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� 4ABSTRACT: Let FF be a family of subsets of 1, . . . , n . We propose a simple randomizedn
algorithm to estimate the cardinality of FF from the maximum weight of a subset XgFF inn n

� 4a random weighting of 1, . . . , n . The examples include enumeration of perfect matchings in
graphs, bases in matroids, and Hamiltonian cycles in graphs. Q 1997 John Wiley & Sons, Inc.

Ž .Random Struct. Alg., 11, 187]198 1997
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1. INTRODUCTION AND MAIN RESULTS

� 4Let FF be a family of subsets of the set 1, . . . , n . In this paper we describe a veryn
< <simple method which allows us to estimate the cardinality FF by solving an

randomly generated optimization problem on FF . The method produces a veryn
< <crude estimate, but catches some general information about FF for large n. Forn

< <example, it allows us to determine whether FF is exponentially large in n.n
The known methods of approximate counting based on the Markov chain

approach are much more precise. Their application, however, relies on the ability
to generate a rapidly mixing Markov chain on FF . In many important cases then
existence of such rapidly mixing Markov chains is not known. Our method does not
require any special structural properties of FF but, as we mentioned above, it is notn
nearly as precise.
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As a general reference in the area of computational complexity and algorithms,
w xwe use 10 .

Let us assume that the family FF is given by its optimization oracle.n

1.1. Optimization Oracle

� 4We suppose that we have a ‘‘black box’’ which, for any given weighting c g y1, 1 ,i
is1, . . . , n, outputs the maximum weight of a set from FF , that is, the numbern

w FF , c smax c : XgFF .Ž . Ýn i n½ 5
igX

Later in this section we describe several important examples of families FF ,n
where the optimization oracle can be efficiently constructed. Now we present our
main algorithm. Our goal is to estimate the coefficient a in the expression
< < a nFF se .n

1.2. The Algorithm

� 4Input: A family FF of subsets of 1, . . . , n , given by its optimization oracle.n

Ž < <.Output: A number g approximating as ln FF rn.n

The algorithm.

Step 1. Sample independently n random variables c , . . . , c , where1 n

1, with probability 1r2,
c si ½ y1, with probability 1r2.

Ž . Ž .Step 2. Apply the optimization oracle with the input cs c , . . . , c . Let w FF , c1 n n
w Ž .xbe the output see 1.1 . Compute

n2 1
g FF , c s w FF , c y c .Ž . Ž . Ýn n in n is1

Ž .Step 3. Output gsg FF , c .n

The following result provides some bounds for g in terms of a .

Theorem 1.3. With probability at least 0.9 the output g of the algorithm satisfies the
inequalities

a 7 7'y FgF4 a q' '2 ln 3raŽ . n n

Ž < <.with as ln FF rn.n
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In other words, some information about the cardinality of the family can be read
Ž w xoff from the discrepancy of a random coloring see, for example, Chapter 12 of 1

. � 4for a general discussion of the discrepancy . Suppose that FF : nG1 is a sequencen
< <of families. Theorem 1.3 implies that the cardinality FF grows exponentially in nn

Ž < < a n .that is, FF Ge for some a)0 and all sufficiently large n if and only if then
discrepancy of a random coloring grows linearly in n.

One can obtain slightly better bounds. Two remarks are in order.

1.4. Remarks

1. Let us apply Algorithm 1.2 independently k times and let g s
Ž .g q ??? qg rk be the average of the outputs. Then with probability at1 k
least 0.9 we have

a 7 7'y FgF4 a q .' '2 ln 3raŽ . kn kn

� 4 � 4Indeed, for X; 1, . . . , n and an integer m let Xqms xqm: xgX
k � 4denote the shift of X. Now we apply Theorem 1.3 to the family FF ; 1, . . . , knn

defined as

FF k s X j ??? jX : X y jngFF for js0, . . . , ky1 .� 4n 0 ky1 j n

k a k n< <We observe that FF se and that g is the output of Algorithm 1.2n
applied to FF k.n

2. If we want the output g to satisfy the inequalities with a higher probability
Ž Ž y1 ..1ye , we can run Algorithm 1.2 independently O ln e times and then

take the median of the computed g s.

