliding with the atoms of
the lattice and undergoing scattering and reflection in the process, as at the sur-
faces »f the specimen as well.

Now consider an electron which by chance may occupy an energy level somewhat
above the top of the distribution, as at A in Figure 1-7 . When an electric field
is impressed across the specimen the electron experiences an urge to accelerate.
Acceleration means a change of velocity, momentum, and usually direction as well.
Hence, it means transferring the electron from its present level to a succession of
other energy levels corresponding to increased momentum in the direction of the
field. Since such energy levels are readily available in the neighborhood of A,
the electron can be accelerated by the field and contribute to a net current in the
sample. Consider, however, another electron at B, deep down in the distribution of
completely filled levels. All the other levels in the immediate neighborhood of B
to which this electron might be transferred by acceleration in the electric field
are already filled by other electrons. This electron, therefore, cannot be accel-
erated unless the field is strong enough to transfer to it enough energy in one
mean free path to 1ift it to some empty level near the top of the distribution.

(If B is more than a few hundredths electron volt below the top of the distribution
it would require unattainably high fields to do this). Such electrons, therefore,
cannot contribute to the net current in the sample. We are left with the observa-
tion that it is only those electrons in and near the fuzzed-out top of the distri-
bution that can participate in carrying a net current. These electrons ordinarily
comprise around one per cent of the total population of the valence band. The
modern theory of conductivity in solids thus differs from the classical picture, in
which all valence electrons were supposed to participate in conduction. Since the
same conduction properties are accounted for on the modern view by only a small
fraction of the electrons, it follows that the electrons must have mean free paths
much larger than classically supposed. This is indeed true, mean free path lengths
for conduction electrons in metals being the order of hundreds of atom diameters.
For semiconductors mean free paths may be as long as this, or may be orders of mag-
nitude shorter.
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The positive temperature coefficient of resistance of typical metallic con-
ductors can easily be explained in terms of the band picture. The behavior of an
electron in any given energy level is specified quantum mechanically by the wave
function associated with the level. It is one of the properties of waves in peri-
odic structures that if the structure is geometrically perfect the waves suffer no
reflection or scattering. If the structure is imperfect, as for the interior of a
crystal whose ions are displaced from their zero positions by thermal agitation,
the waves are reflected and scattered. Such reflection and scattering accounts for
the finite length of the mean free path of the conduction electrons. When the tem-
perature increases, the mean free paths become shorter, thus increasing the proba-
bility that an accelerated electron will in unit time lose the energy it has ac-
quired from the field and fall back down to the top of the electron distribution.
The conduction electrons thus lose their acquired energy more frequently, and on
the average their increment of velocity in the direction of the field is smaller.

Another type of lattice imperfection which acts as an agent for shortening
the electron mean free paths comes from the presence of impurities. An impurity
atom or ion interrupts the periodicity of the lattice structure and promotes
increased scattering of electron waves.

From the foregoing remarks on the band structure and electron behavior in a
metallic conductor it is a simple step to explain the electrical properties of in-
sulators. An insulator is a substance in which there is an energy gap between the
top of the valence band and the bottom of the next higher band, and in which there
are exactly enough valence electrons to fill completely the valence band, Figure 1-8.
It is evident that here there are no conduction electrons, for all the energy levels
in the valence band are filled, and there are no unoccupied levels of higher energy
or momentum to which electrons can be transferred by acceleration in an electric
field. (If fields of the order of 100 million volts per centimeter could be real-
ized, then some valence electrons could acquire enough energy from the field on one
mean free path to be transferred to the higher unoccupied band where they could
carry a net current, and the sample would become conducting. However, such fields
cannot be realized short of breakdown.) The electrons in the valence band are all
free in the sense that they are not bound to particular atoms in the crystal, but

NEXT HIGHER BAND
WORMALLY EMPTY)

VALENCE BAND
(COMPLETELY FILLED)

Figure 1-8 Band Scheme for an Insulator, With no
Conduction Electron$
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their motions are all specified and the application of a field produces no change
in the net motion of the electron population.

If the temperature of the insulator of Figurjbl-S should be raised, then
a few electrons from the filled valence band will be transferred by thermal excita-
tion to the bottom levels of the upper empty band, where they can transport net cun
rent. The number n, of electrons thus promoted is given in statistical equilibrium

by ngvexp 2-;;%; where e is the electronic charge, V_ the separation of the filled

g
and empty bands in electron volts, k is Boltzmann's constant, and T the absolute

temperature. The slight conductivity imparted to insulators by raising their tem-
perature thus increases exponentially with temperature. By heating to a suffi-
ciently high temperature, an insulator can be turned into a semiconductor. A semi-
conductor which owes its conductivity to thermal activation of electrons from the
valence band to the upper empty band is ¢alled an "intrinsic semiconductor." This
term is used to distinguish such semiconduc¢tors from impurity semiconductors which
we shall discuss soon.

For every electron in an intrinsic semiconductor which is transferred to the
empty band, a vacant space or "hole" is left in the electronic population of the
otherwise filled valence band. These holes behave like particles having charge
equal to the electronic charge but positive in sign, and with mass approximately
equal to an electron's mass. They are usually termed "positive holes." A positive
hole in an otherwise filled .band can be accelerated by an electric field in about
the same way an electron in an otherwise empty band can be accelerated to produce a
net current. It is evident, therefore, that the presence of positive holes contrib-
utes to thg conductivity of intrinsic semiconductors. Since the holes are equal in
number to the electrons in the empty band about half the current in an intrinsic
semiconductor is carried by positive holes.

., — ., ., —e :
Many room temperature semiconductors :h ‘ 52 :% é%

owe their conductivity to the presence of TL lT TL
impurities. To see how this comes about let
us consider a substance which would ordi- JS{ -— C&' \i(
narily be an insulator, but in which are dis- ¢ T TL
persed a few impurity atoms. Figure 1-9 . il l
illustrates such a case for silicon with a 'S, *o S5, *o 5 *= 5

X t —* ¢ —* ¢ * <
phosphorus impurity atom substituted for
one of the silicon atoms in the lattice. lT Tl lT Tl
Silicon is tetravalent, and each atom is

5 . —e- 5 ’ -— 5 . -— j ’

held in its place by four covalent electron- ¢ *— V¢ —e YL —* K

pair bonds to its four nearest neighbors. i 1-9 Di e Sile
gure l- agram of a con
These valence bond electrons form the val- Crystal Lattice with an Atom of

ence band in the band picture, and the band is Phosphorus Impurity
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Figure 1-10 Band Scheme of Silicon, Showing Localized Electron Level
in the Vicinity of the Phosphorus Impurity Atom
This level may easily give up its electron to the upper band of the
crystal, thus endowing the crystal with conductivity.

completely filled by the contribution of four valence electrons from each atom,
Figure 1-10 . The phosphorus atom, being pentavalent, has one electron more than

is necessary to complete the bonding requirements of the crystal lattice. This

extra electron is loosely held in the vicinity of the phosphorus atom by coulomb
forces. If the temperature is high enough this electron can be released from the
neighborhood of the impurity atom by thermal activation to the bottom of the empty
band of the silicon lattice. In the band scheme of 1-10 , the extra electron of

the phosphorus impurity is supposed to reside on a lgcalized phosphorus energy level

a short distance below the bottom of the empty band of the silicon lattice. Only a
small amount of thermal energy is required to transfer it to the empty band, and

such an impurity semiconductor will have considerable conductivity at room tempera-
ture. The number n_ of such activated electrons existing in statistical equilibrium
depends on the density Nd of phosphorus impurities, the energy e(Vg-Vd) for liber-
ation, and the absolute temperature T according to the relationship ne~/ Nd exp (_e(vg‘vd)
2kT

14
where k is Boltzmann's constant. Because of their nature and function the phos-

phorus atoms are called donor impurities. Semiconductors which owe their conduc-
tivity predominantly to the transport of electrons in an otherwise empty band are
called n type semiconductors (n for negative carriers).

Figure 1-1l1 shows an aluminum atom present as an impurity in a silicon crys-
tal lattice. Aluminum, being trivalent, has one electron too few to satisfy the
valence bonding requirements of the lattice. Under proper conditions of thermal
activation the aluminum atom may rob from one of its neighbors the electron needed
to complete its own bonding. That neighbor, in turn, robs one of its neighbors,
and the electron deficit can be handed along from siligpn to silicon. In the band
picture the valence bond which lacks an electron is thought of as a localized energy
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level associated with the aluminum impur-

S === S = Ji == S ity, situated a short distance V, above
the top of the filled band, (Figure 1-12).
“ “ t‘ N If the temperature is high enough an elec-

tron from the filled band may be thermally

St == S = Al == & activated to occupy this energy level,
leaving behind a hole in the filled band.
H H * “ " Such a hole can act as a conductor of net
current. An impurity which can thus re=-
Si == Si == &4 — A ceive electrons from a filled band is
. called an acceptor, and a semiconductor
H ” { N which owes its conductivity predominantly
1 to the presence of holes in the filled
54: —— 5“- - & ——— S/ band is called a p-type semiconductor

(p for positive carriers).

Some substances can be either
Figure 1-11 Diagram of a Silicon p typeor n type, depending on which impur-
Crystal Lattice with an Atom of ity predominates. In fact, both silicon
Aluninum Impurity and germanium can be prepared at will to

have either desired type of conductivity. Cuprous oxide is always found as a p=type
semiconductor. 1In this case the acceptor impurities are believed to be vacant cop=-
per lattice sites. Selenium,too, is always p type. Here the acceptors are believed
to be the unsaturated ends of polymeric chains of selenium atoms in the crystal.

] EMPTY BAND

ACCEPTOR
£ LEVEL
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Si S¢ Al Si Si S

ACCEPTOR
IMPURITY

FILLED VALENCE
BAND OF Si

Figure 1-12 Band Scheme of Silicon, Showing
Localized Electron Level in the Vicinity of
the Aluminum Impurity Atom
This level is normally empty, but it can
easily accept an electron from the
valence band of the crystal,
leaving a conductivity hole.
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The picture just developed explains the following experimental facts which
otherwise are difficult to interpret:

1. N-type oxides, such as ZnO, when heated in a neutral or slightly reduc-
ing atmosphere become good conductors, presumably because they contain
excess zinc which can donate electrons. If they then are heated in
atmospheres which are increasingly more oxidizing, their conductivity
decreases until eventually they are intrinsic semiconductors or insu-
lators.

2. P-type oxides, such as NiO, when heat treated in strongly oxidizing
atmospheres are good conductors. Very likely they contain oxygen in
excess of the stoichiometric proportion, and this oxygen acts as an
acceptor impurity. When these semiconductors are heated in less oxidiz-
ing or neutral atmospheres they become poorer conductors, semiconductors,
or insulators.

3. When a p-type oxide is sintered with another p-type oxide, the
conductivity increases. Similarly for two n-type oxides. But when a
p type is added to an n type the conductivity decreases.

L., If a metal forms several oxides the one in which the metal exerts its
highest valence is n type, while the one in which it exerts its lowest
valence will be p type.

On the basis of the classical theory of conduction in which the current was.
carried by free negatively charged electrons, the predicted sign of the Hall con-
stant, RH and the thermoelectric power, Q, was negative., The frequently observed
positive values of RH and Q were considered anomalous, and no satisfactory explgna-
tion could be given. It was also difficult to explain the small observed values of
RH and Q for metals and for intrinsic semiconductors. Both of these difficulties
were removed by the band theory which introduced the concept of positively charged
hole carriers. In p-type semiconductors where the holes predominate, RH and Q are
positive. In intrinsic semiconductors in which electron and hole carriers exist in
nearly equal concentrations, Ry and Q are small because the effects of the holes
cancel those of the electrons. This cancellation is not complete because the effeo-
tive masses and the mobilities of the holes are not ordinarily quite equal to those
of the electrons. For a more complete description of the band theory the reader is
referred to Torrey and Whitmer, "Crystal Rectifiers;™ F. Seitz, "The Modern Theory
of Solids;" A. H. Wilson, "The Theory of Metals," and "Metals and Semiconductors;"
.and N, F, Mott and R. W. Gurney, "Electronic Processes in Ionic Crystals."

Figure 1-13 shows once more the plots of log conductivity versus 1/T for
several samples of germanium having different amounts of deliberately-added anti-
mony. Antimony acts as a donor, imparting n-type conductivity to the germanium.
From the foregoing developments we can explain the qualitative shapes of these
curves. Since the number of current carriers, and hence the conductivity o, for
both intrinsic and impurity semiconductors, depends-exponentially on the reciprocal
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of the absolute temperature, it is evident

Zﬁéﬁ”’ gﬁﬁi%wrr why these curves are plotted on co-ordinates
- \\ 005 of log o versus 1/T. At very low temperatures
% ) _ 001/ the conductivi;y is entirely due to electrons
s \Q\”’*’ﬂ——mﬁ__ﬂél“4-\\\ thermally activated from the donor impurity
/0%2 Y oo levels. As the temperature increases, the
§ \\J””'—_———_—~‘\\‘\~\\\\ number of such electrons increases exponen-
mojg tially, giving the nearly straight line sec-
3 g — tion marked "impurity" conductivity in the
., § ”w%;;;;A AToMIC Y figure. As the temperature is increased still
K’ﬁg LINE Ss mvarTY T | more the donors become exhausted, and the con-
5 \( et ductivity decreases because the increasing
@; R i&; o o2 thermal disorder of the lattice reduces the
WO0I000 00 150 e—oC mean free path of the conduction electrons.
—_ : ‘ This section of the conductivity curve is
designated "transition™ region. Finally, at
Figure 1-13 Log Conductivity still higher temperatures, electrons become
vegg:gi#ézsfgicgogifgzizzglum thermally activated in increasing numbers

Concentrations of from the filled band, and the conductivity
Antimony Impurity rises again along another straight line sec-
tion marked "intrinsic line." In such semiconductors, the impurity econductivitv
dominates at low temperatures, while the intrinsic conductivity domi
temperatures, with the log o versus 1/T curve approximately straight
regions. For either of these regions we may write:

or
= B
logio ¢ = 1og10 - 33T

where log o, is the intercept and fB/2-3 is the slope of the straight lines. We
now proceed to relate these two empirical constants with theory to see what can be
deduced from them.

For an intrinsic semiconductor for which V_ is independent of T, statistical

g
theory gives:
-V
el
c=201$e(ve+vh)e13k'l' ) (1-1)

where U is a universal constant whose value is 2.4 x 10'5; e = 1.6 x 10~'° coulombs;
e/k = 11600 degrees C per volt; and Ve and v, are the mobilities of electrons and
holes. Consequently, should we plot logio (O/T*é) versus 1/T, then if (vg + v,) 1s
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independent of T or varies very slowly with T, we should obtain a straight line
whose slope = - 1 ;5 e and whose intercept = log [2Ue (ve + vh)]. We should thus
2.3 k

be able to deduce values of V_ and of (ve + vh) from o versus T data. When this is
done, it is found that values of V_ agree with values deduced from other types of
experiments but values of (ve + vh§ differ by factors of 10 or 100 or more from
those deduced from other experiments.

We, therefore, aim to modify the theory to get agreement. There are theo-
retical and experimental reasons for thinking that Vg depends on T. Suppose we
assume that

V. =V T -
g 20 + ¢ ( 1-2 )

where c is considered a constant whose dimensions are volts/°C. Substitute equa-
tion 1-2 in 1-1

- Vg0 e
2 k

njo

3 - ¥ 7
o = 2UT e(ve + vh) €

or

(v )
1og,°(—-°'§) = logio [2U e(vy + v )] - 1,'9'5'% ‘iZE% ﬁ} %’ . (1-3)
T .
3

On these assumptions a plot of log (o/T 2) versus 1/T should be a straight line
whose slope is

Veo o
oy
and whose intercept is
c &
log 2U e(w,"e + vh) ‘I3

Since this contains two unknowns, namely (v, + v;) and ¢ we cannot evaluate either
of them. However, if we know one of them from another experiment we can then cal-
culate the other unknown. Thus if we can deduce values of (ve + vh) from Hall
effect experiments we can then deduce values of ¢. We can thus determine how Vg
varies with T.

To see how important the new term - —23 11600 may be let us suppose that
¢ = 107> volts/°C. (This means that when T = 300, Vg 1s 0.3 volt smaller than

when T = 0). Then ZEE 11600 = %%ﬁg = 2,5, This means that the intercept is 2.5

decades or a factor of 700 highex than it would have been if Vg had been independent
of T.
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In the impurity region at sufficiently low temperatures the log ¢ versus 1/T
lines are also approximately straight. In this region, theory again predicts a
simple equation relating the parameters of the plot lines to the physical constants
of the semiconductor. For an n-type semiconductor

3 3 -(V_~Vy)e
o= (20T% Ny) e v, s—-(-ﬁ-zk-T-d—)—
or
1 3 -(V —Vd)e 1
logio 0 = 5 logio (2uT 2 Nd) + logio (e Ve) —E_C = L, ( 1-k4)

2kT 243

where (Vg-Vd)e is the activation required to promote a donor electron to the bot-
tom of the conduction band (Figure 1-10 ) and Nd is the number of such donor impur-
ity levels per cm3. This equation holds only if there are no acceptor impurities
active to complicate the conductivity picture, and if the temperature is so low

that no electrons are activated from the filled band.

