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ABSTRACT: We present real, complex, and quaternionic versions of a simple randomized
polynomial time algorithm to approximate the permanent of a nonnegative matrix and, more
generally, the mixed discriminant of positive semidefinite matrices. The algorithm provides
an unbiased estimator, which, with high probability, approximates the true value within a
factor of O(c"), where n is the size of the matrix (matrices) and where ¢ = 0.28 for the real
version, ¢ = 0.56 for the complex version, and ¢ = 0.76 for the quaternionic version. We
discuss possible extensions of our method as well as applications of mixed discriminants to
problems of combinatorial counting. © 1999 John Wiley & Sons, Inc. Random Struct. Alg., 14,
29-61, 1999
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1. INTRODUCTION

In this paper, we construct a family of randomized polynomial time algorithms to
approximate the permanent of a nonnegative matrix. In particular, one of our
algorithms (the quaternionic algorithm of Section 2.3) provides the best known
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polynomial time approximation for the permanent of an arbitrary nonnegative
matrix. Our approximation algorithms generalize naturally to mixed discriminants,
quantities of independent interest. Possible extensions of our method and applica-
tions of mixed discriminants to problems of combinatorial counting are discussed
in the last two sections.

1.1. Permanent

Let A =(a,;;) be an n X n matrix and let S, be the symmetric group, that is the
group of all permutations of the set {1,...,n}. The number,

perA = Z l_llam(i)

ogES, 1=

is called the permanent of A. We assume that A4 is nonnegative, that is a;; > 0 for
alli,j=1,...,n. If A isa 0-1 matrix, then per A can be interpreted as the number
of perfect matchings in a bipartite graph G on 2n vertices vy,...,0, and u,,...,u,,
where (v;,u;) is an edge of G if and only if a,; = 1. To compute the permanent of a
given 0-1 matrix is a #P-complete problem and even to estimate per A seems to be
difficult. Polynomial time algorithms for computing per A are known when A has
some special structure, for example, when A has a small rank [5], or when A4 is a
0-1 matrix and per A4 is small (see [14] and Section 7.3 of [25]).

Since the exact computation is difficult, a natural question is how well one can
approximate the permanent in polynomial time. In particular, is it true that for any
€ > 0 there is a polynomial time (possibly randomized) algorithm that approximates
the permanent of a given matrix within a relative error €? In other words, does
there exist a polynomial time approximation scheme? Polynomial time approxima-
tion schemes are known for dense 0-1 matrices [15], for “almost all” 0-1 matrices
(see [15, 12], and [27]) and for some special 0-1 matrices, such as those correspond-
ing to lattice graphs (see [16] for a survey on approximation algorithms). However,
no polynomial time approximation scheme is known for an arbitrary 0-1 matrix (see
[18] for the fastest known “mildly exponential” approximation scheme).

In [6], the author suggested a polynomial time randomized algorithm, which,
given an n X n nonnegative matrix A4, outputs a nonnegative number « approxi-
mating per 4 within a simply exponential in n factor. The algorithm uses random-
ization, so « is a random variable. The expectation of « is per A and with high
probability (say, with probability at least 0.9) we have

c"perA<a<CperA, (1.1.1)

where C and ¢ > 0 are absolute constants (with ¢ = 0.28). However, as usual, the
probability 0.9 can be improved to 1 — € by running the algorithm independently
O(log ') times and choosing « to be the median of the computed as.

Recently, N. Linial, A. Samorodnitsky, and A. Wigderson [22] constructed a
polynomial time deterministic algorithm, which achieves (1.1.1) with C =1 and
¢=1/e=0.37. The algorithm uses a scaling of a given nonnegative matrix to a
doubly stochastic matrix.
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In this paper, we present a family of randomized polynomial time algorithms for
approximating the permanent within a simply exponential factor. We present real,
complex, and quaternionic versions of an unbiased estimator, each achieving a
better degree of approximation than the previous one. Our estimators produce a
number « whose expectation is the permanent and which with high probability
satisfies (1.1.1), where ¢ = 0.28 for the real algorithm, ¢ = 0.56 for the complex
algorithm, and ¢ = 0.76 for the quaternionic algorithm. The last algorithm provides
the best known polynomial time approximation for the permanent of an arbitrary
nonnegative matrix. The algorithms have a much simpler structure and are easier
to implement than the algorithm of [6].

The first version (see [7]) of the paper contained the real algorithm only. The
complex algorithm was suggested to the author by M. Dyer and M. Jerrum [8].
Building on the complex version, the author constructed the quaternionic version.