Let us call a g that satisfies the inequalities of Theorem 1.3 typical.
< <Algorithm 1.2 allows us to test probabilistically whether the cardinality FF isn

exponentially large in n in the following sense. Let us fix an a)0. Then there
< < a nexists 0-bFa such that for all sufficiently large n, whenever FF Ge , a typicaln

< < b noutput g provides a certificate that FF Ge . Indeed, one can choose anyn

a 2

0-b- ,264 ln 3raŽ .

since by Theorem 1.3 for a typical g we have

221 g 7 a 7
< <ln FF G y G y )bn ž / ž /' 'n 4 8 ln 3raŽ .4 n 2 n

for all sufficiently large n.
There are several important examples of families FF for which the optimizationn

oracle can be efficiently constructed, but the counting problem seems to be really
difficult. Here are some of them.
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1.5. Examples

1.5.1. Perfect Matchings in Graphs. Let G be a simple undirected graph with nn
� 4edges, which we number 1, . . . , n. A collection X; 1, . . . , n of edges is called a

perfect matching iff every vertex from G is incident to precisely one edge from X.n
Ž .Let FF G be the set of all perfect matchings in a given graph G . The problem ofn n

Ž .finding the maximum weight of a matching from FF G admits an algorithm ofn
Ž 3. ŽO m complexity, where m is the number of vertices of G see, for example,n

w x.Section 9.2 of 8 . So, it is easy to design the optimization oracle for this family. On
< Ž . <the other hand, to compute the number FF G of perfect matchings in a givenn

graph is a aP-complete problem, and even to estimate this number seems to be
really difficult. The Markov chain approach for estimating the number of perfect
matchings in a given graph resulted in several remarkable successes: polynomial
time approximation schemes were found for ‘‘dense graphs,’’ ‘‘almost all graphs,’’

Ž w xand some important special graphs, like lattice graphs, etc. see, for example, 6 for
.a survey . However, the author is unaware of a polynomial time algorithm which

would give a nontrivial estimate of the number of perfect matchings for any given
Žgraph. We note in passing that a recent randomized polynomial time algorithm of

w xthe author 3 estimates the permanent of any given n=n nonnegative matrix
within a factor 2OŽn., thus providing an approximate algorithm for estimating the

.number of perfect matchings in a bipartite graph. Our method provides a random-
ized polynomial time algorithm for checking whether the number of perfect
matchings in a graph is exponentially large with respect to the number of edges in
the graph.

1.5.2. Bases in Matroids. A matroid on a finite set G is a collection FF of subsetsn
of G, called bases, such that for any two bases X, YgFF and for any xgXRYn

� 4 � 4 Ž w x.there exists a ygYRX such that XR x j y is a base see 11 . A subset of a
base is called an independent set. For example, the spanning trees of a connected
graph constitute a matroid on the set of edges of the graph, called a graphic
matroid. The subsets consisting of linearly independent vectors from a given finite
set in a vector space are the independent sets of a matroid, called a linear matroid.
The problem of finding the largest weight of a base or the largest weight of an
independent set in a given matroid on the set with n elements can be solved by a

Ž . Žgreedy algorithm in O n time, provided we are able to test independence see, for
w x.example, 7 . Hence, it is easy to design the optimization oracles for the family of

the bases of a matroid and for the family of independent sets of a matroid.
However, to compute the number of bases or the number of independent sets in a
given matroid is a aP-hard problem. Efficient counting algorithms are known for
some particular cases: the number of spanning trees can be computed in polyno-

Ž w x.mial time and the Markov chain approach works well in some cases see 6 .
However, the author is unaware of any polynomial time approximation algorithm

Žfor counting bases in general matroids the problem is provably hard for determin-
w x.istic algorithms; see 2 . Examples of particularly interesting and difficult problems

include counting forests in a given graph and counting subsets of linearly indepen-
Ž .dent vectors in a given set in a vector space over GF 2 . We also note that there is

a polynomial time algorithm for finding the largest weight of a common base of two
Ž w x.given matroids on the same ground set see 5 , so one can construct the
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optimization oracle for the intersection of two given matroids. For example, the
computation of the permanent of a given 0]1 matrix reduces to counting bases in
the intersection of two matroids. Hence our method provides a randomized
polynomial time algorithm for checking whether the number of bases in the
intersection of two matroids is exponentially large with respect to the size of their
ground set.