The intercept now depends on (Nd)i and on v . Hence, if v, can be ascer-
tained from the intrinsic region or from independent experiments, Nd can be deter-
mined. The slope of the line determines Vd.

A similar equation holds if there are normally filled acceptor levels above
the filled band but no donor levels (Figure 1-12 ).

Table 1-1 summarizes the values of V

2o’ the width of the unallowed gap in
volts for 0°K, for a few semiconductors.

Values of vgo’ width of unallowed gap for 0°K, expressed in volts.

Si Ge Cux0 Zn0 Fe203 Ni; Mn, Oe¢.s
1.2 .88 1.4 2.2 2.3 .68
or 1.8
Table 1-1

In Figures 1-10 and 1-12 , the donor and acceptor impurity levels were rep-
resented as discrete, localized levels like those of an isolated atom. If the im-
purity concentration in a particular semiconductor specimen is "reasonably" large
(one per cent or more), the impurity atoms will be close enough together in the
lattice so that a small amount of wave-mechanical coupling may exist between neigh-
boring impurity atoms. The isolated impurity levels will then broaden out into
narrow bands. Because the impurities are still comparatively far apart, however,
electrons can jump from one impurity atom to another only with difficulty, and the
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EMPTY BAND OF
CRYSTAL LATTICE

DONOR BAND

FERM/ LEVEL
ACCEPTOR BAND

FILLED VALENCE BAND
OF CRYSTAL LATTICE

SSASSSSDSASSSASSDSSSSD

S = SEMICONDUCTOR ATOM
D = DONOR ATOM
A =ACCEPTOR ATOM

Figure 1-14 Band Scheme for A Semiconductor Containing Both
Donor and Acceptor Impurities
The impurities are supposed present in high enough
concentrations so that the donor and acceptor
levels widen out into narrow bands.

mobility of electrons in these impurity bands is many times lower than in the bands
of the matrix crystal. To the best of the author's knowledge no cases are known
where conductivity within such impurity bands has ever been observed and identified
in the presence of the higher conductivity in the bands of the crystal.

Figure 1-14 shows a complete band picture for a semiconductor (S) contain-
ing atoms of both acceptor (A) and donor (D) type impurities. Eg is the energy gap
between the filled and empty band; Ed is the energy of the donors above the top of
the filled band; Ea is the energy of the acceptors above the top of the filled band.
Eg, Ed' and Ea are energies in joules; they are customarily expressed in equivalent
volts, Vg, Vd, Va by which is meant that Eg = Vg e; Ed = Vd e} Ea=va e; Ep = VF e.
Ny = number of donors/cm3; N, = number of acceptors/cm®. The figure also shows a
line for EF’ the energy of the Fermi leve;. This Fermi level plays an important
part in the theory of the solid state which will be discussed in the following

chapter.



LECTURE 2

THEORY .OF THERMISTORS

See —- "Properties and Uses of Thermistors", J. A. Becker, C. B. Green,
and Ge L. Pearson. Published in the Bell System Technical
Journal, Vol. 26, pp. 170-212, January, 1947; and in the
Electrical Engineering Vol. 65, Transactions, pp. 711-725,
November, 1946. Or see — Bell Telephone System Technical
Publications, Monograph B-1443.



LECTURE 3

THE FERMI LEVEL, ITS IMPORTANCE AND HOW IT IS DETERMINED *

It is a fundamental law of nature that a system adjusts itself in the
direction of lowest total energy. Thus water is found in the bottom of a
container, charge flows along a conductor to a region of lower potential,
and a hot body cools down to the temperature of its surroundings. In response
to the same general law the electrons in the band system of a solid try to
accupy the lowest energy levels available to them. We have already stated
that in a band having fewer electrons than are required to fill it completely
the electrons will fill the band from the bottom upward as far as their numbers
permit, with a slight fuzzing out of the top of the distribution. We wish now
to inquire about the detailed mechanics of the filling of energy states.

On the basis of quantum mechanics, Fermi showed that in any system of
atoms, ions, and electrons, the probability, P, of finding an electron in an
energy state'of total energy E is given by the equation

1 — 1
- - - (3-1)
L £(E Ep) /KT L ee(V Vp) /KT

in which k is Boltzman's constant (1.38 x 10-23,joules/°C) and T is the abso-

lute temperature of the system. Ep is that value of energy, and Vp its

equivalent voltage, at which the probability of occupancy is 1/2. When
T = 0, all energy states below VF are occupied by electrons; all states above

Vp are vacant. Since V and VF occur only as (V - VF) it makes no difference
where the zero of energy is taken. EF or Vf is called the Fermi level; it
is also called the thermodynamic potential; it has also been called the

electrochemical potential. Fig. 3-1 shows a plot of P vs. V - VF for T = 0,

* The authors %?atefully acknowledge the assistance of John Bardeen in
formulating tThe concepts in this chapter.



3009, 1000° and 1500°K. From this plot and the form of equation 3-1, it is
apparent that P is symmetrical about V - Vg = O; this means that the value of
P for ény value of V - VF is equal to the value of 1-P for -(V - VF). The
quantity 1 - P is the probability that an energy level will be unoccupied,
which means that this level contains a hole.

There are a number of reasons why the Fermi Level is important:

(1) When a metal and a semiconductor are electrically connected and if initally
they were at different electrical potentials, charges will flow from one to
another. This changes the potential of one with respect to the other; the
process continues until the potential energy of the carriers in the metal is
the same as the potential energy of the carriers in the semiconductor. They
are then in equilibrium and the Fermi levels are at the same potential.

(2) We shall see below that the concentration of electrons in the empty band
or of the holes in the filled band are rather simply related to the Fermi
level. (See equatiomns (3-2c) and (3-2d) below.) (3) In P type semiconductors
the thermoelectric power @Q is VF/T; in N type semiconductors Q = (Vg - VF)/T.*
(4) The Fermi level plays an important part in the theory of rectifiers
between a metal and a semiconductor.

For these and other reasons it is important to present a method for
locating the Fermi level in a semiconductor which has one or more filled bands,
an empty but allowed band, an unallowed band, a very narrow band of donors,
and a very narrow band of acceptors. Such a band picture is shown in Fig. 3-2.
The method for locating the Fermi level in such a system 1s based on the law
of the conservation of charge. This means that the total number of electrons
in the system at any temperature T does not change with T and is equal to the
number of electrons contributed to the system by the donors and by the filled
band.

To express this conservation law in the form of an equation, let us
define symbols for the number of electrons which exist at any temperature in

the various pérmitted energy states shown in Fig. 3-2. Let

ng number of electrons/cm3 in the nominally empty or conduction band.

p

g

number of electrons/cm3 in the donor level or narrow band

n

3 i
number of electrons/cm” in the acceptor level or narrow band

* See Fig. 3-2 for definition of Vg



npy = number of electrons/cm5 in the filled band

n, = number of holes/cm’ in the filled band

N3 = number of donors/cm5

N, = number of acceptors/cm”

Nep = number of energy states/cm5 in the filled band.

The conservation law then states that
ng, + np + n, + Npy = Nd + Nfb
Since Ngyp - Nep = nh (this follows from the definition of nh)

n, + o+, =Ny +n (3-2)

It now is necessary to express np, ny, Ng and ny as functions of the

Fermi level Vp. From Eq. (3-1) it follows that:

- Mg
and
- Na
Oy = Y47 V) /KT (3-2pb)
1+ &V " 'F :

To obtain an expression for n,, we must take an interval of voltage
dV in the empty band, multiply the mmber of states in this interval by the
probability P given by Eq. (3-1), and integrate for all intervals dV in the
empty band. This is done in standard texts on Statistics or Quantum Mechanics.
(See e.g. Seitz's book) The result is

2nmek

=2 — )3/2 ¢3/2 g (V= Vp)/kT

o]
]

21U, TB/Q C-e(vé - Vg)/kT (3-2c)



and similarly for holes in the filled band:

3/2 _~eVnp/kT -
nh=2UhT/ E ¥/ (3-2d)
where Pk
m o)
h
=
m, = effective mass of electrons in empty band
my = effective mass of holes in filled band

Boltzman's constant

Plank's constant

28

If m, and m are assumed equal to the normal mass of the electron or 9.1l x 10~

grams

Uy = U, = 2.42x lo15 cm™ oK

If there are more than one kind of donors or of acceptors, the terms
involving Ny or N, must be summed.

Depending upon the nature of the donor or acceptor atoms, np and n,
in equations (3-2a) and (3-2b) may have to be “weighted". This means that
the exponential term in the denominator of Eq. (3-2a) may have'to be multiplied
by 2 and the corresponding exponential term in Eq. (3-2b) may have to be
multiplied by 1/2. For simplicity we have neglected these factors.

In the derivation of the expressions for n, and nh, (Eqs. 3-2¢ and
3-2d) it has been assumed that the values of ne and n, are appreciably less
than 4.84 x 10%° T5/2. This means that classical statistics were assumed in
the derivation, or that the 1 in the denominator of Eq. (3-1) was negligible,
Hence Eq. (3-2) is applicable only to cases in which this assumption is
fulfilled. For M type and for I type semiconductors with high values of
n, and n, more complicated expressions must be used.

Next we consider the utility of Eq. (3-2). In a system in which

T, Nd’ Na’ Vd, Va and Vg are known, V is the only unknown and hence in such



a system Vy will adjust itself until Eq. (3-2) is satisfied. To solve for
VF explicitly is a difficult matter, but in certain special cases the solution

is relatively simple. We will consider a number of such cases.

CASE 1. There are no donors or acceptors.

Hence

Nd = 0 and Na = 0 so that

ng =m or U, é-e(Vg - Vp)/xT U, £° V/kT

e
and
U
h
¢ 2eVr /XT _ o e’ g/kT
or v
V"‘| = -_a + ’3' . -2—'—2 . ..1{—'1‘. -.n_lll
Foe¥2 "5 18w, (3-3)
I
o = M = 1
Vp = vg/e (3-3a)

This says that the Fermi level will be at the middle of the unallowed
band for any T. VF may still vary slowly with T if Vg depends slightly on T.
It is now easy to solve for ng and for nh by substitution in Egs.
(3-2c) and (3-2d).
3/2 £~ vg/sz

ng =n, = 20 T

(3-4)

CASE 2. There are no donors and T is low enough so that there are practicelly
no electrons in the empty band.

Hence

Nd = 0 and ne =0

Equation (3-2) then reduces to

N

(Vaa- Vg/kT T " T 2UhT5/2 & ~eVy/kT

1+ e?



T 3/2 g-e Vg/kT

2U.
Ng =ny (1+ b 35 oo V /5T ) =, (1 + EE) (3-5)
2y, T E a !
Where
n, is defined by n = 2UhT3/2 E'evﬁ/kT (3-5a)

Here ng has the physical significance of being the number of holes per
cc there would be in the filled band if the Fermi level came exactly at the
acceptor level. At any temperature N, =Ny when Vf = Vé‘ It is a known quan-
tity since Uh, T and V, are known.

Write Eq. (3-5) as

o n, - N, =0 (3-5b)
Iy

Whose solution is 1/2
ny = -1 % (1 + 4 Na/ng) =S [l (144 Na/na)l/ej
(2/ny) 2

or

1/2
Sy R (5-6)

Only the + sign in % is significant since ny must be a positive quantity.
Since n, cen be calculated for any T, n, can also be determined.
The solution of (3-6) takes on a simpler form in two limiting conditions:
(1) when (N,/ng)>100 because N, is large or T 1s small. In this case
ny = (Néna)l/z - (QU)I/Q T5/4 (Na)l/Q e:eva/2kT (3-6a)
In this case only & small fraction of acceptors are filled.
(2) when (Na/na)<:0.l because N, is small or T is large. In this case

nh:éa;(-1+1+a§§-2(§"§)2+ ceed)

N
=Na (l-—a—+ .ooc.) (3"'6b)
Dg,
" ted In this case nearly all the écceptors are filled. They are said to be
saturated.
Since n, can be calculated from (3=6) it is then simple to evaluate

E'eVF/kT or Vi from Eq. (3-2d). It is also possible to derive analytical ex-

pressions for these functions.

£-V/K = (1/2) VoM £y L (14 h /)] (3-7)



When N%‘ > 100,

£-eVp/kT _ (Na/2UT5/ 2)1/2 g-eVq/2KT
and

V.
Vp =%+ 23K (105 20 + (3/2) log T - log Na). (3-72)

When (N,/n,) <0.1,
Vp = 2.5 L fiog 2 + (3/2) log T - log N, - log (1 - N,/n,)] (3-7b)

We now apply these equations to solve the problem: given a system in
which the concentration of acceptors N,, and their activation energy‘va are spec-
xth ny vs T and then VF vs T, It will be assumed that the unallowed
gap Vg is so large that n, will be negligible compared to ny at all temperatures.
(Case 5 will remove this restriction.) Specifically take Ny = lOl8 a,cceptors/c:n5 H

Vo = .2 volts; and Vg 3.0 volts. The following is recommended as an expedi=-

ified, compu

tious procedure.

Prepare a table such as Table 3-1. Column 1 lists the temperature T
for which values of ny and Vp are to be computed. Column 2 gives values of n,
calculated from Eq. 3-5a or read off from a graph to be described below. (Fig. 3~4).
Colum 3 lists Na/na. Column 4 1lists nh/na calculated from Eq. (3-6) or read off
from Fig. 3-3 which is a plot of this equation. Column 5 lists n,. Column
6 lists 1/T. Colum 7 lists Vp calculated from Eq. (3-2d) or read off from a
graph which will now be described.

In this and similar problems one deals with an equation of the form

n = 2UT3/2 £'/e/kT = 2UT3/2 ]_0"3/2‘3kT (General Equation)
in which there are three variables n, T and¢ ;5 and the constants U, e and k.
Two of the variables are specified and the third is to be evaluated. This process
is greatly facilitated by plotting n on a logarithmic scale vs ¢ with T as a
parameter. Such a plot is shown in Fig. 3-4a and its extension Fig. 3-4b. In
these plots n might be n, if ¢ is Vg5 n might be ng if ¢ is Vg - VF; n might
be ny, if¢ is Vy; etc. :

In Table 3-1, column 2 for n,, is obtained by setting ¢ =V, = .2 and
reading off values of n = n, for various values of T. Again for obtaining values
of VF in column 7, the figure is very convenient. By now T and nn are known.
This determines a point on the graph. The value of ¢ for this point can be read
off on the x axis and is the value of Vi that satisfies Eq. 3-2d4.



In Fig. 3-5, the solid line curve marked Ng = 1018 is a plot of log ny
vs 1/T for the data in Table 3-1., The other solid lines in the figure are sim-
1larly calculated for other values of Ne.' The lines marked n, and n, near the
intrinsic line nj; will be dealt with under Case 5. The long dashed line is
for n,.

'In Fig. 3=6, the solid line curve marked Na = lOl8 is a plot of Vy vs
T from the date in Table 3=1. The other solid lines are for other values of
Ng. The dashed lines at high temperatures show how VF_ varies with T if Vg

is not indefinitely large. They will be discussed under Case 5.

Case 3, There are no acceptors and no holes in the filled band.
This case is similar to Case 2 and the formules are similar. Eq. 3=5a
becomes ng = 2UeT3/2 s-e(Vg - Vd)/kT and Eq. 3-5 becomes

Re _ - Ng,1/2
55-1/2[1+(1+ ung.) J

Case 4, Both donors and acceptors are present but I‘Ia.>I\Id and T is low enough
so that ng = 0.
Eq. 3-2 becomes

Ny + Na =Ny + n (3-8)
d h
14+ ee(Vd -Vp) /KT 1+ e°(Vg “Vp)/KT

The first term can be neglected compared to Ny because the Fermi level
must be in the lower half of the unallowed band. Hence e(Vd =Vp)kT will be large
and the denominator in the first term will be a large number.

Introducing the quantity n, and proceeding as in Case 2, one obtains:

2
(ny)~ + (N3 + ng) ny - n, (Ng =Ng) =0 (3-9)
whose solution is
x.\1/2
ny = M[-l + (1 + bra (Vo -Ng) ] (3-10)
2 (Nd + n.’)2

Here again varioussimplifications can be made depending on whether ng
is greater than Ny, is between N, and Ny, or is less than Nj. However, these
approximations hold over such short temperature ranges that they give a mislead-
ing impression.



A better procedure is to calculate n, vs8 T, or use Fig. 3-4, put in
values in Eq. (3-10), assign values to N, and Ny, and calculate ny. Then use
Eq. (3-2d) to calculate Vp, or use Fig. 3-4 to obtain Vp. In this case the small
number of donors fill up an equal number of acceptors. As the concentration of
donors increases, the conductivity decreases. Another interesting feature of
this case is that for sufficiently low temperatures, Vp = Vﬁ instead of V5/2.
This effect extends over a longer tempersture range if Nd is nearly equal to Na/2°

CASE 5 No donors but no restribtions on T.