1.2. Mixed Discriminant

Let Q,,...,0, be nXn real symmetric matrices and let ¢,,...,¢, be variables.
Then det(¢,Q, + -+ +¢,Q,) is a homogeneous polynomial of degree n in ¢,,...,¢
The number,

ne

n

D(Qy,---, Q) = o det(1,0y + - +1,0,)

at, n

is called the mixed discriminant of Q,,...,Q,. Sometimes the normalizing factor
1/n! is used (cf. [21]). The mixed discriminant D(Q,,...,Q,) is a polynomial in the
entries of Q,,...,Q,: for Qk=(qij,k): i,j=1,...,n, k=1,...,n, we have

D(Qy,....0) = X (SgnUl)(sgnUZ)]}:[lqzrl(k)u-z(k),k' (1.2.1)

o, 0,E€8,

The mixed discriminant can be considered as a generalization of the permanent.
Indeed, from (1.2.1) we deduce that for diagonal matrices Q,,...,0Q,, where
Q, = diag{a,,...,a;,}, we have

D(Q,,...,0,) =per A, where 4= (a;).

Mixed discriminants were introduced by A. D. Aleksandrov in his proof of the
Aleksandrov—Fenchel inequality for mixed volumes ([2], see also [21]). The relation
between the mixed discriminant and the permanent was used in the proof of the
van der Waerden conjecture for permanents of doubly stochastic matrices (see [9]).
It is known that D(Q,,...,Q,) > 0 provided Q,,...,Q, are positive semidefinite
(see [21]). Just as it is natural to restrict the permanent to nonnegative matrices, it
is natural to restrict the mixed discriminant to positive semidefinite matrices.
Mixed discriminants generalize permanents but they also have some indepen-
dent applications to computationally hard problems of combinatorial counting,
some of which we describe in this paper. Suppose, for example, we are given a
connected graph with n + 1 vertices, whose edges are colored in #n colors. Then the
number of spanning trees having exactly one edge of each color can be expressed
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as the mixed discriminant of some n positive semidefinite matrices, explicitly
computed from the incidence matrix of the graph. Mixed discriminants play an
important role in convex and integral geometry (see [21]) and the problem of their
efficient computation—approximation is not less interesting (but certainly less
publicized) than the problem of efficient computation—approximation of perma-
nents.

In [6], the author suggested a randomized polynomial time algorithm, which,
given n positive semidefinite matrices Q,,...,Q,, computes a number «, which
with high probability satisfies the inequalities,

c"D(Qy,...,0,) <a<C-D(Qy,...,0,),

where ¢>0 and C are absolute constants (with ¢ =0.28). In this paper, we
construct a family of algorithms (again, real, complex, and quaternionic), which
achieve ¢ = (.28 (real), ¢ = 0.56 (complex), and ¢ = 0.76 (quaternionic). The algo-
rithms are natural generalizations of the permanent approximation algorithms. The
real algorithm (Section 3.1) can be interpreted as a “parallelization” of the
algorithm from [6]. One can note that the permanent approximation algorithm of
[22] does not obviously generalize to mixed discriminants.

The paper is organized as follows.

In Section 2, we describe the permanent approximation algorithms. In Section 3,
we describe the mixed discriminant approximation algorithms. In Section 4, we
prove some general inequalities for quadratic forms on Euclidean spaces endowed
with a Gaussian measure. The results of the section constitute the core of our
proofs. In Section 5, we prove a technical martingale-type result, which we use in
our proofs. In Section 6, we prove the main results of the paper. In Section 7, we
discuss possible extensions of our method. In particular, we discuss how to
approximate hafnians and sums of subpermanents of a rectangular matrix. In
Section 8, we discuss some applications of mixed discriminants to counting.

1.3. Notation

Our approximation constants belong to a certain family which we define here. For
a positive integer k let x,,...,x, be independent real valued random variables
having the Gaussian distribution with the density

T

Thus the expectation of x; is 0 and the expectation of x? is 1/k, so the expected
value of x?+ ---+x7 is 1. Let us define €, to be the expectation of In(x?
+ --+ +x}); that is,

k k2 k(x4 +xi
@k=(§) kaln(xlz+---+xﬁ)exp{—¥}dxl---dxk.

In particular, we will be interested in the following values,

¢, = —1.270362845, ¢, = —0.5772156649, and €, = —0.2703628455.
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One can show that €, = —y—1In2, €, = -y, and €,=1—- y—In2, where y=
0.5772156649 is the Euler constant. Let us define

¢, =exp{C€,}.
In particular,

677

= - = 0.2807297419, ¢, =e 7=0.5614594836, and

el=”

=~ 0.7631025558.