Finally, we discuss the situation where the optimization oracle is not available
and the family FF is given by a much less powerful membership oracle.n

1.6. Membership Oracle

� 4We suppose that we have a black box which, for any given subset X; 1, . . . , n ,
outputs the answer ‘‘yes’’ if XgFF and ‘‘no’’ if XfFF .n n

Now our tools are severely limited, but still we can say something about the
complexity status of the problem of estimating the cardinality of FF . Although wen

Ž .cannot find the maximum weight w FF , c of a subset XgFF efficiently, we cann n
Ž .provide a lower bound for w FF , c by guessing an appropriate XgFF andn n

< <computing its weight. This would give us a lower bound for FF . Suppose thatn
< < a n < < b nFF Ge . Then there exists a polynomial size probabilistic certificate that FF Gen n
with

2
a 7

bs y .ž /'8 ln 3raŽ . 2 n

� 4Such a certificate consists of choosing a random weighting c g y1, 1 , demon-i
� 4strating a subset X; 1, . . . , n , such that

n2 1 7 a 7'c y c G4 b q s y , 1.7Ž .Ý Ýi i ' 'n n 2 ln 3raŽ .n nigX is1

and the membership oracle verification that XgFF . Indeed, Theorem 1.3 impliesn
that the probability that either

Ž . < < a n Ž .a FF Ge but no set XgFF satisfying 1.7 exists;n n
or
Ž . < < b n Ž .b FF -e but a set XgFF satisfying 1.7 existsn n

does not exceed 0.1.
By choosing several random weighting c independently and checking whether

we can demonstrate X in the majority of instances, we can make the probability of
error arbitrarily small.

Ž .Of course, to find such a certificate the set X may be difficult, but its very
existence seems to be of interest. In other words, the exponential size has a
polynomial size probabilistic certificate. For any a)0 there exists a b)0, such
that for all sufficiently large n and for any family FF , given by its membershipn

< < a n < < b noracle and such that FF Ge , the inequality FF Ge has a probabilisticn n
certificate whose size is polynomial in n.
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Example 1.8. Let G be a simple undirected graph with n edges, which wen
� 4 � 4number 1, . . . , n . A collection X; 1, . . . , n of edges called a Hamiltonian cycle if

every vertex of G is incident to precisely two edges from X and the edges from Xn
Ž .constitute one cycle. Let FF G be the set of all Hamiltonian cycles in G . It is easyn n

Ž .to design the membership oracle for this family whose complexity is O n , whereas
the corresponding optimization problem is NP-hard. Thus our construction implies
that one can furnish a polynomial size probabilistic certificate that the number of
Hamiltonian cycles in a graph is exponentially large with respect to the number of
edges in the graph.

2. PROOFS

� 4nThe idea of the proof of Theorem 1.3 is geometric. Let I s y1, 1 be the set ofn
Ž .all n-vectors xs x , . . . , x whose coordinates are y1 or 1. For x, ygI we let1 n n

n

² :x , y s x y .Ý i i
is1

� 4A subset X; 1, . . . , n we represent by a point xgI such thatn

1, if igX ,x si ½y1, if ifX .

� 4Hence we represent FF by a subset F ;I , F s x: XgFF . Then, for any cgI ,n n n n n n
Ž .the value g FF , c , computed in Step 2 of Algorithm 1.2, can be written asn

1
² :g FF , c s max c, x : xgF . 2.1� 4Ž . Ž .n nn

So, we have to prove that if a set F ;I is ‘‘small,’’ then for a ‘‘typical’’ c, all then n
² :values of c, x for xgF are small and, conversely, if F is ‘‘large,’’ then there isn n

² :an xgF with a large value of c, x . The first assertion is intuitively clear, since ifn
a set F ;R n contains few vectors, then a ‘‘random’’ vector cgR n will be nearlyn
orthogonal to each xgF . The second assertion is a bit more tricky, because non
upper bound on the cardinality of a set F ;R n follows from the fact that then