At low temperatures this case reduces to Case 2; at very high temperatures
it approaches Case 1. At intermediate temperatures, where the conductivity is
about to become intrinsic, electrons are present in the empty band, and Eq. (3-2)

becomes
Ng

Bg + T3 2%V ~VFI7ET = ™ (>-11)

which can be written as
2

n:
E&' +ny, - N, =ng (3-12)
where as before
n, = 2UT3/2 8-eva/km (3-128)

A good procedure to evaluate ny as a function of T will be illustrated
by considering a specific case for which Ny = 1016 E 0.2 x 1.6 x 10-19 Jjoules

I

a
or Vg = 0.2 volts -19

E-g =2,0x 1.6 x 10 joules
or Vg = 2,0 volts

Meke a plot of log y vs l/T where y may bg Ny, Ny, my or ng. Such a plot is
shown in Fig. 3-5. The lines for N and ng can be drawn directly since N, is

= 1016 and ng is given by Eq. (3-12a). At very high Tg, in the intrinsic
range, 3/2 - 2:0 y 11600

At lower Ty, ngy will always be below this line and ny, always above it.

Below some T, (800° K in this case) n, will be very small compared to
nh?/na, Ny and n,. Eq. (3-12) reduces to Eq. (3-5Db).

For this case the curve for nj can be quickly plotted by noting the
following:

At very low temperatures n, is small compared with Ny, so that Eqa. (3-12)
reduces to nh2 =n, Ny or ny = (na Né)l 2. This means that log ny ve T is a line
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which passes through the intersection of ng with Ny and has a slope of half of
that for ng. On a log plot this means that at any T, n, is midway between N
and n,.
At the T for which ny = ng, Eq. (3-12) becomes 2n, = Ny or ny = Na/2.
At a T at which n, =

w» Vg = Vg and

= N 1.24 v =
nh -._% (-1 +/5) ""-—?Na = .62 Ny

At somewhat higher temperatures, ny approaches Na‘

At still higher T where n, is appreciable compared with n, we must use
the complete Eq. 3-12, namely:

2
;32_+nh-1\1a=ne 3-12)

or

On
mp (14 755 ) - N, -
Now

2: _ 2urd/2 g~Vp o/XT =gV = Vp) ofkr _ 1 -(Vp = V) 11600/2.3T
2UT§ ‘Va e[kT
¢

- 10~(VF = V,) 5050/T

n
Since T will be about 1000 and VF - Va will be about 0.3, n—g = about

10'1‘5 = about ~l% or smaller. In general this is negligible compared to 1l and
hence
n, -Ng -ng, =0 3-13)
A
Define n,; = 2UT3/2 E”° Eﬁ o/kT (3-14)

n 5 is the value of n) or n, that would prevail in an intrinsic semiconductor with

an energy gap V., volts.

8
Then
nh - N
Now
212. - 2UT3/2 é-VFe/kT =£(X§ - F)e/kT (3-16)
nj 2UT3/2 & -Vge/2k’l‘
and

(3-17)

ng _ oupd/? g (Vg = Vp)e/kT _ g-(zg - Vp)e/kT
oy —v—7 = 2
1 gyr?/© & Vg%
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Hence
nh/ni = ni/ne (3-18)
If y is defined as nh/ni,
then ¥° - Na y-1=0
ny
Na -k[@&)z + 4 1/2
n n
i i N n
y = = 1 [aah 212
2 2111 N&
or L . 2]1/2
oy _ 1,1 [ 1
===+ 2 |14 ML (3-19)
Na 2 2 Ng

For very low T where o is very small, ny = Na
a
By
For very high T where -N—- is very large, nh = ni
a
Ih
For intermediate values of T, values of T can be read off from Fig. 3-7 which

a
is a plot of Eq. (3-19).

To evaluate n, Vg, and n, in the range of T where n, is appreciable com=-
pared to my we proceed as follows: Prepare a table like Table 3-2. Column 1lists
values of T in this range. The lowest value of T must be such that nh/na is less
than .10 as determined in Table 3-1, in this case 900° K. The second column lists
l/T. The third column lists values of n, read off from Fig. 3-4. The fourth column
lists ni/Na' The fifth column lists nh/Na read off from Fig. 3-7 (Eq. 3-19). The.
sixth column lists n . The seventh column lists Vf read off from Fig. 3-4. The
last column lists n, calculated from Eq. (3-13).

In Figs. 3-5 and 3-6 these quantities or similar ones for other values
of Né have been plotted.

CASE 6

There are two kinds of acceptors: Na and No' with energy levels at A
and Vé'; Vé is very large compared with Vg or Vé'.

Eq. 3-2 becomes
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N, N,
T a SV VIR Y T eV /R T (3-20)
N N_!
-g'-n'ﬁ = n, (3-21)
l+— 14+5n
n
a
2 _-eVy'/kT
where n' = 2UT5/ g™a / (3-21a)

The general solution of Eq. 3-21 is complicated. A simplification re-
sults if T is low enough so that the 1 in the denominators can be neglected. Then
5 )
1 1 =
Nan.a + Né n, n,
Ir T ¢ very large: ny =N, +N'
For low enough T and if N = N,' then Eq. (3-20) becomes
= 1/2 '\1/2 1/2 -e(V.' = V,)/kT
np = (N.1)~/= (1 + g8 72 _ (Nn )75 (14 & (V' - Va)/ y1/2

An especially interesting case to consider is that in which Na'77'Né
and Vﬁ';—V&. The contribution to n; from Né' and Na are quite distinct. At

very low T the log n, vs l/T curve has a slope of Vg e ; at slightly higher
4.6 k

T, ny saturates at Na; at somewhat higher T the contribution to n, from Na' pre-

dominates and log ny rises rapidly again with a slope of izgl.fg at still higher

T, log n; saturates at a value of na'. ’

Still another interesting and important case is to imagine that the ac-
ceptor levels form a wide band whose lower edge is Va above the filled band.
Divide the band into sub-bands each AV, wide and containing ANé levels. Then
sum up or integrate the contributions due to all the sublevels,



T

100
200
300
Y00
500
600
700

900
1000
1100
1200
1300
1400
1500

ng

kx10
1ok
1016
1,1x0%7
5,2x10%7
1.hx10'8
3., 3x10%0
6.0x10%8
9,6x10
1.45x10%7
225107
2.8x10™7
3,8x10%7
4,8x10%7
5,8x10%7

9.1
1.92
715
.302
167
104
6.9xlo'2
4.55%10™2
3.57x1072
2.62x1072
2.08x10™2
1.73x1072

Table 3-1

Vé > 3.0
gzg . (1/7)x107
1.0x10 10
l.OxlOl6 5
951007 5 s
2.8X1017 2.50
5.0210"1 2.00
6.7x10%7 1.67
8.7x1017 2
9.12x1017 i.li
l.OX1018 1.00
18 '
1.0x10 .90
l.OxlOl8 834
1.0x1018 770
1 Ox1018 I
18 .71
1.0x10 667

\

107
.120
<41
.168

.238
.283
«330

1430
490
<S4T

.666
725

13
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Table 3-2
V, = .2
fiffé ny /N,
2.0x10t 1.04
bax10t 1,19
8.8x10™% 1.52
1. 58xlo"l 2,15
2.60x107t 3,08
k.00x10™" 4.50
5.7x10"F 6,30

Dy
1.0k4x10™8
1.19x10%8
1.50x10%8
2.l5x1018
3.08x10%8
I .50x1018

6.30x10%0

372
. l"13
450

W70

1480
185
190

ng
.Olx1018

A9 "
Sa2 "
115 "
2.08 "
3.50 "
5.30 "



Fig. 3-1
Fig. 3-2
Fig. 3-3
(e
Fig. 3-5

Fig. 3-6

Fig. 3-7
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CAPTIONS FOR FIGURES
Plot of the Fermi Probability P as a Function of V-Vy for Four
Different Temperatures. -
Energy Band Structure of a Typical Semiconductor.
Plot of np/N, vs Na/n From Equation (3-6) and Table 3-1.
a

Universal Plot of n vs ¢ for the General Equation for Several
Values of the Parameter T.

Calculated Values of o, By, B, and n, vs % for the Cases
Described in the Figure.

Plots of Fermi Level Voltage Vp ve Temperature for Three
Different Values of Acceptor Density.

Plot of nh/Nﬁ vs ni/na from Equation (3-19).
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LECTURE 4

HALL EFFECT AND THERMOELECTRIC EFFECT

HALL EFFLCT
The Hall effect consists in the development of a transverse voltage
across & specimen of material carrying a current at right angles to a
magnetic field (Figure 4-1). In terms of the symbols of the figure the
Hall constent Ry is defined by Vy = 1078 Ry Iy/d, when Vg is in volts, I in
amperes, H in gausses, d in centimeters, and RH in centimeters cubed per
coulomb.

The number n of free electrons or holes A IS NEG FOR 4 n-TYPE
POS FOR p-TYPE

per cubic centimeter in semiconductors can be
deduced from Hall measurements: For a simple T

case in which carriers of only one sign are re- /)i//;f/// | —
sponsible for the conductivity, theory states S

that

n=i3}enTH-, (4=-1)

where RH is the Hall constant in centimeters
cubed per coulomb, e is the electronic charge

(1.59 x 107'° coulomb), the minus sign is for Figyrgpet;ten ggiaggiTent
electrons, and the plus sign for holes. Effect Measurements
Putting in the values of the constants, we find ~

that n is equal to 7.4 x 10'® divided by Ry. Hall measurements on two p-type
silicon samples C and D at room temperature gave RH values of +6.5 and +0.5 centim-
eter cubed per coulomb, respectively, which indicates 1.1 x 10'® and 1.5 x 10'®
holes per cubic centimeter. Although the impurity of sample C is unknown, that in
sample D is 3 boron atoms for each 10,000 silicon atoms. As there are 5.2 x 102?
silicon atoms per cubic centimeter, this means that 1.7 x 10'° atoms of boron are
present in this sample and that each boron produces approximately one hole.

The conductivity o of an electrical conductor is given by

o = nev , (4-2 )



where n is the number of current carriers per cubic centimeter, e is their charge,
and v their mobility in centimeters per second per volt per centimeter. Combining
equations Y4-1 and L4-2 we see that the mobility of the holes or electrons in a
simple semiconductor is

8 RH c
V=T=O.85RHG. ()'&'3)

The mobilities of the holes in silicon samples C and D at room temperature
are, respectively, 55 and 33 centimeters per second per volt per centimeter.,

In intrinsic semiconductors where electrons and holes are both present at
the same time, the Hall coefficient is

3n (n1c2 - nz)

( b=l )

Ry
8e (n;c + n,)?

where n, is the electron density, n, the hole density, and c¢ the ratio of the
electron mobility to the hole mobility. As ¢ is generally somewhat greater than
one, intrinsic semiconductors usually show the negative sign.

The value of the mean free path of the current carriers is shown from the
simple theory to be

- 1/2
2 x 1077 Ry(2nmkT)
= )

g, ( 4=5)

where 4 is the mean free path in centimeters, m is the mass of the carrier

(m =9 x 1072® grams for electrons and is assumed to be the same for holes), and
the remainder of the constants are as previously defined. Substituting in these
values, we see that

4=3.5x1071°1"/2 R, o, (4-6 )

At room temperature the mean free paths of silicon samples C and D are, respec-
tively, 4 x 10”7 and 2.3 x 10”7 centimeter. These are approximately ten times
greater than the lattice constant of silicon which is-5.4 x 10-% centimeter.

An additional relationship, between { and v, can be obtained by combining
equation L4-6 with L4-3 .

L =4.2 x 10770 TV/2 y , (4-7)

Direct measurement of the mobilities of electrons and holes in germanium' at room

temperature give

1
Shockley, Pearson, and Haynes, 28, No. 3, Bell System Technical Journal- (July, 1949), p. 34k.
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<
Il

2500,

1700 cms?/volt sec.

Vh

These mobility values thus correspond by equation 4-7 to mean free paths of
1.8 x 10-5 cms for electrons and 1.2 x 10° cms for holes, in germanium at 300°
absolute. These mean free path lengths are more than a hundred times the inter-
atomic distance in the germanium crystal.

It is obvious from equation 4-1 that if Ry is determined over a range
of temperatures, it is possible to compute values of n vs T. From the sign of
R, it is possible to deduce whether these carriers are electrons or holes.

If both RH
9.1-3, the mobility can be computed as a function of T.

H
and o are determined for a range of T, then from equation

Figure 4-2 2 shows a plot of log n, vs 1/T for four samples of p-type
silicon containing the following amounts of boron expressed in atomic per cent

. ' 300, ——r3
10 — vasxo’ T 2| /
H ' / 0.oois% 8
- 01378 : ) //—'*N\ g
\\(__ HolEs|only i d.0026%8
PEENR SN /| |
TR ferh:
] . -
oI 7 S
3 | ) S ] 8 . J
O : :\$\\ %33 T4 @ ‘// 0.0052%8
ol i ; ;
§«¥ L \‘\\i N 37 7
Q | Fq%b | t /
w ELECTROMS Lo \ 2 1
& - ‘ N
& AND @nfsi L L2 g ] \\\\
R N e 3 /¢ﬁ>// N
i i I P 3
' I } ’ E N
\ \\S\x | ] l i % i : / \6
,adc N S 0137
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Figure L-2 Plots of Carrier

Density vs Reciprocal Temperature

for Silicon Specimens Having Dif-

ferent Concentrations of Boron
(p-type) Impurity

Figure U4=3 Plots of Carrier Mobility
vs Reciprocal Temperature for the Same
Silicon Samples as in Figure L-2

. .
Bardeen and Pearson, 75, Physical Review (19L49), p. 865.



Sample number 2 3 N 5
Atomic % B in Si 0013 .0026 0052 013

Figure U4-3 2 shows a plot of log v vs 1/T for these same samples. Note
that in the impurity region, the mobility decreases as the impurity increases.
For a given sample, as T increases, v increases, comes to a maximum, and then
decreases. In the intrinsic region the mobility is nearly the same for all
samples and decreases as T increases according to the equation,

v, =5x 105 T-3/2 ( 4-8)

At the same time the mean free path decreases. Combining equation k-7 with
4-8 , we obtain

L, =2, x 10=%*/T . ( 4-9)

h

A simple explanation of the shapes of these mobility curves can be given
as follows. At low temperatures the mobility and mean free path are determined
chiefly by impurity scattering, hence the lower mobilities at these temperatures
for the samples having the higher impurity concentrations. As the temperature in-
creases and holes move faster, the collision cross section of a hole with an im-
purity atom decreases, since the path of the particle will be deviated less during
a near collision at high speed than at low speed. Hence the mobility increases
with increasing temperature in this range. For still higher temperatures, however
the increasing .scattering effect of lattice vibrations causes the mobility to

decrease again,

For electrons in n-type silicon, experiments have shown mobilities in the
intrinsic range to be about three times the mobility of holes:

Ve =15 x 105 T-¥2 | ( 4-10)

accordingly,

1, = 6.3 x 10°%/T .

9.2 THERMOELECTRIC EFFECT

The physical phenomenon of the thermoelectric effect is treated in standard
t e xt 8. We shall now investigate what can be learned, from thermoelectric
measurements, about the fundamental properties of semiconductors., In particular,
we shall discuss how the Zeebeck voltage (Figure L=l ) is related to the thermo-
electric power and the Peltier and Thomson voltages, and how these in turn are
related to the Fermi level.

23ardeen and Pearson, 75, Physical Review (1949), p. 865.
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id d of semiconductor wi lat- coLD

Consider a rod o ucto th p SNCTION~__
inum contacts at its two ends, such as shown in
the upper part of Figure 4-5 ., Let us suppose SEM METAL ¢*p7”%
this semiconductor to be of p-type. If both ends CONDUCTOR ‘ Ve -NTYPE
of the rod are at temperature T, the Fermi level AAEZALJ: )
will be a certain distance VF1 above the filled //

: ; HOT

band of the semiconductor throughout its length, JUNCTION
and all the bands and levels of the semiconductor
will be horizontal. It has been shown in Chapter Figure 4-4 Arrangement
8 that the Fermi level in the metal at either end oi Spe?imsnlfor Tﬁermo-
must be continuous with the Fermi level in the electric ;egige easure=

semiconductor at that junction. If the tempera-

ture of the right-hand junction is raised to T, = T, + AT, the bands and levels
assume the slanted positions shown in the potential diagram in the bottom part of
Figure L4=5 . 1In this diagram the slant is greatly exaggerated in order to il-
lustrate the arguments now to be presented. The temperature difference AT is sup-
posed small enough so that all changes cccurring in the positions of the various
bands and levels are linear with temperature, and hence linear with horizontal
distance on the diagram. Let the platinum contacts be connected to platinum wires
whose free ends are brought around, outside the diagram,to complete the circuit
through the potentiometer which measures the Zeebeck voltage Z. The terminals of
the wires at this instrument must be at the same temperature.