€y =

It turns out that ¢, is the approximation constant in the real algorithms, ¢, is the
approximation constant in the complex algorithms, and ¢, is the approximation
constant in the quaternionic algorithms.

One can argue that the quaternionic version of our algorithms is more efficient
than the complex version and that the latter is more efficient than the real version.
However, the author believes that all three versions are of interest, and, conse-
quently, discusses all three in detail. The general method can be extended to other
problems of approximate counting (see Section 7) and it may happen, for example,
that there is an obvious real extension, whereas the existence of a quaternionic
extension is problematic.

2. PERMANENT APPROXIMATION ALGORITHMS

In this section, we present the three versions of the permanent approximation
algorithm: real, complex, and quaternionic. The algorithms are very similar: their
input is an n X n nonnegative matrix A4 =(a,;) and the output is a nonnegative
number «, approximating per A. Our algorithms are randomized. In the course of
the computation, we generate a random variable, so the output « is a random
variable. Specifically, we use sampling from the Gaussian distribution in R' with
the density i, (x)=(1/ oV2m)e /27" However, as is known (see, for example,
Section 3.4.1 of [20]), sampling from the Gaussian distribution can be efficiently
simulated from the standard Bernoulli distribution (sampling a random bit). The
output « is an unbiased estimator for per A and it turns out that « is unlikely to
overestimate per A by a large constant factor (easy to prove) and unlikely to
underestimate per A by a factor of O(c"), where ¢ >0 is an absolute constant
(harder to prove). For example, it follows that for all sufficiently large n, the
probability that « satisfies the inequalities,

c"perA<a<3perA

is at least 0.6. However, as we noted in Section 1, for any € > 0 we can improve the
probability to 1 — e by running the algorithm O(log e ') times and choosing the
median of the computed as, cf. [17]. We can choose ¢ = 0.28 in the real algorithm,
¢ = 0.56 in the complex algorithm, and ¢ = 0.76 in the quaternionic algorithm.
The computational model is the RAM (random access machine) with the
uniform cost criterion (see [1]), so the algorithms operate with real numbers and



34 BARVINOK

allow arithmetic operations (addition, subtraction, multiplication, and division) and
comparison of real numbers. A preprocessing requires taking the square root of
each entry of the matrix A.

The computational complexity of the algorithms is bounded by a polynomial in
n. Each subsequent algorithm attains a better degree of approximation but is more
time-consuming. The real version reduces to the computation of the determinant
of an n X n real matrix, the complex version reduces to the computation of the
determinant of an n X n complex matrix, and the quaternionic version reduces to
the computation of the determinant of a 2n X 2n complex matrix. However, as is
known, the determinant of an n Xn real or complex matrix can be routinely
computed using O(n?) arithmetic operations. Our algorithms can be rewritten in
the binary (“Turing”) mode, so that they remain in polynomial time. This transfor-
mation is straightforward; it is sketched in the first version of the paper [7]. The
general technique of going from “real randomized” to “binary randomized”
algorithms can be found in [24].

2.1. The Real Algorithm

Input: A nonnegative n X n matrix A.
Output: A nonnegative number « approximating per A4.

Algorithm: Sample independently n? numbers u;:i,j=1,...,n at random from
the Gaussian distribution in R with the density yg(x) =(1/V27 )e ™" /2. Com-
pute the nXn matrix B=(b;), where b; = ul-j\/aij. Compute « = (det B)*.
Output «.

2.1.1. Theorem.
(1) The expectation of « is per A.
(2) For any C > 1 the probability that
a>C-perA

does not exceed C™1.
(3) For any 1> €> 0 the probability that
a<(ec;) perAd

does not exceed 8 /(nIn* €), where ¢, = 0.28 is the constant defined in Section
1.3.

Remark (Relation to the Godsil-Gutman Estimator). It is immediately seen that
Algorithm 2.1 is a modification of the Godsil-Gutman estimator (see [13]) and
Chap. 8 of [23]). Indeed, in the Godsil-Gutman estimator we sample u;; from the
binary distribution,

1, with probability 3,
Y] =1, with probability 3.
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Furthermore, parts 1 and 2 of Theorem 2.1.1 remain true as long as we sample u;;
independently from some distribution with the expectation 0 and variance 1.