² : Žvalues c, x : xgF are all small for a typical c the points of F may clustern n
n.around some point in R . However, since the vectors from F are vertices of then

cube I , they do not have much room to cluster, so some kind of an upper boundn
< <on F should follow. We also note that we could have sampled c from anyn

sufficiently symmetric distribution in R n instead of the uniform distribution on I .n
Let us consider I as a probability space with the normalized counting measuren

m and the l1 metric:
n

< <d x , y s x yy .Ž . Ý i i
is1

Ž .For a function f : I ªR we define its expectation E f by the formulan

1
E f s f dms f x .Ž . Ž .ÝH n2In xgIn

We need the following powerful result on the ‘‘measure concentration’’ for I .n
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< Ž . Ž . < Ž .Proposition 2.2. Let f : I ªR be a function such that f x y f y Fd x, y forn
any two x, ygI . Then for any e)0 one hasn

e 2

m xgI : f x yE f Ge Fexp y� 4Ž . Ž .n ½ 516n

and

e 2

m xgI : f x yE f Fye Fexp y .� 4Ž . Ž .n ½ 516n

w xProof. See Theorem 7.8 and Example 7.9 of 9 . B

Definition 2.3. For a subset F ;I and a cgI letn n n

² :d F , c smax c, x : xgF� 4Ž .n n

and

1
D F sE d F , ? s d F , c .Ž . Ž . Ž .Ž . Ýn n nn2 cgIn

Ž .First, we prove an upper found for d F , c . The proof is based on the same idean
Žas the proof of the general bound for the discrepancy of a set see Theorem 1.1 in

w x.Chapter 2 of 1 .

< < a nLemma 2.4. Suppose that F Fe for some a)0. Thenn

' 'd F , c F4 a nq7 nŽ .n

with probability at least 0.95.

Ž . ² :Proof. Let us choose a wgF ;I and let f x s x, w for xgI . Thenn n w n
Ž . < Ž . Ž . < Ž .E f s0 and f x y f y Fd x, y for any two x, ygI . Letw w w n

' 'A s cgI : f c G4 a nq7 n .Ž .� 4w n w

Ž . � 4Proposition 2.2 implies that m A Fexp ya ny3 . Therefore,w

m A F m A Fey3 -0.05.Ž .D Ýw wž /
wgF wgFn n

Therefore, the probability that a randomly chosen cgI does not belong to then
Ž .union D A is at least 0.95. Since for any cgI RD A one has d F , cw g I w n w g I w nn n' 'F4 a nq7 n , the proof follows. B

Ž .To prove the lower bound, we apply an inductive argument to D F and thenn
use Proposition 2.2. For xgI let us define xq, xygI by the formulasny1 n

xqs x , . . . , x , 1 and xys x , . . . , x , y1 .Ž . Ž .1 ny1 1 ny1
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� 4 q yWe also agree that I s 0 and that 0 s1 and 0 sy1. For a subset F ;I let0 n n
us define Fq , Fy ;I asny1 ny1 ny1

Fq s xgI : xqgF and Fy s xgI : xygF .� 4 � 4ny1 ny1 n ny1 ny1 n

We need the following technical lemma.

Lemma 2.5. For nG1 one has

D Fq , D Fy FD F 2.5.1Ž . Ž .Ž . Ž .ny1 ny1 n

and

D Fq qD FyŽ . Ž .ny1 ny1 FD F y1. 2.5.2Ž . Ž .n2

Proof. For any xgFq we have xqgF , and for any cgI we haveny1 n ny1

² q q: ² y q: q yc , x q c , x d F , c qd F , cŽ . Ž .n n² :c, x s F .
2 2

Therefore, by taking the maximum over xgFq ,ny1

d F , cq qd F , cyŽ . Ž .n nqD F , c F .Ž .ny1 2

Averaging over cgI , we getny1

1 1
q q q yD F s d F , c F d F , c qd F , c sD F .Ž .Ž . Ž . Ž . Ž .Ž .Ý Ýny1 ny1 n n nnny1 22 cgI cgIny1 ny1

Ž y . Ž .The inequality D F FD F is proven similarly.ny1 n
Let us choose a cgI . Then for any xgFq we have xqgF andny1 ny1 n

² : ² q q: qc, x s c , x y1Fd F , c y1.Ž .n

Maximizing over xgFq , we getny1

d Fq , c Fd F , cq y1.Ž . Ž .ny1 n

Similarly,

d Fy , c -d F , cy y1.Ž . Ž .ny1 n

Therefore,

d Fq , c qd Fy , c d F , cq qd F , cyŽ . Ž . Ž . Ž .ny1 ny1 n nF y1.
2 2
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Averaging over cgI , we getny1

D Fq qD Fy 1Ž . Ž .ny1 ny1 q yF d F , c qd F , c y1sD F y1,Ž .Ž . Ž .Ž .Ý n n nn2 2 cgIny1

Ž .so 2.5.2 is proven. B

The following result is crucial for our considerations.