The magnitude of the thermoelectric voltage Z is proportional to the dif-
ference in temperature between the hot and the cold junction if AT is small. The
quotient ) between Z and AT is called the thermoelectric "power.™ It is not a
power in the sense in which we now use the word power: its physical dimensions are
volts per degree, If both hot and cold junctions are raised or lowered in tem-
perature, keeping AT constant, it is found that Q depends on the mean temperature.
Q as a function of T can equally well be measured by keeping the cold junction at
a fixed temperature T, and plotting the thermoelectric voltage Z against the
variable temperature T, of the hot junction. The slope of this plot at any value
of T gives Q for that temperature.

The Zeebeck voltage is made up of four separate contributions, whose

origins we shall now describe in terms of the band picture of Figure k-5

for a P type semiconductor.
It was observed by Peltier in 1834 that when current is driven across a

Jjunction ovetween two different materials, a heating or cooling occurs at the junc-
tion, depending on the direction of current flow. This heating or cooling is over
and above ordinary joule heating. The Peltier heat coefficient m is expressed as
Jjoules of heat liberated or absorbed per coulomb of charge crossing the junction. It
therefore has the physical dimensions of a voltage associated with the contact. We
now know that the Peltier effect is due to the fact that when current carriers cross
a contact their average energy undergoes a change. The mechanism of this change can
be seen by the following argument. Consider a current of positive holes in the
metal near the left-hand junction moving toward the right. Only those holes which
are below the lower dashed horizontal line can crqss/ﬁhe jhnction into the semi-
conductor. Each hole that does cross from the metal into the semiconductor gains



a potential energy equal to eVF, In addition the average kinetic energy trans-
ported per hole is 2kT,.* The voltage equivalents of these two quantities are
shown on the diagram, and their sum, designated by m,, is the Peltier voltage at
this junction.

2kT
e

1

o= VFl +

The metal must continually furnish energy to other holes in an attempt to
restore the hole distribution-in-energy which has been upset by the selective
passing on of the high energy holes into the semiconductor. This restoration
energy comes from the thermal energy of the metal crystal lattice, which conse-
quently experiences a cooling effect. It can be seen by applying the same argu-
ment in reverse that current
Pt T . N flowing in the opposite

T 7,

direction produces a heating
at this Jjunction.

H,J&EDLEEEL~—”“““ Possible rectifying
barriers at the two metal-
P semiconductor contacts are
Fe oy not indicated in Figure
FmM\uvﬂ ;;;’ - ém 4-5 : their presence or
__—I_?I:i::;;:fffijfffﬁnIJ;w_ absence would have no ef-
v ;ﬁ;l PUE PP | g fect on the argument just
e presented. Observe that
r TeTeAT the magnitude of m is dif-

ferent at the two junctions.

Figure 4-5 Top: Semiconductor With Platinum This is partly because the

Electrodes in a Thermoelectric position of the Fermi level
Voltage Experiment in the semiconductor, with
Bottom: Diagram of the Energy Bands respect to the top of the
in a P type Semiconductor filled band, depends on

temperature, and partly
because the kinetic energy transported by a carrier particle depends on tempera-
ture. The Peltier voltages at the two Jjunctions constitute two of the four con-
tributions to the Zeebeck voltage.

In 1853 it was deduced by W. Thomson from thermodynamic reasoning that a
conductor carrying a current along a temperature gradient should experience a
heating or cooling, in addition to and independent of joule heating, depending on

*In dealing with transport phenomena of this sort it can be shown that the average kinetic energy
transported per particle is 2kTy rather than the 3/2 kT ordinarily associated with the equi-

librium average kinetic energy of the particle.
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the direction of the current. This effect was experimentally verified and shown
to correspond to an emf contributing to the Zeebeck voltage. It is our task now
to examine the origin of this Thomson heating or cooling in terms of the band

picture.

The number of holes per cubic centimeter in the filled band of the semi-

conductor at any temperature is given by
eVF
n, = 2u13/2 ¢~ XT *

It was shown in the last lecture that this equation corresponds, at all tempera-
tures below the range in which the acceptors are saturated, to a greater equilibri-
ium hole density at the hot end than at the cold end. Consequently holes will
diffuse preferentially from the hot end to the cold end, partly because of this
concentration gradient and partly because of the higher kinetic energy and conse-
quently higher diffusion velocities at the hot end. These processes charge the
cold end of the semiconductor positively with respect to the hot end and set up an
electrostatic field in the semiconductor which, when steady state is reached,
causes a return current of holes equal in magnitude and opposite in direction to
the diffusion currents. This steady-state field causes the tilting of the energy
bands and levels indicated ianigure 4-5 , and produces the electrostatic poten-
tial difference S between the two ends of the semiconductor.

Consider now a current of holes moving in the semiconductor from the left-
hand end to the right-hand end. As they move, their potential energy decreases by
the amount eS per hole, while their kinetic energy transport increases by 2kAT per
hole because the holes are moving into a region of higher temperature. The net
energy change per hole, -eS + 2kAT, is abstracted from or delivered to the crystal
lattice of the semiconductor. The heat thus absorbed or delivered in joules per
coulomb, of\charge transported per degree of temperature difference, is called the
Thomson coefficient o: it is defined as positive if positive current flowing in
the direction of positive temperature gradient increases the average total energy
of the carriers (cools the substance). The Thomson coefficient has the physical
dimensions of a voltage per degree: consequently the net effect of the processes
described is to establish an emf oAT between the two ends of the semiconductor,

wherek
AT = -5 + 2KAT | )
e a
or J 0dT = -§ + 2 % (T, = T)) » )
T T g

The sign of o for any semiconductor may be positive or negative,depending
on the separate magnitudes of the terms in equation h-ll .« Direct calculation of
o is difficult: it involves a knowledge of the behayior of the Fermi level with



temperature and a knowledge of how charged particles diffuse in response to
density and temperature gradients. It will be shown below that for a p-type semi-
conductor, o is negative at low temperature and slightly positive at higher tem-

peratures.,

The total circuit emf measured by the potentiometer is now the difference
between the Peltier emfs at the two junctions, plus the difference between the
Thomson emfs in the metal and the semiconductor:

Z=m, - m + o AT - o AT,

my = m + f

where the subscripts m and s denote metal and semiconductor, respectively. Because
o is not constant for all values of T,, the terms oAT must be replaced by integral

(4-12)

or Z

-3
N
—

T T

2
forms j odT if AT is large. For most metals %n is nearly always small compared

with Oy Moreover for platinum, o is nearly zero over a wide temperature range.
The third term of equation 4-12 may therefore be omitted from further considera-
tion, and the Zeebeck voltage Z is numerically equal to the vertical difference
between the Fermi levels of the metal contacts at the two ends of the diagram in
Figure L4-5 .

If we complete the thermoelectric circuit through a high resistance instead
of through a potentiometer, a small current will flow continuously. Its value is
Z divided by the sum of the internal and external resistances. The direction of
this current in the diagram of Figure Le5 is with holes flowing from.hot to cold
in the semiconductor and with electrons flowing from hot to cold in the external
circuit. The value of the current must be the same everywhere in the circuit: let
its magnitude be i amperes. As a result of its flowing, heat is gained and lost
by various parts of the circuit. As holes flow into the semiconductor at the hot
junction, heat is absorbed at the rate of im, watts: this heat must be replenished
at the same rate by the heat reservoir which maintains the hot junction at tem-
perature T,. In the semiconductor heat is delivered to or abstracted from the
crystal lattice, depending on whether -w+ k/e is plus or minus. This heat de-
livery rate is icAT watts: the heat must be furnished or dissipated by the sur-
roundings or by conduction from or to the heat reservoirs at the junctions,
Finally, heat is delivered by the current at the cold junction at the rate in1
watts, and heat must be taken away at this rate in order to maintain this Jjunction
at temperature T,. The difference between heat flowing into the system and heat
flowing out per second is i(n, - AT - m;) watts. It is this heat per second
absorbed by the system which furnishes the poﬁer necessary to maintain the current.
This power is eventually dissipated as joule heat in the external and internal

circuit.
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If the external resistance is replaced by a battery whose emf exceeds Z
and whose polarity is such as to send current through the circuit in a direction
opposite to that just discussed, the heating effects will be reversed. If the
entire circuit is initially at the same temperature, the current flow will cause
parts of it to heat up and other parts to cool: in particular, junction 1 will
become cooled while junction 2 will become warmed.,

It is to be understood that the entire argument presented up to this point
holds only for a p-type semiconductor at temperatures below the intrinsic tempera-
ture range. By transforming the ideas and arguments to fit the behavior of
electrons instead of holes, the situation for an n-type semiconductor can be
described. At high temperatures where intrinsic behavior is assumed by the semi-
conductor, new arguments involving the behavior of both holes and electrons to-
gether must be employed. In this temperature region the thermoelectric quantities
become complicated functions of electron and hole properties which are beyond the
purpose of this text to describe.

By applying the laws of thermodynamics of a complete thermoelectric circuit,
W. Thomson was able to deduce certain useful relationships between the thermo-

electric quantities.¥*

n=QT g
4-13%)
~ _Td ) (
Og = Oy = 05 = 7?? )
By using these relationships the following equ:'ities can be written:
dz "o
=85 _ 1 _ S -
Q=dT_T_f Bar . (4=1k)
0

In this equation Q, Z, m, and o are all functions of T. In particular, if we can
obtain experimentally a plot of any of these quantities against T, we can deter-
mine from equation L7 plots of all the other quantities against T. We have
already discussed how Q vs T can be obtained from a Z vs T curve obtained ex-
perimentally. Figure 4-6 shows such a plot of Q vs T for a p-type semiconductor.
The reason for plotting this function Q is that on such a plot the other functions
have simple geometrical interpretations. Thus from equation 4=13

T2
VA =f QdT ,
T‘l

*gee Starling, Electricity and Magnetism, Ch. VIII; or Bridgman, Thermodynamics of Electrical
Phenomena in Metals, Ch. II. -
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and on the figure the value of Z between
temperature Ty and T, is simply the area
T, BCT,T, .

Since from equation 4-13 ,m = QT, it
follows that on the figure:

x

W

s ™, = area OQ,BT,0

<

3 —

g and n, = area oqchzo .

g : | .

& L fﬁéin, since from equation 4-13

= ! : . og =T g7, it follows that og for any T can

| | be had from the plot by multiplying its slope

R ; ! TEMPERATURE at any T by that T. Numerically this is
0 T

equal to Q; - Q, in Figure 4-6 . It is
Figure 46 Experimental seen that ¢ islnegative in the low tempera-
Plot of Q vs T for a ture region of the plot, that it becomes
p-type Semiconductor positive at higher temperatures, and negative
again at still higher temperatures.

In Figure 4-6 the Q vs T curve is shown as a dashed line in the high
temperature region. In this region the Fermi level approaches the middle of the
gap between the filled band and the empty band, and the semiconductor becomes
intrinsic. For this condition n is no longer simply equal to VF + 352 but
becomes a more complicated function which will be derived below. The
result is that in this temperature region m decreases with increasing temperature
and may even become negative if the electron mobility exceeds the hole mobility.
Since nm = % , Q will change sign when n changes sign. At very high temperatures
toward the upper end of the intrinsic range m, = m,, both electron and hole

mobilities decrease, and m and Q approach zero.

Instead of starting from an experimentally determined Q vs T curve and
deducing the other thermoelectric functions, as was indicated above, one may start
with a theoretically calculated curve of VF vs T and from it deduce curves for m,
Q, Z, 0, and S. This we shall now do for the case of a p-type semiconductor having
acceptor density N, = 10'7 cm=3 acceptor activation energy V, = 0.2 volt, and
forbidden energy gap V_ = 2.0 volts. To calculate VF we use the formulas derived
in Lecture 3, Case 2., Figure 4-7 shows Vg vs T calculated in this way. It shows
also a plot of 351 vs T. The sum of these two curves gives the curve of m vs T
in this figure.

Figure L4-8 gives a Q vs T curve calculated from the m curve of the last
figure by means of equation 4-13 . The dashed line extension of the Q curve at
high temperatures in the intrinsic region shows qualitatively how m might be ex-
pected to behave in this range.

The thermoelectric Zeebeck emf Z for the semiconductor thermocouple between
any two temperatures T1 and T2 can be obtained by integratiqgwehé Q vs T curve
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Figure 4-7 Theoretical Curve of Vg vs T for a
p-type Semiconductor Having N, = 10'7 cm-3,
Vg, = 0.2 Volt, and V, = 2.0 Volts. The straight

line plot is é%l vs %. The top curve for n is
the sum of the lower two.

T, T2
between these temperatures as justified by equation L4-1k4, ZI =‘[ QdT.
T

T
1 1
Figure U4-9 shows a Z vs T, curve for the case of the semiconductor under con-

sideration when the cold junction is held at T, = 100° K and T, is varied.

Figure 4-10 presents a o_ vs T curve calculated from the Q vs T curve of
Figure L4-8 with the aid of equation 4-13 ,

From equation 4-11 the quantity S for this semiconductor whose ends are at
temperatures T, and T, can be obtained by integrating the ¢ curve between these
temperatures, changing the sign of the integral, and adding the quantity
%? (Tz-T1). Figure 4-12 shows these various quantities for the semiconductor
thermocouple with its cold end at 100° K and its hot end at various higher temper-

T
tures T,. The plot of 1] 2 odT was obtained by graphical integration of Figure 4-10.
100
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Figure 4-12 Energy Level Diagram for a
p-type Semiconductor in a
Thermocouple Circuit

Finally, Figure 4-12 shows the energy level diagram for a semiconductor-
platinum thermocouple like that of Figure ,-5 for which the cold end is at 100° K
and the hot end at 1000° K, We assume a temperature distribution which is linear
between the two ends, but now the temperature difference is so large that the
positions of the Fermi level and the edges of the bands are not linear with tem-
perature or distance. This figure combines the information presented separately
in Figures 4-7 to 4=11, The semiconductor has N, = 10'7 cem=3, V, = 0.2 volt,
and V_ = 2.0 volts.

g
Since Q is related to the position of the Fermi level, it is possible from

thermoelectric data to determine the density n of charge carriers. For p- or n-
type semiconductors in which the carriers are all of one sign the theory of Lecture
3 gives for n: '
eV.
F
3f2 -
n=20T e K, (4=-15)
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\'f
from which 1; =Q - %} .
e
3/2 - +2
Hence n = 2UT / € %? (4=16)
3/2 -
where UT / = 2,42 x 10'5 Ta/2 cm 3

and § = 11600° C per volt.

Equation 4-16 can be rewritten:
log,o n = 15.68 + # log,, T - 5050 Q + 0.87 . (4=17)

Equations 4-15, 4-16, and 4-17 are valid only for p-type or n-type
semiconductors, and only if n is less than about one tenth of 4.84 x 10'5 T3/2.
In these equations, the absolute value of Q should be substituted; the sign of Q
determines whether n is for holes or electron carriers,

Derivations of the Relationship Between the Fermi Level Vp and the Peltier
Voltage n*

Consider a semiconductor with an unallowed gap Vg. At any temperature T .
the Fermi level Vp will lie somewhere in this gap. We will treat only the case

of nondegeneracy, i.e., n_ or n, is always less than 2UeT3 2 or

e
2r m_ kT
2 x (__2__)3/2

effective mass of hole.) We can derive the relationship between n and VF since

the thermoelectric power Q or n/T is the entropy per unit current flowing across

a metal-semiconductor junction at temperature T. Hence we must express the
entropy and currents in terms of the Fermi level and the number and mobility of the
holes and electrons,

. (me = effective mass of electron in semiconductor; m, =

The entropy per electron in the conduction band = energy above the Fermi
level/T = [(Vg-VF)e + 2kT]/T. The 2kT comes in because the average electron that
crosses the junction carries with it a kinetic energy 2kT. The term (Vg-VF)e is
the increase in potential energy between an electron in the metal and an electron
in the conduction band of the semiconductor. Similarly'nhe entropy of a hole in
the filled band = (Vg e + 2kT)/T.

*We are indebted to our colleague Conyers Herring for this gerf;ation.
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Entropy flux in a field E = electron flux x entropy per electron + hole
flux x entropy per hole =

E n_ ev E n_ev

h ""h 2kT e e 2kT
—— (Vp + =) = —— (V, - Vp + 55)
in which n, = number of electrons/cm? in the semiconductor conduction band and Ve
their mobility, n, = holes/cm® in the semiconductor filled band and vy, their

mobility.
Current density in field E = E neev, + E njev,. Hence,

ZkT 2kT
Q =8= 1 "nVh (VF =) - NeVe ng - Vp + e (4-18)
T n.v, + vy =
nce
- 2UeTs/z (v g-VF)e/kT and n = 2Uh.rs/z ¢~ VFe/kT ,
-Voe/kT -(V_-Vple/kT
m*s/z v, € F (Vg + 2kT) *3/2 v, € g™ 'F (Vg'VF + _2_1;_’1‘
n= N
Sy )e/k'lr —Vpe/KT . (4-19)
m::’/2 Ve € g'F + ml’:a/2 v, € re/
If we make the approximgﬁ%ons that m: = m; and v, = v,, consider a case
where nj, >> ng; then n = Vp + =5= (4-20)

In this derivation it is implicitly assumed that the mean free paths of
electrons and holes are independent of T or of their kinetic energy.

RECAPITULATION OF FORMULAS

For convenience we will now give the formulas, applying to various types of
semiconductors, which relate Hall effect, thermoelectric effect, and conductivity
measurements to the carrier density, mobility, and mean free path.

l. For pure n- or for pure p-type:

o=neyv (4-21)
n =t gl = s LebgR A0S 1o (4-22)
v =% 0.85 Ry o ( 4=23)

n=20r2 &~Qe/k+ 2o g 1015 73/2 1075050Q + 0.87 (424 )
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2. For I- or intrinsic type:

o=n,ev, +n ev (4-25)

Ry = %g (ng ¢® = np)/(n, c + np )? (4-26)
where ¢ = ve/vh, the ratio of electron to hole mobility.

kT kT
neve(Vg - VF + 2 -30 -nv, (VF + 2 -Ed
n vy +nyvy

Q=4 . (4-27)

where (V8 - Vp) and Vp are given by

-(V, - Vg)e/kT
n, = 4.8, x 10'5 13/2 ¢ 8 " °F ,

-V, e/kT
n, = k.84 x 105 1%/2 ¢ F .

Vg, Vp are in volts; Q in volts/°C.

(This assumes that the effective masses of electrons and holes are both equal to
that of the free electron = 9.03 x 1028 gms.,) If n, =n, =n:

c=n e(ve + vh) =neé t;l (4-28)

or

n___-z.g;m" :;1 (4-29)

(QE2— £ -2)

k -(11600 Q&1 -2)

n= 2[]'1‘3/2 e_ = 4,8l x l()"5 .1.3/2 € . ( )\L'BO )

From equations 9.3-9 and 9.3-10 the quantity g f i, and hence ¢, can be evaluated.,

By substitution in equation 9.3-9,n can be evaluated. By substituting values for
n and ¢ in equation 9.3-8, v, can be evaluated. Since ¢ = ve/vh, vy can be
evaluated. Hence even though Vo differs from Vs they can be determined if R;, Q,
and o can be experimentally determined at any T in the intrinsic range.

For n-, p-, and I-types, the mean free path,.L, can be determined from the
equation

ve = (4/3) ol (2nmekT)’/2 (e.s,u.) ,

where m, = effective mass of the electron. If m, is taken equal to the mass of

the free electron
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L =14.12x 10770 v T'/2 (cp) . ( 4-31 )

This applies to either holes or electrons if their effective masses are taken
equal to that of the free electron.

3. For semiconductors in which n is greater than

4.8, x 10'5 13/2

c=neyv, ( 4=-32)
Ry=t 4 =2 82521007 (4-33 )
or .
n=t é:gﬁnﬁ_lg__ , ( b=34 )
v=toRy. ( 4-35)

9.4 RELATIVE MERITS OF HALL AND THERMOELECTRIC DATA

We have seen that the experimental data for Ry and Q supplement each other
if the mobilities of holes and electrons are different. Even if they are the same
it is desirable to obtain both, if possible. In certain cases where the re-
sistivity is high, it is impossible to measure the Hall voltage because the
Johnson noise between the Hall voltage contacts exceeds the Hall voltage. For
such samples it is still possible to measure Q. This and o will then determine n
and v, Furthermore the equipment needed to determine Q is easier to make than
that to determine RH' On the other hand, the interpretation of RH is simpler
and the precisions obtainable from RH are greater,




LECTURE 5

STRUCTURE OF BARRIER LAYER AND HEIGHT OF THE POTENTIAL
BARRIER IN A SEMICONDUCTOR IN CONTACT WITH A METAL

In order to determine how the currents in a metal-semiconductor rectifer
vary with the applied potential, with temperature, and with the nature of the
semiconductor, it is necessary to investigate the nature of the barrier layer
in the semiconductor near the metal. The structure of the barrier layer also
determines the high frequency behavior and other properties of the rectifier.

When a metal and uniform N type semiconductor such as Ge are brought
into contact and if the electron affinity of the metal exceeds that of the Ge,
electrons will be transferred to the metal surface. As a result the Ge near
the metal has very few electrons to balance the positive charge on the jonized
donor atoms. Let N3 be the number of donor a.tom:s/cm3 . At room temperature
practically all of these will be ionized. Let D be the depth or distance x
in the Ge to the point where the positive charge due to Ny is neutralized by
conduction electrons. Then Ny x D = number of elec‘c,rons/cm2 of surface trahs-_
ferred to the metal. As a result of this positive space charge and the nega=
tive charge on the metal, the potential ¢ for electrons in the bottom of the
empty band rises from ¢e for x >»D to ¢o at x = O, The zero of the potential
is at the Fermi Level in the metal.

Fig. 5-1a shows schematically how ¢ will vary with x when no potential
is applied between the semiconductor and the metal. It also indicates: ¢ g
the potential difference of the gap or unallowed band; ¢h the potential of the
top of the filled band below the Fermi Level; and the space charge distance
D in which the ionized donors are not balanced by conduction electrons.

Fig. 5-1b shows the situation when a positive potential, V, of about
3 volts is applied to the semiconductor. This would be the reverse direction
for an n type semiconductor. Since Fig. 5-1b represents potential energy of
electrons which have a negative charge, this means that an electron at the Femi
Level in the semiconductor at distances greater than D has a potential of =V
electron volts or that the Fermi Level in the semiconductnr is lowered with
respect to the Fermi Level in the metal by V volts. The distance D is increased
by a factor of about 2, because more donors have transferred their electron to
the metal; the negative charge on the surface of the metal has increased by a
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factor of about 2. The field of ax peer the metal has increased by a factor
of about 2. ¢o has not changed; however, the height of the potential hill
which an electron sees when it tries to go from the metal into the semicon-
ductor has been reduced to ¢ m °F by an amount A ¢ = ¢o - ¢m'

Our problem is to derive expressions fom'¢ as & function of x, and how
this will depend on the applied potential V, and on the donor density Nd‘ In
the solution of this proulem we will also obtain expressions for D, gﬁg and A¢
in terms of V and N3. The solution of the problem is based on the fact that ¢
must satisfy Poisson's equation, namely
Qfgl =4 b Nde'
ax X

(The + sign is used because we are using potentials for electrons

(5-1)

instead of for a positive test charge.)

charge on electron in e.s.u. = 4.8 x 10710

e! =
@' = electrostatic potential = volts/300
K = dielectric constant = 16 for Ge

@' and e' are primed to indicate that @ and e are in e.s.u. Simi’
@os Pe and V will be primed if the quantities they represent are to be i
Later if these quantities are to be in practical units, the prime will b
This equation is subject to the following boundary conditions:

1) When x =0 @ =,¢<') a constant (The subscript o designa
that x = 0)
2) When x =D ¢'=+V"+¢éanddx=o

All potentials are referred to the Fermi Level in the metal. V! is
the electron potential in e.s.u. applied to the semiconductor. V' is a posi-
tive number in the conducting direction; it is negative in the reverse direction,
such as in Fig. 5-1b. ’
The solution of Eq. (5-1) is of the form
$' = By + ) +c(0 -x)° (5-2)
where C is a constant, independent of x, whose value is to be determined.

By differentiating Eq. (5-2) we get

@ oD - x) (1) = - 26(D x) (5-3)
dx

When
x = 0, %gll or gg', = = 2CD



By differentiating Eq. (5-3) we get

d2¢"
.4 =-2C (-1) = 2C
dx
From Egs. (5-1) and  (5-k4)
haN.e?
C = d
K
or 2nlN .e!
c = _.KEL.
When x = 0
¢ =y =0y v+ 0P
1! - ! 1/2 1/2
Hence D = (”O v ¢e) = % (¢(') - Vé = ¢é)K_)\
c 2nlye! j
When x =D
[ | t
¢ ¢e +V
and

ad _ . (o) =0
ax

(5-4)

(5-5)

(5-6)

Hence Eq. (5-2) satisfies Poisson's equation (5-1) and the boundary conditions

if the constants C and D have the values given in Egs. (5-5) and (5-6).

If the potentials are expressed in volts and electron charge in coulombs, we

shall use unprimed symbols. Then equatiomn (5-2), (5-3), (5-5), and (5-6)

becone

¢

i@ =F = -2 x 300C (D -x)

]

(B, + V) + 3000(D - )% = (@, + V) + (B, -F, -V (1 -F)?

1

-600 x 1.89 x 10~ 0 Ng(D - x)

ax - -1.13 x 1077 Ny (D - x)
onN + 10-10
_ d , _2nx 4.8 x 10 a -10
C = e = = Nd-—l.89x10 Ny
1/2
D = §¢o -V '¢e§
300 C
- - v 1/2
=42 x 107 EM_....___?.__..Q /
Ny
3—3 = s x 07 2 @ - v -B M2 4115 1 1077 wx

In these equations K = 16, the value of the dielectric constant for Ge.

(5-2a)

(5-3a)

(5-58)

(5-6a)

(5-ka)



It is instructive to calculate valuyeg for D, g; , and P for various
values of Nd’ V, and x. To do this we must assign values to ¢o and ¢e
appropriate for Ge. Subsequent analysis will show that ¢0 1s nearly equal
to the width of the unallowed gap which is about .7 electron volts. Hence we
will pﬁ’c ¢o = ,T70 volts. ¢e will depend on Ng and T. ¥For I\Td less than about
2x Zl.Ol9 at T = 300, all the donors will have donated electrons to the conduc-
tion band so that n, = Nd. Then ne will be related to ¢e by

ng =Ny = 2ur/? - ge/ . (5-Te)
2 ml:)3/ 2

= = 2,42 x 10%°
I

where U - universal constant = (

Hence we calculate ¢e vs NyatroomTor T= 300°K

Table 5-1

N, =105 10 1017 1080 1%
¢e in Volts = .26 .20 Sk .08 Ok
@, in Volts = .4k .50 .56 .62 .66

For Ny near lOl9 a more complicated equations than (5-Ta) must be used. This

1
yields a value of about .04 for ¢e instead of .024k. Then for Ny = 10" (or
about .0025% donor impurity) (There are 4.5 x 1022 atoms of Ge per cm? )

4.2 x 107 1/2 -6 1/2
D = . - o - = . . - -
BEETS A (.7 08 - V) Y2 x10 " (.62 - V) (5-6b)
V= .22 0 -1 -3 -10 -30 -100 =200
10°D =2.56 3.3 5.3 8.0 137 23.2 k2.2 59.k
Fig., 5=2 showéa plot of D vs V for Nd'= 1018. This same plot c7n be
1/2

used for any other Nd provided the D scale is multiplied by (1018/Nd) .
(For really precise values the curve must also be shifted slightly along the
V axis to allow for the small variation of ¢e with Ny as given in the above

table.)

%g or the field will have the following values at x = O and will decrease
linearly to 0 at x =D
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o

#1475 x 107% x 109 (.7 - .08 VY2 2 4,75 x 109(.62 - /2

]

V= .22 0 -1 -3 -10 =30 =100 =200

X=0

|
W
(@]
.
\N
@

.60 .90 1.55 2.64 4,76 6.73

Thus the field near the metal surface in the Ge will be about .4 million volts/cm
at zero applied field and will be about 5 million volts/cm for 100 volts in the
reverse direction (V = - 100). We shall see below that such high fields will
have appreciable effects in modifying the current voltage curves,

Fig. 5-3 shows how the field or %g varies with x, the distance in the
semiconductor from the metal surface, for a series of values of V. This figure

is for Nd = 1018. It can be applied to any other values of N, provided the

field scale is multiplied by (Nd/lol8)l/2 and the x scale is ﬁultiplied by
(1018/Nd)1/ 2. Thus if Nd were 1016, the field for ahy value of Vat x =0
would be reduced by a factor of 10 and the distance at which the field would
be reduced to zero (i.é., the distance D) would be increased by a factor of 10.

To obtain¢ as a function of x we combine equations (5-3a) and (5-6a)

2

d=( +N+ @ - -V [l- = ] (5-2b)
° 4.2 x 107 (4&1{%@14143)1/2

d

To obtain data for a plot of ¢ vs x at any V, we prepare a table. The last row
is calculated from Eq. (5-2a).

% =0 .l .2 3 X .5 .6 7 .8 9 1.

(1-i‘§)2 =1 .81 .64 49 .36 .25 .16 .09 .04 0L O
For V = =100;
1o6x =0 h,22 8.44 12,6 16.9 21.1 25.3 29.5 33.7 38 L2,

7 =18.4% =354 -50,5 -63.7 -Th.7 -83.8 -90.8 =95.9 -98.9 =99,

Fig. 5-4 is a plot of ¢ vs x for a series of values of V. ¢ is the work
in equivalent volts required to take an electron from the Fermi Level in the

metal and place it in the bottom of the conduction band at a distance x in the
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semiconductor. This figure 1is for Nd =-1018. It can be applied to any other

1l/2
value of N, provided the x scale is multiplied by (1018/Nd)

Effect of Image TForces

-Now consider the work an electron must do to escape from the metal into
the semiconductor. At any distance x from the metal surface, the force on
the electron is given by the image law.

2 N
e‘.

e .
Force—m?_m? ()8)

The work per charge on the electron or the pseudopotential P is given by

Pefz (-9 =% - g (5-9)

Where X is the maximum excursion from the surface for an average electron
rotating in its orbit at 0°K. The excursion is measured from a plane passing
through the nuclei of the outermost layer of atoms.
Potentiels tending to take the electron from the Gec toward the metal are con-
sidered positive. This equation is valid only from X, toeC .

When a field of F! e.s. volts/cm is applied or ex1ots in the Ge near the
metal, the P vs x curve will be lowered by F' x or if F' depends on x by"y F'dx,

o

] .
At some critical distance x = x,, g§~ = TESTE =T : (5-10)
* 5

so that x; = ( ﬁﬁf)l/e

At x = x, the (P - F x) vs x curve will have a maximum. Beyond Xc the (P - F x)
vs X curve will have a negative slope. Hence any electron which has enough
energy to reach the maximum will go over it. This means that the work function

¢5 is reduced by an amount A@' given by
16.1/2 :
o = - op x, 2 (BY) (5-1)

(Proof: S’o is reduced for 2 reasons (1) The electron has had work done on
it in getting to x; equal to F x, = (%%)1/2 and (2) the electron no longer

needs to do work in going from x, toed: this amounts to E%E_ = KEE)1/2.
c



Hence these two reductions are equal and the total reduction is 2F x, =
(Ee)1/2),
Now the field F is given by Eq. (5-3) or (5-3a) and if x. is small

compared to D we can use Eq. (5-3a) for the field at x = o, Hence F = -2CD
and from Eq. (5-11) '

o = (V2 ()2 = ()2 /2 ¢ V% (9s - pr - v) 1/4

Putting in expressions for C and D from Eqs. (5-5) and (5-6)

o = ()2 21 2 g___._“m egl/h @ - 8y - v
K
o1/2 L% 1/ fu g MY @ -# 1/k
etk

1/4
2.3 x 1077 Nd @ - g - V) yMH

I_vt)

(5-12)

In equation (5-12), A¢', ¢éy and V* are in e.s.u. If A¢, ¢%, and V are in

volts, then the numerical constant becomes

(300*-171: x 2.3 x 1077 = 1.66 x 10~

and

AP = 1.66 x 107 Nd ¢ - P -MH (5-13)
For Ge K = 16 (Brattain + Briggs)
(Torrey + Wittmer give 13)
Hence, 4@ = 2,08 x 10~ (N L/ B - b -V) 1/ (5-14)

£ £ . 418

or a particular sample of Ge, Nd = 10
1.66 x 1075 (1018) /% 1/4

Then A¢ = 1637)'" (¢O - ¢e - ) /

- o6 4, -9, - T (5-1ka)



For V = - 10 volts A¢ = ,066 (.6 + 10)1/lL = ,119 volts
So that ¢ o is reduced from .70 to .58l volts. As we shall see later this
will permit 100 times as many electrons to go from the metal to the semi-

conductor as would go if 1.\¢ were zero.

For V = - 100 volts 69 = .209 volts



CAPTIONS FOR FIGURES

Fig. 5-1 (a) Energy Level Diagram for a Rectifying Metal-to-N-Type Semi-

Fig. 5-2

Fig . 5"3

(b)

conductor Boundary. No voltage applied.
Same, but with +3 volts applied to the semiconductor.

Plot of Barrier Thickness vs. Apolied Voltage for the Barrier
of Fig. 5-1 for Ny = 1018 cm=3; Kk = 16.