< < a nLemma 2.6. Suppose that F Ge for some a)0. Thenn

a n
D F G .Ž .n 2 ln 3raŽ .

Proof. Let us construct a sequence F , F , . . . , F , F , where F ;I . Each timen ny1 1 0 k k
we choose F to be either Fq or Fy , following the rules:ky1 ky1 ky1

� < q < < y <4 Ž . < <Rule 1. If min F , F - ar3 F , we let F be the set of the largerky1 ky1 k ky1
Ž < y < < q <.cardinality either of the two if F s F .ky1 ky1

� < q < < y <4 Ž . < <Rule 2. If min F , F G ar3 F , we let F to be the set with theky1 ky1 k ky1
Ž . w Ž q . Ž y .xsmaller value of D ? either of the two if D F sD F .ky1 ky1

Ž . Ž .Rule 1 makes sure that F , . . . , F , F are nonempty, so D F s0. By 2.5.1 itny1 1 0 0
Ž . Ž . Ž .follows that D F GD F for ksn, ny1, . . . , 1 and by 2.5.2 it follows thatk ky1

Ž . Ž .D F GD F q1 if we have applied Rule 2.k ky1
Let m be the number of times we used Rule 2. Then

D F GmqD F sm.Ž . Ž .n 0

< q < < y < < <Our goal is to prove a lower bound for m. We observe that F q F s F .ky1 ky1 k
Therefore, if we have applied Rule 1 to produce F from F , we must haveky1 k
< < Ž . < <F G 1yar3 F . On the other hand, if we have applied Rule 2 to produceky1 k

< < Ž . < <F from F , we must have F G ar3 F . Therefore,ky1 k ky1 k

nym m nym ma a a a
a n< < < <1s F G 1y F G 1y e .0 nž / ž / ž / ž /3 3 3 3

Since 0Fa-1 we have that

nym na a a a n
1y G 1y sexp ln 1y n Gexp y .½ 5½ 5ž / ž / ž /3 3 3 2

Ž .m � 4Therefore, ar3 Fexp ya nr2 and we have that

a n
mG ,

2 ln 3raŽ .

so the proof follows. B



BARVINOK196

< < a nCorollary 2.7. Suppose that F Ge for some a)0. Thenn

a n 'd F , c G y7 nŽ .n 2 ln 3raŽ .

with probability at least 0.95.

< Ž .Proof. We apply Proposition 2.2 and Lemma 2.6. It is easy to see that d F , x yn
Ž . < Ž . Ž .d F , y Fd x, y for any two x and y. Therefore, the probability that d F, c Fn

y3'Ž .D F y7 n does not exceed e -0.05 and the proof follows. Bn

Now, we are ready to prove our main result, Theorem 1.3.

Ž .Proof of Theorem 1.3. The output g FF , c of Algorithm 1.2 is represented asn
Ž . Ž . Ž . Ž .g FF , c s 1rn d F , c ; cf. 2.1 . Now we apply Lemma 2.4 and Corollary 2.7. Bn n

3. POSSIBLE RAMIFICATIONS

Different versions of the method of approximate counting via random optimization
can be obtained by using different ways of random weighting. Indeed, a particular
way of weighting may appear more powerful for a particular family FF and an
particular asymptotic question that we want to solve. Here is an example which
concerns approximate counting of permutations.

� 4Let S be the symmetric group of all permutations of the set 1, . . . , n and letn
Ž .FF ;S . Let us choose an n=n matrix cs c from the uniform distribution onn n i j

the unit sphere

Sn2y1 s c : c2 s1Ž . Ýi j i j½ 5
i , js1, . . . , n

in the Euclidean n2-dimensional space of all n=n matrices.