Plot of Barrier Field vs. Distance §om the Metal Surface for
the Barrier of Fig. 5-1 for Nd = 10 cm‘3; K =16; and various
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LECTURE 6
ON ELECTRON AND HOLE CURRENTS IN BARRIERS

Consider a barrier layer in a semiconductor in contact with a metal
at zero applied potential (V = 0). An electron potential vs distance curve
for such a barrier is shown in Fig. (6-1). Then consider what electron and
hole currents can flow in such a barrier. In the semiconductor beyond the dis-
tance X, there are some electrons that have energies greater thanj)m equivalent
volts. Of these, those that are directed toward the metal and originate in a

distance greater than x, and less than x, + A (A = mean free path), will con-

stitute an electron cur;ent from the semiconductor to the metal. Call this

32, the current in amperes per cm?. Similarly in the metal there are electrons
having energies greater thaxl¢n1equivalent volts. These produce an electron
current j; from the metal into the semiconductor. Similarly in the metal there
are holes that have energies greater'ﬂuu1¢}1electron volts, are directed away
from the metal surface and have a mean free path greater than D. These result
in a hole current 53 from the metal into the semiconductor. In the semiconductor
beyond D, there are holes with energles greater than.¢h_electron volts. Those
that originate in a region D to D + A and are directed toward the metal will
Cross the plane at D and will be pulled to the metal by the field which exists
in the region D. These constitute a hole current J) from the semiconductor

to the metal. TFinally there are hole-electron pairs generated in the region
D by thermal agitation. Any electron thus generated will be pulled toward the
semiconductor by the high fields in D and the hole will be pulled toward the
metal., Iet j5 be the current resulting from the electron-hole pairs generated
in D. There must also be a current jg resulting from electrons diffusing from
the semiconductor into the region D and recombining with holes which have dif-
fused from the metal into D. In equilibrium J1 = Jdos 33 = Jy; and J5 = J6

so that the net current is zero.

When the electron potential of the semiconductor is raised with respect
to the metal (V is positive*) Jp =315 J3 > J)y; and 36'7'35 and a net current
flows in the forward direction. Similarly when the electron potential of the
S8emiconductor is lowered with respect to the metal (V is negative) jl;>j2;

*An electron potential has the opposite sign from the conventional potential
which is defined in terms of a unit positive test charge.
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jh‘>j3; and 35736. There will then be a net current in the reverse direction.
Our problem then is to deduce guantitative expressions for these six
Currents. We will start with j;. In the metal the number of electrons per

cm? having energies greater than_ ¢m is given by

Ng = our3/ 2€-¢me/kT =2 (%"gkp/? p3/2 £‘¢me/kT (6-1)

The number of electrons crossing one cm2 in any plane in one direction is equal
to N,V where v is the root mean square velocity of the electrons. If the elec-
trons could move only in the direction x mnormal to the plane, then Vv would be
given by

- \2 -
-;'- m(vy)" = .32:. KT or ¥, = (-1-‘-52-';-)1/2 (6-2)

If the components of velocity in the y and z directions are taken into account

- 1/2
V= (3 (6-3)
02 e/kT
Hence J1 = %m%—g 1‘25'% /

be /KT

= 120T° £ (6-1)
where 120 a.mperes/cm2 °K® is the numerical value of the coefficient. This
equation is the same as the well known Richardson-Dushmen equation for ther-
mionic emission.

Next consider 32. If the applied potential were zero, Jl = jo. If an
electron potential V is applied to the semiconductor and V is positive, the
Fermi Level in the semiconductor is raised and the electrons in it which approach
the metal see a potential hill of¢m - V. This is true only as long a.s¢m> v.
If V is negative, the Fermi Level in the semiconductor is lowered and the potential
hill becomes P, + V. Hence we can write

5o = 120 P&~ #,-V)e/kT (6-5)
in which V is positive for the conducting direction and negative for the reverse
direction.

Similarly

35 = 120 2 ¢ ~Py-Ve/ur (6-6)

and 5 = 120 Y -¢he/kT (6-7)



In Eq. (6-5) and (6-6) it is assumed that the mean free path A is
comparable with the distance D. Hence we must examine whether this assumption
is justified in the case of Ge to which we will later wish to apply these
equations, While A cammot be measured directly, it is related to the mobility

which can be measured. This relationship is given by

A =22 (k) /2 (6-8)
ke
e =4.8x1010 e.5.u.; m = mas of electron = 9 x lO"28 gms;
= Boltzmann's constant = 1.37 x 1076 ergs/°K
b = mobility (= 1500 cm/sec/volt/cm) = 4.5 xle5 cm/sec/e.s.volts/c

(For impure Ge it is slightly less); at T = 300°K.
Putting in these values we find A = 1.07 x lO-'5 cm., which is comparable with
D in those cases in which we will want to use Egqs. (6-5) and (6-6). However, .
Bethe and Herzfeld**¥ have pointed out that A need not be as large as D but
need be equal to or larger than the distance in which the potential char
%2 vblts or about 1/40 volt. This requirement is likely to be satisfie¢
Samples of Ge.

The net electron current Je g Jo - J1 is given by

Jo =120 12¢ - LT (p4Te/KT (6-9)

The net hole current jy = 33 - Jy 1is given by
jh_-_lao T2 & -¢he/kT (£+Ve/k‘I‘_l) (6_10)

From Egs. (6-9) and (6-10) it follows that if ¢ > ¢h, Jp> J, and the current
through the barrier will be predominantly hole current. This is found by ex-
periment to be the case for some metal point contacts on N type Ge. If, on the
other hand, #1> @, Jje> Jp and most of the current would be electron current.
In Eq. (6-10), V appears only in the term € *Ve/kT since @ does not de-
pend on V. However in Eq. (6-9) @, is an implicit function of V. For Ge
with a dielectric constant of 16, A¢ in volts is given by Eq. (5-14) of the

previous section, namely

a9 = 2.08 x 1070 (Nd)l/ l‘ (¢o-¢e-‘i)l/ ’

* See Torrey + Whittmer - Crystal Rectifier p. 54
** See Torrey-Whittmer p. 82



Hence Eq. (6-9) becomes
jo = 120 T2€ -$.e/kT ¢+2.08 x 10'6(Nd)l/l‘(¢o-¢e-v)l/“(e/km)

(*Ve/¥T_p) (6-11)

Before values of jh and Je can be computed for various voltages with
Ny as a parameter, it is necessary to compute valuesfor¢h, ¢e’ and ¢0 for
various values of Nd' The results of such computations for a particular case

are given in Table 6-1 below. For any Nd’ ¢e can be computed as a function of
T by methods given in the section on the Fermi Level, In particular ¢e will
depend on Vg, the equivalent voltage required to take an electron from a neutral
donor and place it in the bottom of the conduction band. For Vg we have rather
arbitrarily chosen .2 volts because a plot of Vg vs T with Na as a parameter
had previously been computed. It is given in Fig. (3-6) in the section on the
Fermi Level. From this figure and for T = 300°K we have taken the values of

¢e given in the table. Since ¢h =¢g - ¢e’ ¢h was computed using¢ = .75

volts for Ge. ¢o is probably dependent on the work function of the metal points
used to make contact with the Ge and on the kind and amount of atoms absorbed

on the surface of the Ge. ILacking any better procedure, we have arbitrarily
assumed that ¢o = ¢h'

Table 6-1 for T = 300°K

Ny, = 109 10" 10t 1080 10%
¢e = .26 .22 .18 .15 12
Pgo = T3 T5 .75 .75 .75
b, = ¥ .53 5T .61 .63
¢ = ) " " )
Po-® = .23 31 .39 46 51

Fig. (6-2) shows plots of log V vs log J, for Eq. (6-10) for a series of values
of Ny, the number of donors/ cmd, While¢h does not depend on V, it does depend
on Ng. For each curve there is a forward direction branch for positive values
of V and a reverse direction branch for negative values of V. For very small
values of V these two branches merge together in a 45° line which means that
Ohm's law is obeyed. For negative values of V (reverse voltages), 'jh becomes
independent of V for V greater than about .1  volt.



Fig. 6-3 shows log V vs log Jg for Eq. (6-11), for a series of values
of Ng. In this case, V appears in two exponential factors and ¢eis an implicit
function of Ny. The current in the reverse direction no longer saturates with
.V but increases at a faster and faster rate as V increases., The reverse voltage
at which the current begins to markedly deviate from its saturation value de-
creases as Nd increases. Hence from the shape of the reverse current curve one
can surmise whether one is dealing with predominantly hole or electron cur rent
and get some idea of the density of donors.
Significance of Ohmic Resistance at Low Voltages

Let us now examine what information can be deduced from the ohmic re-
sistance at low applied voltages. Consider first the simplest case, namely,
one for which ¢m> ¢h' We then use Eq. (6-10). When V is so small that Ve/xT <1,

eVe/XT _ 1 4 ve/xt
and
Ip/V = 120 T2 g Pue/sT (e/xT) (6-12)
or R, = V/3, = (k/e) &7 ne/kT / 120 T (6-13)

Since ¢h is the only unknown, it can be determined from an experimental value

of R, at temperature T. By experimentally determining R, as a function of T,
one can calculate ¢h as a function of T. Since ¢h +¢e =¢g = about .75 volts
for Ge, one can compute ¢e as a function of T (caution: ¢g may decrease slightly

as T increases). Since the variation of ¢e with T depends on Ny one can deduce

values of Ny. To do this, one must know the contact area between the metal and
the semiconductor since Ro is the resistance per unit area of contact.

A more complicated case is that for which¢h)¢m for which jg is given
by Eq. (6-11). For low enough values of V this can be written

Jo =120 1 c‘¢°e/ KT [ 1+ 2.08 x 10‘6(Nd)l/ L‘(¢o-g-v)e/k'r] Ve/kT (6-1k)

For Ng = 1016, the bracket has a value of l.4 and

Rl =K 0o/KT /(120 12 x 1.4) (6-1ka)
e

Hence¢ o can be evaluated from an experimental value of Ro. If¢o and Nd are

both unknown it is not possible to evaluate either from such an experiment.



6

However if I\Id is known from any subsidiary experiment, ¢e is determined, and
o can be uniquely calculated. _

If ¢m and ¢h are nearly equal, then j, and jj are comparable with one
snother. In this case it is difficult to uniquely determine ¢)m and ¢h' How=-
ever if either one can be determined from an independent experiment, the other

can be calculated from the value of Ry

Current due to Thermal Generation of Hole Electron Pairs

Besides the electron and hole currents jl to j) which enter the space
charge region D from the metal and semiconductor sides, there must be an
additional current due to the thermal generation of hole electron pairs in the
region D. In this section we derive expressions for this current as a functim
of the applied voltage and the density of donors Nd' It turns out that this
current is comparatively small for small values of Nd and V; but becomes the
dominant current at high reverse voltages. The larger the values of Nd’ the
smaller is the value of -V at which the current j5 exceeds the other currents.

First we need an expression for the number of hole electron pairs gen-
erated per cm3 per sec. Call this quantity G. In the appéndix we prove that

G is given by*
¢ = (G52 (B> 71/2 g -Pge/xt

1.58 x 1007 s T 7/2€'¢ge/kT (6-15)

in which S is the collision cross-section for a hole and an electron. In Ge
the value of S = 2.7 x lO'18 cm?. Hence in Ge

G = k.27 x 1019 77/2 ¢ -Pye/kT (6-158)
For T = 300°K and @, = .75 volts
G =5 x 1012 electron hole pairs/cmB/sec (6-15b)

For T = 300 and ¢g = ,70 volts
16 . 3
G = 3.5 x 100 pairs/cm’/sec. (6=15c)

Such values of G would yield vealues of j5 of 5.6 x 10'8 amperes/cm?.
However as higher voltages are applied in the reverse direction and the fields
in region D approach values comparable with a million volts/cm, the work required
to transfer an electron from the filled to the conduction band decreases., This
*We are grateful to Dr. J. Bardeen for pointing out to us the method for

deriving the expression for G.



means that 1)3 decreases and G and 3'5 increase. Hence we must consider how
¢g decreases with the field strength F.

For this we consider that the electrons in the filled band are in the
-ground stete or in their normal orbit about the Ge nucleus or kernel; and
that the electrons in the conduction band are in an excited state or in an
excited orbit. Let & be the distance an electron must go to get from the
normal state to the excited state. In a field F work is done on the electron
equal to Fe® so that

¢g =¢go -Fo (6-16)
where ¢go = ¢g for F =0

For a Ge atom in free space § might be 2 x 10'8 cm. For solid Ge
would be increased by the dielectric constant whose value is about 16, so
that § might be about 30 x 1075 cm. For a field of 10° volts/cm, ¢_ would be
reduced by .30 volts; G and 35 would be increased by a factor of 107 which
mekes j5 comparable with the other currents.

To derive an equation for j5 proceed as follows: Consider a lamina in
Fig. 6-1 in the region D at distance x and width dx. Let Aj5 be the contribu-
tion to 35 due to hole electron pairs generated in this lamina.

Th

en Aj5 - }4.27 x 1019 e T3-5 6-¢g°e/kT £ Fée/kT Ax (6_17)
In Eq. (5-ka) it was shown that

-F = F - (F /D) x (6-18)
where F_ = 4.75 x 107 (Nd)l/ 2 (¢o-g-v)l72 (6-18e)
and (Fo/D) = 1.13 x 1077 Ny (6-18b)
Hence AJs = Js CFdSe/kT € ~(Fo/D) 6 ex/kT . (6-19)
and 35 = J C.FoSe/kT SDE-(FO/D)Sex/kT ax (6-20)
(o)

in which Jg = 4.27 x 107% 13+7 ~Bgoe/KT

Let a = (Fo/D) & ¢/kT
Then the integral becomes

-8,

D D
S C-ade :CEX—J =é (l"{-a‘D)

o
(o}
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and g5 = J5 (€%0/a) (1-¢2D) = (5/a) (1)

or F 6 e/kT 1

5
J5 =F,pe/mm (€ )

From (6-18a) and 4(6-181))
Js = 5222 X 107 2 ¢ 11600 go/T (5518 (Nd)_l/Q(q)o -¢e‘-V)l/2/T-1)

(6-21)
6 Ny
For T = 300°K andq) go = .75 volts
18 - 10™2 1/2 _n1/2
For T = 300°K and g0 = .70 volts
N -2 1/2 4 _d_\1/2
iy = 521%2 (g8 x 10778 () (Bo-e-v) 1) (6-21b)
For T = 300 -8
. P o = +75 $ =30x10" em
Ny = 107 donors/cm? (From teble 6-1 it follows that¢°-¢e = .39 volts)
- -v)1/2 - .39-v)1/2
J5 = 6.1 x 1079 ¢ 1-TH(.39-V) /2 6.1 x 1079 16°76C: 3T (6-21c)

Beyond V = -100 volts, 35 exceeds J, and jj

Fig., 6=4 is a plot of log V v log j where j stands for any of the four quan-
and Jg = Jph + Je * Js

The parameters used in calculating the curves are:
$=30 x 100 Ng =107 T=300% (g = .75 volts P Pe = .39 volts

Both forward and reverse branches are shown. For all values of +V and for values
of -V less than 60 volts, Je > Ju,W J5 and the shape of the jg curve is largely
determined by Jjo. Between -60 and =100 volts ,j5 and j, are nearly equal. Beyond
=100 volts, j5) je) Jn and the sum current is dominated by 35.

It will be apparent that if other values had been assigned to¢ o’ the



relative contributions of Je and Jh to the sum curve at low or medium values
of -V would have been quite different. If the reverse current between.l and
10 volts saturates very well, it means that most of the current is carried by
holes. If the reverse current between .l and 10 volts increases by a factor
of 1.5 to 60, it means that most of the current is carried by electrons; the
greater the factor, the larger the values of Ny, the concentration of donor
impurities. If the reverse current increases very rapidly with voltage (fac-
tors of 1000 for doubling the voltage) the current is mainly due to hole-elec-
tron pair generation; the lower the voltage at which this rapid increase of
Gurrent  begins, the greater will be the value of Nj.

Fig. 6-5 shows computed curves for log V vs log Jg for a family of values
of N3. For these curves the following values have been assigned to the constants:
T Af8500°K, ¢g0 = .75 volts, 950 =P, (¢h depends upon Ny, T, and ¢go) =30 x
10 = cm. .

Figs. 6-6, 6-T, and 6-8 are log V vs log 5 for a family of values of
Ng. Values of 6 are respectively 30, 20, and 10 times 10-8 cm., For all of these
figures T = 300°K, ¢go = .75 volt‘:é, and § =¢h.