Theorem 3.1. For cgSn2y1 and FF ;S letn n

n < <ln FFn
w FF , c smax c : sgFF and a FF s1y .Ž . Ž .Ýn is Ž i. n n½ 5 n ln nis1

Let us choose cgSn2y1 at random from the uniform distribution. Then the probability
that

w FF , cŽ .n
1y a FF qo 1 F F 1ya FF qo 1' 'Ž . Ž . Ž . Ž .n n'2 ln n
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Ž .tends to 1 as n grows to infinity. Here o 1 stands for a function depending on n alone
which tends to 0 as n grows to infinity.

w xProof. See 4 . B

So, Theorem 3.1 allows us to estimate the coefficient a in the expression
< < �Ž . 4FF sexp 1ya n ln n from the maximum weight of a permutation from FF in an n
random weighting.

3.2. Examples

3.2.1. Cycle Covers. Let G be a simple directed graph with n vertices, 1, . . . , n.n
Ž . Ž Ž ..Let FF G be the set of the permutations sgS such that i, s i is an edge ofn n

Ž .G for is1, . . . , n. Hence the permutations sgFF G correspond to cycle co¨ersn n
Ž . Ž .of G cf. Example 1.5.1 . Note, that if As a is a 0]1 matrix interpreted as then i j

w Ž . xadjacency matrix of G that is, a s1 if and only if i, j is an edge of G , thenn i j n
< Ž . <FF G is equal to the permanent of A. Suppose that we assign a weight c to eachn i j

Ž . Ž Ž . .edge i, j of G . The problem of computing w FF G , c , that is the maximumn n
Žweight of a cycle cover in a given graph, admits a polynomial time algorithm see,

w x.for example, 8 . Hence Theorem 3.1 provides a randomized polynomial time
< Ž . <algorithm for approximating the number FF G of cycle covers in a given graph,n

or, equivalently, the permanent of a given 0]1 matrix. Roughly speaking, it allows
Ž .dus to test whether the permanent of an n=n matrix grows as fast as n! for some

w xd)0. We note, however, that the algorithm from 3 gives us a better estimate.

3.2.2. Hamiltonian Circuits. Let G be a simple directed graph with n vertices,n
Ž .1, . . . , n. Let FF G be the set of the permutations sgS which consist of onen n

Ž . Ž .cycle i ª i ª ??? ª i ª i and such that i , i for ks1, . . . , ny1 and i , i1 2 n 1 k kq1 n 1
Ž .are edges of G . The permutation from FF G correspond to Hamiltonian circuitsn n

Ž . < Ž . <in G cf. Example 1.8 . So FF G is the number of Hamiltonian circuits in G .n n n
Ž . Ž .Furthermore, if we assign a weight c to the edge i, j , then w FF , c is the largesti j n

weight of a Hamiltonian circuit in G with this weighting. To compute the largestn
weight of a Hamiltonian circuit in a given weighted graph is an NP-hard problem.
Nevertheless, we can use Theorem 3.1 to certify a lower bound for the number of

< Ž . < �Ž . 4Hamiltonian circuits. Suppose that FF G Gexp 1ya n ln n for some 0Fa-1.n
We claim that for all sufficiently large n there exists a polynomial size probabilistic

2'< Ž . < � 4 Ž Ž ..certificate that FF G Gexp b n ln n with bs 1y a qo 1 . Such a certificaten
Ž . n2y1consists of choosing random weights c gS and demonstrating a Hamilto-i j ' 'Ž Ž ..nian circuit in G whose weight is at least 2 ln n 1y a qo 1 . Indeed, the leftn

hand side inequality of Theorem 3.1 implies such a circuit exists with probability
which tends to 1 as n grows to infinity. Then the right hand side inequality of

< Ž . <Theorem 3.1 implies that the desired lower bound for FF G follows withn
probability which tends to 1 as n grows to infinity. In other words, there exists a
polynomial size probabilistic certificate that the number of Hamiltonian circuits in

Ž .da graph with n vertices grows at least as fast as n! for some d)0.
An interesting problem is to sharpen the inequalities in Theorems 1.3 and 3.1

Žwhen FF has some special structure for example, when FF is the set of perfectn n
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matchings in a graph with n edges in Theorem 1.3 or when FF is the set ofn
.Hamiltonian circuits in a graph with n vertices in Theorem 3.1 .
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