Fig. 6~9 shows some experimental curves of log V vs log Jg for the
reverse direction only. The data were taken by K. M. Olsen at Bell Telephone
Laboratories. They are for Ge samples and phosphor bronze points. It is esti-
mated that the area of contact was 1072 cg?. The Ge samples were cut from
the top of ingots in which varying percentages of Antimony, Sb, had been added.
These values of p have been converted to rough estimated values of Ny based on

Pearson's work with radiocactive tracers and Hall effect measurements from which
Nd values can be deduced¥*., Qualitatively the shapeé of these curves agree with
those in Fig. 6-5 and they vary with Nd as predicted. Note that for the two
highest values of p or Ny, (curves 4 + 5) the reverse current shows no tendency
to saturate and the reverse current increases rapidly with voltage even for
voltages near 1 volt. From this one might deduce that at concentrations of

donor impurities near 1 per cent or Na of 10°°

, the space charge fields even at
O applied voltage are in the neighborhood of 106 volts per cm, and the currents
at low voltages are already predominately due to hole~electron pair generation;

in other words j5>je or Jjy-.

*Pearson, Struthers, and Theurer, Physical Review, 75, 1949, p. 3uk.
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CAPTIONS FOR FIGURES

Energy level Diagram of a Rectifying Barrier Showing the Various
Currents Considered in the Text.

Log-Voltage vs. Log-Current-Density Plots (log V vs. log Jh) for
Pn = 0.75 volts; T = 300° K; Several Values of Ng.

Log-Voltage vs. Log-Current-Density Plots (log V vs. log Jj,) for
o = ¢h3 T = 300° K; Several Values of Nd' (See Table 5-1?

Plots of Log V vs. Log Jhy Jes 35 and jg, Showing How the Complete
Characteristic is the Sum of the Several Contributions.

Calculated Plots °§ Log V vs. Log J for the Constants Given,
with § = 30 x 10 - cm.

Calculated Plots og Log V vs. Log 35 for the Constants Given,
with § = 30 x 10™° cm.

Calculated Plots og Log V vs. Log 35 for the Constants Given,
with § = 30 x 10™

Calculated Plots °§ Log vV vs, log 35 for the Constants Given,
with & = 30 x 10

Experimental Plots of Log V vs. Log Jjg for Phosphor Bronze +
Germanium Rectifying Contact. Reverse Direction Only. Aiter
K.M. Olsen.
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X-75358, Issue 1

LECTURE 7

OPTICAL PROPERTIES AND THE INNER PHOTOELECIRIC EFFECTS

GENERAL

It is well known that many oxides are highly colored, that some of them
increase their conductivity when illuminated, and that some oxide rectifiers show
a photovoltaic effect., While the theories of these effects are only in an early
stage of development and apply only in a few simple systems, they promise to be as
significant in revealing the distribution of energy states and the mechanism of the
production of free carriers of current in as great a detail as do thermal effects.

The basis of the modern theory of these photoeffects is the Einstein equa-
tion:

hv = E = Ve . (7-1)

Where h is Planck's constant (6.62 x 1073* Joule x sec); v is the frequency of the
light; E is the energy in Joules which the quantum h can impart to an electron, \')
is the voltage equivalent of E; and e = 1.6 x 10-'° coulombs. The wave length %
in cm is related to the velocity of light c(3 x 10"° cm/sec) and to v by

kv = C . ( 7-2 )
Hence, M = h c¢/e = 1.23 x 10~" volt em. If X is expressed in microns,
(p or 107* cm), then AV = 1,23 volt microns, Table T-1 gives the wave length

range in microns and the corresponding voltage range for four colors:

Table T-1

Red - - Yellow = Green - Blue -
Microns o 77 615 «575 515 ohl
Equivalent
Electron
Volts 106 2.0 2.15 201& 3'0
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Figure 7=1 Energy Band Diagram Illustrating the Mechanism
of the Photoconductivity Effect in an Intrinsic Semieonductor

The photoelectric properties of semiconductors can similarly be elucidated
in terms of the band picture. Consider the case of an intrinsic semiconductor
shown in Figure 7=1. When such a material is exposed to light having a quantum
energy hy equal to or greater than the energy gap eVg between the top of the filled
band and the bottom of the empty band, then the absorption of such quanta will
result in the creation of electron-hole pairs and the appearance of photoconductiv-

) ity in the sample. The number of such carriers builds up rapidly until their rate
of disappearance by recombination equals their rate of production by photoabsorption.
In the primary photoelectric process described above equilibrium is established in
a small fraction of a microsecond when the light is turned on or off,

Some substances exhibit the phenomenon of phosphorescence, in which the sam-
ple glows in the dark for some time after having been exposed to excitation by
either radiation or particle bombardment. Such substances are believed to contain
impurities of two kinds: (1) donor atoms which have normally occupied localized
energy levels too far below the bottom of the empty band to act as donors at ordi-
nary temperatures, and (2) acceptor atoms which have normally empty localized energy
levels a short distance below the bottom of the empty band. We shall call the former
deep donors and the latter high acceptors. Figure T7-2 shows the arrangement of
these levels in a phosphor., When the sample is irradiated some of the deep donor
electrons are raised to the empty band by the absorption of energy equal to or

‘ greater than eVd. From the empty band they fall into the high acceptors. When the
excitation is removed the high acceptors give up the electrons to the empty band,
slowly, by thermal activation. From the empty band they then fall back down to the
deep donor levels with the emission of phosphorescence radiation of wave length
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Figure T7-2 Energy Diagram for a Phosphor

given by N = %%—. Phosphorescence is thus seen to be fluorescence which has been
d
delayed by the trapping process involving the high acceptors.
The energy level scheme of Figure 7-2 suggests a number of additional possi-
ble processes:
1. Activation of an electron from the filled band to a high acceptor
level by the absorption of a light quantum X\ = %%— R This process
leaves a positive hole in the filled band. a

2, Such a positive hole may recombine with an electron in the empty band

with the emission of a quantum N = 2%— . The emitted quantum has

higher enerzy than the quantum which activated the process., At first
sight, this might appear to present a violation of the energy conser-
vation law. However, the high energy of the emitted quantum is the
result of the addition of the energy of the exciting quantum and the
energy furnished by thermal vibrations of the crystal to build up the
system to the initial state from which the quantum : = 2%— is radiated.

Such a quantum would be called "anti-Stokes" radiation. I% 1848

G. Stokes stated his theorem that in fluorescence processes the emit-
ted radiation may have an energy only equal to or less than that of
the exciting radiation. Another example of anti-Stokes radiation is
found in the Raman spectra of molecules. In fact, process (2) may be
considered as a kind of Raman effect in solids.

3. Recombination of the electron on a high acceptor level with a positive
hole 1in the filled band with emission of a quantum X\ = h%_. This
P e
process is the reverse of (1). a



METAL SEMICONDYUCT IR
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Figure 7=3 Energy Band Diagram Illustrating the Photovoltaic
Effect Mechanism at a Metal-Semiconductor Boundary

L. Combination of an electron in a deep donor level with a positive hole

. he
in the filled band with the emission of a quantum X = .
e(Vg-Vdi
5. Activation of an electron in the filled band to a deep donor level
previously emptied by light. This process is the reverse of (4).

Some of these processes appear less probable to occur than others. For
example, (5) might seem least probable and (1) most probable. However, these
first-sight probabilities are subject to the operation of selection rules which
may completely forbid some of the processes. Experiments on phosphor absorption
and emission spectra have not yielded much information about these secondary effects.

The photoemf effect can be explained by reference to the band picture of a
rectifying barrier (Figure 7=3). If an electron-hole pair is produced by photoab-
sorption inside such a barrier, the natural barrier field separates the charges
before recombination can occur. The electrons flow into the interior of the semi-
conductor, while the holes flow into the metal. This process charges the semicon-
ductor negative with respect to the metal, raises the Fermi level in the semiconduc-
tor above that in the metal, and produces an externally observable emf, As far as
the rectifier barrier is concerned, it now acts as though an applied potential dif-
ference were being impressed across it, in the forward direction. Forward current,
of magnitude given by the rectifier equation ( 6-9 or 6-10 ) flows across the bar-
rier in the direction opposite to that of the photocurrent. A new steady state is
established for any incident light flux when the photoemf produces a rectifier cur-
rent exactly equal and opposite to the photocurrent.
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The width V_ of the forbidden gap can be determined photoelectrically by
observing the longest wave length (smallest quantum energy) which can induce photo-
conductivity. Such determinations generally agree satisfactorily with those
obtained by measuring the slope of the log p versus 1/T plot in the intrinsic tem-
perature range. For some substance, however, (as Na Cl, BaO)'! the photoelectric V
is smaller than that measured thermally. In a few such cases there is the addi-
tional complication that the crystal exhibits absorption of light at larger wave
lengths than those required to induce photoconductivity.

These nonconformities can be explained by supposing the production of exci-
tons.? An exciton is an entity composed of an electron and the hole it has just
left. The two particles are not completely separated, but are held trapped in each
other's electrostatic field. The exciton may be thought of as something like a
hydrogen atom embedded in the crystal. The hole behaves like the hydrogen nucleus,
supporting a hydrogen-like set of discrete localized energy levels, one or more of
which may lie somewhere in the forbidden gap between the bands of the crystal.
Figure 7-4 shows a diagram of an exciton. It is evident that an exciton can be
created by light of longer wave length than that necessary to lift the electron
clear up to the bottom of the conduction band and produce photoconductivity.

If an exciton level is only a short distance below the bottom of the conduc-
tion band, then an electron already raised to the exciton level by photon absorp-
tion may be thermally elevated the rest of the way up to the conduction band. In
this way photoconductivity can be brought about by light of smaller quantum energy
than that corresponding to Vg.

If the exciton levels are too far below the conduction band to permit
thermal promotion of electrons from the exciton levels, then the substance will
absorb light beginning at a threshold corresponding to a quantum energy vexc’ but

~ . EMPTY
N\ /7 BA/VD
7 N\\
\ A)
/ EXCITON
T A 7T LEVELS
% v/
Vexc /
l L \
Y o)

\ANS  FIULEL
BAND

Figure T7-4 Energy Band Diagram for a Semiconductor
Showing Energy Levels for an Exciton

loyd Smith; Report No. Scientific Administration 21/1&9,10 June, 1949,
ott and Gurney; "Electronic Processes in Ionic Crystals,” (oxford) Ch. III.



it will not become photoconducting until the quantum energy reaches or exceeds V .
Excitons cannot of themselves transport current, as they are electrically neutral
and hence unresponsive to an electric field. The exciton mechanism thus explains
how such a crystal can absorb light without becoming photoconducting.

For most semiconductor substances, however, it appears that the lowest exci-
ton level is above the bottom of the conduction band of the crystal. In these
cases true photoconductivity will be induced at lower quantum energies than will
exciton production. Even when an exciton is produced in such cases, the electron
Jumps from the exciton level into the conduction band of the crystal, thus dis-
solving the exciton and becoming a conduction electron, The possible complications
due to excitons will be disregarded in the development of the rest of this chapter.

COLORS OF SEMICONDUCTORS

For a pure oxide with an energy gap of V_ volts, one would expect that wave
lengths longer than 1.23/Vg microns would not have sufficient energy to raise an
electron from the filled to the empty band. The oxide should thus be transparent
to such wave lengths., On the other hand, wave lengths shorter than 1.23/Vg should
be absorbed and should produce holes in the filled band and electrons in tne empty
band. These holes and electrons should make the oxide photoconductive and should
render the material opaque to the wave lengths in question. If the energy gap cor-
responds to 3 volts or more, the oxide should be transparent and colorless to all
visible light and should not be photoconducting in the visible spectral range.
Apparently BaO, MgO, TiO, and SiO, are such oxides. An oxide for which Vg = 2,15
volts should transmit N > 0.575 microns and absorb wave lengths shorter than this.
It should thus transmit yellow and red light and should be orange colored; it should
be photoconducting for green and blue light provided that the carriers generated by
the light are appreciable in comparison with the carriers produced by thermal means.
Nearly pure cadmium oxide and copper oxide may be such substances. From the fact
that nearly pure Cuy0 is red, one can conclude that V_ is about 1.8 volts. The
value of V_ deduced from the intrinsic conductivity is 2 x 0.7 or 1.4 volts, For
these oxides, the valence electrons in the metal atom are in "s" shells or orbitals.
In the solid, the conduction band is probably the widened s orbital level of the
free atom.

For many other oxides, the mechanism of absorption must be more complicated.
This is particularly true of such oxides like MnO2, Mnz03, MnO, Fez03, NiO, and CuO
in which the metal ion has partially filled "d" shells. These oxides do not fit
the simple band picture., In them the light can raise electrons to a higher energy
state but the electrons and holes are either bound or remain free for only a very
short time. Hence they do not contribute much to the conductivity. Even though
they have high resistivities, they can absorb visible light, are highly colored, but
have not been observed to be photoconductive. The exciton mechanism just described
offers a possible explanation of this behavior.

Other oxides, which are colorless when pure, become cologgd when compara-
tively small amounts of impurities are added. Concomitantly,- their conductivity
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increases., While pure Al203 is colorless, it becomes highly colored when certain
impurities are added. BaO is white if pure, but is red if it contains about one
per cent excess Ba, Pure Zn0 is white; as more excess Zn is added the color
changes to green, then yellow, and then gray; the conductivity steadily increases
from 10™* to 2 ohms™’ cm"; the carriers are electrons so that such ZnO is n type..
Apparently as the concentration of excess Zn increases, the donor band widens out,
longer wave lengths can be absorbed, and the energy required to produce conduction
electrons decreases. We should thus expect that a family of log ¢ versus 1/T plots
for increasing amounts of excess Zn should show successively smaller slopes. This
is indeed the case. In Cuz0, a deficiency of Cu can be produced by medium-tempera-
ture heat treatment in oxygen. These vacant Cu sites act like acceptors so that
the oxide is p type. As the amount of Cu deficiency increases, the conductivity
increases and the color of the oxide changes to a deeper red and eventually to
black. This color change again may indicate that the acceptor band widens out with
increasing concentration and as a consequence the work to raise an electron from
the filled band to the acceptor band decreases. In NiO, as the deficiency in Ni
increases, the color changes from pale green to dark green and then to gray, wnile
the conductivity increases from 10™% to 107> ohm™' cm™'. While the energy level
band structure in NiQO may be complicated, this color change may indicate a widening
band structure with increasing concentration of Ni deficiency. Various examples of
color changes due to excess or deficiency of metal are summarized in Table 7-1 .

In the above discussion we have used "metal deficiency™ rather than excess
oxygen because X-ray studies on such oxides have shown that the lattice is deter-
mined chiefly by the size of oxygen ion. The metal ions fit into the spaces
between the closely packed oxygen ions. The matrix can meintain itself even though
some of the metal sites are not filled; but it does not seem probable that addi-
tional large oxygen ions could be fitted into the already closely packed oxygen
matrix. \

Some oxides show pronounced color changes with temperature. Thus MniO4 is
reddish brown at 20°C and turns progressively darker until at 200°C it is black.
This does not seem to be due to any change in crystal structure or change of phase,
since it occurs reversibly and without any appreciable time delay. This tempera-
ture color effect.may indicate that the donor and acceptor bands can widen out with
temperature or else shift with respect to the empty or full band. This would
result in a temperature dependence of the activation energy. If this dependence is
very pronounced and nonlinear, the log ¢ versus 1/T plot should show marked curva-
ture and should have unusual values for the intercept.

With increasing conductivity, whether due to more donors and acceptors or
to higher temperatures, any normally transparent semiconductor should eventually
become opaque to all wave lengths because of the light absorbing effect of free
electrons.

Table 7-1 * correlates the colors of a number of oxides with the number
and kind of electrons in the metal ion. From this we can make a number of

*We are indebted to F, J. Morin for this table.



interesting and suggestive observations:

1. When the number of electrons in the d shell is O, or 10, the oxides
are colorless. This suggests that the energy from any filled band
such as the 2p oxygen band to the nearest vacant s level is greater
than 3 volts,

2. When the d shell contains 1, 3, 5 or 7 electrons the oxides transmit
only a part of the visible spectrum and are brightly colored; the
transmitted colors correspond roughly to 2.8, 2.3, and 1.8 volts for
1, 3, 5d electrons. This probably means that the d bands are neither
very narrow nor very wide and that the empty level into which they can
be raised has about the same width; this width is about 0.5 volts.

3. When the d shell contains an even number of electrons, the oxide
absorbs all visible light and is black.

L. These "d" energy bands must still be localized near each metal ion;
the electrons in these d bands cannot pass from atom to atom without
being raised to a conduction level.

THE BAND STRUCTURE OF Cuz0 AS DEDUCED FROM PHOTOCONDUCTIVITY

From the spectral distribution of the photoconductive effect it is possible
to obtain considerable information about the relative location of the allowed and
unallowed energies and thus to deduce the band structure. Such information is more
detailed than that deduced from conductivity versus T data since photoconductivity
permits one to observe the effects of a particular quantum of energy while conduc-
tivity data results from a whole range of energies. For cuprous oxide (Cuz0)
Schoenwald® has reported how the photocurrent near a wave length N depends upon \.
Since at any M, the current is proportional to the watts of incident radiation and
is also proportional to the electric field strength, it is logical to plot ip versus
M where i is the photocurrent per watt of incident energy for a field strength of
1 volt/cm. Such a plot is shown in Figure 7T-5 . The wave lengths have been con-
verted to equivalent volts y from the equation: AV = 1,23 micron volts.

Three curves, A, B, and C are shown in the figure for three samples of Cuz0
that illustrate three types., For each sample the value of the specific resistance
at room temperature is given. In any given type the values of i_ might vary over a
range of 100 so that no significance should be attached to the fact that the scales
in A, B, and C differ by factors of 10. They might be significant if the treatment
for each individual sample could be specified. Of a total of 52 samples examined
by Schoenwald, 6 were like A, 11 were like B, and 35 were like C.

Before disbussing the significance of Figure 7-5 , it is desirable to des-
cribe the method of preparation for the samples, and the techniques used in measur-
ing the photocurrent, and to state some conclusions reached by Schoenwald and by
Engelhard. 4

33, Schoenwald; Annalen der Physik (5) 15, p. 395, 1932.
4 Ref. 4, page 10




OPTICAL PEOPERTIES AND THE INNER PHOTOELKCTRIC EFFECTS 9

HY TR R T A - H . Tt
ST TR O T G o LIRS 1
HHH 3!’? A0 > AR RN NA ! H .;, : u=a
§F
[ HHAD WITH HiELep. §
Eyi iy s Repacnst st AN VT R LS R R aemeR i iR e
Y Ao A
i A
: | 14 :'::‘:'.~, Xuh i ‘L-—<
X0 ™ i1t T R
~
M~
” Sit
2 H j.‘" TS
0
&
&
&anoh s
&
&3 -
Y /e ¥ e Sl i
2 e
a
'\
W
3 FH
e
K
T
Q
2x0° B
iii iy
IxtoS
(o,

€342 (10.40)

Figure 7-5 Photoresponse versus Wave Length (Upper Scale) and
Equivalent Electron Volts (Lower Scale) for the Photoconductivity
in Three Specimens of Cuprous Oxide (After Schoenwald)

The samples of Cuz0 were made by oxidizing thin sheets of copper at 950 to
1000°C in air until the copper was completely oxidized. They were then divided into
four groups heat treated in four ways:

l. In vacuum at 900 to 1000°C.
2, In vacuum at 500 to 600°C.
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3. In oxygen at 900 to 1000°C.
4. In oxygen at 500 to 600°C.

The heat treatment took place in alundum tubes and lasted 10 to 20 hours, The

tubes were rapidly cooled in an air stream or quenched in water. The vacuum

treated units were coated with a thin film of reduced copper. The oxygen treated
units were coated with a thin film of black CuO. These films were chemically
removed.s The surfaces of the Cuz0 samples were rough and scattered light to a dif-
ferent degree from one sample to the next. This may account in part for the vari-
ability in photocurrent discussed above. The samples were translucent to red light.
The approximate dimensions of the samples were: length 1.5 cm; width 1.0 cm; thick-
ness O.1l cm. Silver contacts were evaporated over the ends and the currents were
carried lengthwise, The samples were illuminated thicknesswise,

Even for intense illumination through a spectrometer, the photocurrent is
very small compared to the "dark™ current. Hence the photocurrents were measured
by chopping the light with a rotating disc at a frequency of 1500 cps; feeding the
small a-c current, which is superposed on a large d-c¢ current, into an amplifier
which will pass 1500 cps but will not pass direct current; rectifying the amplified
alternating current and measuring it with a d-c meter,

Engelhard“ showed that the specific resistance of Cuz0 at room temperature
varied from 10° to 102+ ohms cm. The mobilities of the carriers were computed
from the Hall effect and varied from 100 to 1.0 cm/sec per volt/cm. Engelhard
states that the mobilities of the photocurrent carriers were the same as those for
the dark current carriers. From the way in which the photocurrent decreased as the
frequency of chopping the light increased, Schoenwald deduced that the mean life
of a hole was 2 x 10~° sec. (No data are given how this varied from sample to sam-
ple.) Hence, in a sample in which the mobility is 100 cm?/volt sec. and the field
is 50 volts/cm an average carrier should drift a distance of 100 x 50 x 2 x 10'5
= 107" em or 1 mm.

Engelhard states that when a sample is heated in vacuum at 1000°C the resist-
ance is greatly increased (100 to 1000X) while the Hall constant Ry changes only
slightly. This means that the product of RH o, which is practically equal to the
mobility, decreases about as much as does 0; or that the concentration of carriers
is changed only slightly while their mobility is greatly decreased. He ascribes
this to metallic Cu particles which can be seen in a microscope. When such samples
are subsequently heated in oxygen, RH ¢ takes on larger values,

We will now return to consider what can be deduced from Figure 7-5 . The
simplest type is that shown in C and the largest effect is produced for light whose
voltage equivalent is greater than 1.8. This is interpreted to be the energy neces-
sary to raise an electron from the top of the filled band to the bottom of the
allowed empty band. From the fact that the current does not increase abruptly at

“E. Engelhard; Annalen der Physik (5) 17, p. 501, 1933.
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1.8 volts, it can be deduced that the edges of the unallowed gap are not sharp or
that the concentration of allowed states does not change abruptly from O to some
large value at the edges of the gap. For values of V> 2,0 volts, the current per
watt decreases. One reason for this is that the number of quanta per watt and
hence the photocurrent, should decrease as 1/V.

In C there is another photoconductivity region extending from about 0.3 volt
to 1.1 volts with a peak near 0.6 volt. Since the intensity of this conductivity
is comparatively small, the response in this region has been enlarged ten fold and
redrawn in the dashed curve. From the existence and location of this response, one
can deduce that there must exist an acceptor level 0,3 volt above the top of the
filled band to which electrons can be raised. This acceptor level band might have
a finite width and might extend say from 0.3 to 0.6 volt. From the fact that wave
lengths of 0.3 to 1.1 volts can produce a photocurrent, it follows that the sum of
the width of the acceptor level plus the width of the region available near the top
of the filled band must equal 0.8 volt or more. We say "more" because the proba-
bility of removing an electron from a small interval of energy in the filled band
may decrease rapidly with the depth below the top of the filled band. From the fact
that a watt near 0.6 volt produces only about one fiftieth as much current as does
a watt near 2,0 volts, one can conclude that the density of states in the acceptor
level is about 200 times less than the density of states in the empty band. From
the fact that the Hall constant for the photocurrent has the same sign and value as
that for the dark current, one concludes that the carriers are predominantly holes
and not electrons, Hence, it follows that the electrons which are raised to the
acceptor level or band, do not partake in the current; they are immobile and must be
bound to a particular region in the lattice. We shall see below that the acceptor
levels are probably lattice sites from which a metalatom is missing and that the
electron is accepted by the oxygen atoms surrounding this vacant metal lattice site.

In A and B there is an additional voltage (or wave length) region which can
produce photocurrents. This begins near 1.2 volts, comes to maximum near 1.5 volts,
and then decreases. In type A, this current is as large as that for the band that
starts at 1.8 volts; in type B, the current is only about one fourth as large.Appar-
ently, in some samples of Cupz0, there are additional ways by which carriers can be
produced by radiation of this equivalent voltage. The presence of this additional
mechanism apparently varies considerably from one sample to the next presumably due
to differences in heat treatment., We are inclined to say that curves A and B are
really the same type but differ only in the degree to which this additional mechan-
ism is present., In type C, it is completely absent, We would like to propose that
this additional conductivity effect is to be ascribed to the presence of intersti-
tial Cu. The number per cm? of such interstitial Cu atoms or ions would be expected
to vary greatly with heat treatment: it should be large for vacuum units quenched
from a high température; it should be small or absent for units treated in oxygen and
cooled slowly. One might expéct that an interstitial atom would readily give up its
electron to the conduction band or to the acceptor levels produced by vacant metal
lattice sites, if these are present. One would thergﬁofé'expect that such intersti-
tial Cu would give risé to a donor level or band neéf the upper part of the energy
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gap and that Ehis donor band normally would be empty if an equal or greater number
of vacant lattice sites were present.

There are then two ways by which the photoresponse near 1.5 volts could be
explained: (1) the light could raise electrons from the filled band to the donor
band, in which case the bottom of the donor band should be 1.2 volts above the top
of the filled band; or (2) the top of the acceptor band (which is partially filled
by the electrons which have dropped from the donor to the acceptor band) is 1.2
volts below the bottom of the empty band. If the second explanation is the correct
one, then the width of the acceptor band should be about 0.3 volt.

The choice between these two explanations could be decided by measuring the
sign of the Hall coefficient for illumination with light of 1.5 volts or 0.8 micron.
If this sign were positive it would support the first explanation; if negative, the
second one. The existence of donor levels as well as acceptor levels has been
deduced by Brattain and Bardeen from the shape of log 0 versus 1/T plots. They con-
clude that N, (number of acceptor levels/cm®) exceeds N, (number of donor levels/cm’)
in all samples examined. The ratio Nd/Na varies considerably; from perhaps .05
to 0.80. '

It is natural to ask how the acceptor levels and the donor levels are pro-
duced. The acceptor levels are thought to be due to vacant metal lattice sites. In
an occupied metal site the metal gives up its valence electron to the surrounding
oxygen atoms. When the site is vacant the surrounding oxygen atoms are anxious to
accept electrons from any available source., Vacant metal sites can be produced
(1) by heat treatment in oxygen which results in Cuz0 with a Cu deficiency; or (2)
by heat treatment at high temperatures in which some of the Cu atoms (or ions) are
transferred from their normal sites to interstitial positions. Such treatment must
be followed by rapid cooling to freeze the Cu atoms in interstitial positions.

Donor levels are thought to be due to interstitial Cu atoms or ions. Such a
copner atom should give up its electron quite readily and become a Cu* ion or an
empty donor level., Such interstitial Cu might be produced either by the second
mechanism discussed above or by heat treatment in a vacuum as discussed by Engelhard.

The presence of interstitial Cu’ ions and vacant lattice sites should show
itself in still another way. Both of these should act as scattering centers for
the quantum mechanical waves that represent the passage of electrons or holes when
current is carried in a semiconductor. Hence, they should decrease the mobility and
thus decrease the conductivity.

As a result of all these considerations we propose the following energy level
diagram for Cuz0, Figure 7-6 . This differs from similar diagrams proposed by
others only in ascribing an appreciable width to the acceptor and the donor bands.
The magnitude of this width will vary from sample to sample depending on the con-
centration of whatever is responsible for the acceptor and the donor levels. There
are no data on which to base an estimate of the width of the donor band.

The acceptor band is due to vacant metal lattice sites. Let Na be the num-
ber of such vacant sites per cm3.
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Figure 7-6 Proposed Energy Band Scheme for Cuprous Oxide Suggested
By Results of Photoelectric and Optical Measurements
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The donor band may be due to interstitial Cu or to vacant oxygen sites. Let
Nd be the number of such sites,

If Nd > Na’ then all acceptor levels should be filled and the donor levels
should be partly filled. If Nd = Na’ then all donor levels should be empty and all
acceptor levels filled. If Nd < Na' the donor levels should all be empty and the
acceptor levels should be only partly filled, Most Cuz0 samples are like the last
case.

The acceptor levels are localized in space near the vacant metal lattice
sites, When such a level is filled it constitutes an immobile negative ion which
does not add to the conductivity. Similarly, the donor levels are localized in
space. When such a level donates an electron it becomes an immobile positive ion.
The electron will be donated to a lower lying empty acceptor level if any such exist
even at low temperature; after all the acceptor levels are filled by electrons from
the donor levels, the remaining filled donor levels -may denate an electron to the
conduction band if the temperature is high enough.

EVIDENCE FOR THE TEMPERATURE DEPENDENCE OF THE ENERGY GAP, Vg

Pfund® measured the change in resistance of a Cu,0 sample when it was irra-
diated with various wave lengths of monochromatic light. He investigated only the
region from 0.2 to 0.8 micron (6.1 to 1.54 volts). However, he did measure the
effect at two different temperatures, namely, -125°C and 19°C. His results ‘are
shown in Figure 7-7 .

Note that at the higher temperature the curve near the long wave length
limit is shifted towards longer wave lengths. Note also that there is no sharp

5A. H. Pfund; Physical Review, Vol. 7, p. 295. 1916.
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Figure 7-7 Photoconductivity versus Wave Length
and Equivalent Electron Volts for Cuprous Oxide at
Two Different Temperatures (After Pfund)

cutoff but a gradual tailing off., This "tail" is more pronounced at the higher T.
If the curves are extrapolated to the X axis and the wave lengths converted to
values of V_ it is found that V_ decreases from 1.8 to 1.6 volts as T increases

from -127°C to 19°C. Hence, the temperature coefficient of Vg, or c, is -l.4 x 1073
volts per degree centigrade for CuzO.

Additional evidence can be deduced from data on silicon. Pearson and
Bardeen® have shown that, in the intrinsic range, the mobility v is given by:

3
- - 5 m=3 cm?
Ve 3 h 15 x 10° T 2 sec volts

so that s

(vg #+vp) =20x10° 172

They also give log © versus 1/T curves from which one can calculate that
log 0, = L.3. From equation 1-3 it follows that

6G. L. Pearson and J. Bardeen; Physical Review, Vol. 75, p. 865, 1949."
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Figure 7-8 Per Cent Transmission versus Wave Length for
Silicon (After Pearson)

3 3
log 0y = 43 = log (2°UTZ 20 x 10*® T72) - ESE % .
Hence,
b
c=-5x 10 !%%EQ .

From the slope of their curve we deduce the 'V o™ 1.12 volts, Hence V_ at

300°K (room T) = 1,12 -5 x 107" x 300 or 0.97 volts, Hence, the long wave length
limit for absorption and for photoconductivity should be at 1.27 microns rather
than 1.1 micron if ¢ were O, For Si the optical transmission versus M has been
measured by Pearson (Figure 7-8 )7. Teal® and co-workers have measured the ratio
of the change in resistance to the dark resistance versus M. The results are shown
in Figure 7-9 .

It is to be noted that beyond about 1,3 microns, the transmission is con-
stant and equal to 67 per cent. Apparently 33 per cent of the incident light is
reflected or scattered at the surfaces., Starting at 1.3 microns, absorption sets
in and increases rapidly at 1.2 microns. This agrees quite well with the predicted
value of 1.27 for the absorption limit.

The extrapolation of the steeper portion of the photoresistance curve hits
the axis near 1,20 microns, while the tail goes out to 1.35 microns. This agrees

7 Unpublished.

8G. K. Teal, J. R. Fisher, and A. W. Treptow: Physical Review 69, p.686, 1946.
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Figure T-9 Photoconductivity versus Wave Length for
Silicon (After Teal, etal)

well with 1.27. The long wave limit is definitely greater than l.l1 microns. As
before, there is a pronounced tail towards longer wave lengths.

This evidence from the slope and intercept of conductivity curves, from the
mobility data, and from absorption and photoconductivity data is self consistent
and leads to the conclusion that the unallowed energy gap, Vg, is temperature
dependent, For Cuz0 and Si, Vg decreases about l.4 and 0.5 millivolts per
degress C, respectively.



OPTICAL PROPERTIES AND THE INNER PHOTOELECTRIC EFFEGTS 17

Table _7-1 Colors in Semiconductors Due to Deviations from Stoichiometric Values

Oxide or Stoichiometric Color with Excess Ratio
. Semiconductor Color _Metal, N-type of Excess Conductivity
KC1 Colorless Violet 0003 ohm™' cm™'
NaCl Colorless Yellow
BaO White Red .01
Zn0 White Green Yellow Gray .002 10" to 2
Ti0; Pale Yellow Dark Blue to Black 0 1010
.001 10!
.01 1
0.12 1072
Color with Excess
Oxygen, P-type
Cux0 Red Black
NiO Pale Green Dark Green to Gray .05 107% to 107>
U0,
Co0
Mn30, Reddish Brown Black

Mn30, is reddish brown at room temperature - turns black at about 200°C.

Atomic Cationic Eigc- Com- Cationic Eigc-

Metal Distance Compounds Distance Color trons pounds Distance  Color trons

Sc Sc203 Colorless O

Ti 2.95 Tiz03 Violet 1

\'s 2.63 V203 Black 2

Cr 2.50 Crz03 Green 3

Mn 2,58 Mn203 Black A MnO 3.14 Gray Green 5

Fe 2.48 Fez03 2.89 Red 5 FeO 3.06 Black 6

Co 2,50 CeO 3,00 Green Brown 7

Ni 2.49 NiO 2.95 Green 8

Cu 2.55 Cuz0 Red Cu0 Black 9

Zn 2,66 Zn0 Colorless 10

Y 3.60 Y,03 Colorless O

Zr 3.13 Zrz03

Cb 2.85 Cbz0a1 Cb20s Colorless O

Mo 2,72 Mo203 Yellow 3

Ld 3.73 Ld 203 Colorless

Hf 3014 Hf 203

Ta 2.85 Ta 03 Ta 205 Colorless O

w 2.7 w

Th 3.59 Th203
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