However, part 3 does not hold true for the binary distribution. In fact, one can
show that as long as u;; are sampled from some fixed discrete distribution (or, more
generally, from some distribution with atoms), there exist 0-1 matrices with
arbitrarily large permanents, for which the expected number of trials to produce a
nonzero « is exponentially large. Indeed, consider a version of the Godsil-Gut-
man estimator, where u;; can accept a certain value with a positive probability. Let
us fix an integer k > 1 and let us consider the k X k matrix J, filled with 1s. If we
multiply the (i, j)th entry of J, by u;;, there is some positive probability p > 0 that
we get a matrix with two identical rows, so the obtained matrix has the zero
determinant. For n > 0, consider an (nk) X (nk) matrix A which consists of n
diagonal blocks J,. Then per 4, = (per J,)" = (k!)". However, the probability that
the output « =0 is at least 1 — (1 — p)”, which approaches 1 exponentially fast as n
grows. Note that even the scaled value (per 4,)"/"* can be made arbitrarily large,
since (per 4,)!/"* = (k)* =k /e for large k. For example, let us choose k=38.
Then A, is a 0-1 8n X 8n matrix and per A, = (40,320)". The described above
binary version of the Godsil-Gutman estimator outputs 0 with the probability at
least 1—(0.8)". The complex discrete version of [19] (see also the remark in
Section 2.2) outputs 0 with the probability at least 1 —(0.99)". Algorithm 2.1
outputs at least (1.52)" with the probability approaching 1 as n — +oo. Similarly,
the complex version (Algorithm 2.2) outputs at least (390)" and the quaternionic
version (Algorithm 2.3) outputs at least (4,487)" with the probability approaching 1
as n— +x

Of course, for other matrices (for example, for the identity matrix) and even for
the majority of matrices (cf. [12]) the binary version of the estimator may perform
better than Algorithm 2.1. However, any version of the Godsil-Gutman estimator
which approximates the permanent of an arbitrary 0-1 matrix within some positive
constant in expected polynomial time must either use a continuous distribution or
a sequence of discrete distributions which depend on the size of the matrix.

2.2. The Complex Algorithm

By the standard complex Gaussian distribution in C we mean the distribution of a
complex random variable z =x + iy with the density,

e (2) = 16—(x2+y2>_ 1e“2|2
¢ w aw '

Here |z| = /x> +y? is the absolute value of z. Note that the expectation of |z|* is
1. To sample from this distribution, it suffices to sample the real and imaginary
parts independently from the Gaussian distribution in R' with the density
1/vVme . Our algorithm is the following:

Input: A nonnegative n X n matrix A.

Output: A nonnegative number « approximating per A.
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Algorithm: Sample independently n? numbers u, ; at random from the standard
complex Gaussian distribution in C with the density .. Compute the n Xn
matrix B = (b;;), where b;; =u;;y/a;;. Compute a = |det BI*.

2.2.1. Theorem.

(1) The expectation of a is per A.
(2) For any C > 1 the probability that

a=C-per A

does not exceed C™1.
(3) For any 1> €> 0 the probability that

a<(ec,) perd

does not exceed 8 /(nIn* €), where ¢, = 0.56 is the constant defined in Section
1.3.

Remark (Relation to the Karmarkar—Karp—Lipton—Lovasz-Luby Estimator). It
is seen that Algorithm 2.2 is a simple modification of the estimator from [19]. In
[19], the authors sample u;; from the set of roots of unity of degree 3 and then use
averaging over a large number of trials. The goal of [19] is somewhat dual to our
goal. We want to minimize the error of approximation keeping the running time
polynomial whereas the authors of [19] want to minimize the time needed to
approximate the permanent keeping the relative error of approximation at most
(1+ ), where €> 0 is a part of the input. The complexity of the algorithm from
[19]is poly(n)e 22"/? and, while still exponential, is better than n2" complexity of
Ryser’s exact algorithm (see Section 7.2 of [25]). Obviously, both approaches have
their advantages. Algorithms 2.1-2.3 provide a quick rough estimate, whereas the
algorithms from [18] and [19] are much more precise but also more time-consum-
ing. It would be interesting to find out whether by applying repeated sampling and
averaging in Algorithm 2.2, one can get the running time to achieve the relative
error € comparable to that of [19], and if that can be extended to arbitrary
nonnegative matrices (as the performance of the algorithm from [19] is guaranteed
for 0-1 matrices only).

2.3. The Quaternionic Algorithm

We recall that the algebra H of quaternions is the four-dimensional real vector
space with the basis vectors 1,1i,j, k that satisfy the following multiplication rules,

i2=j2=k2= -1,
ij=—ji=Kk, jk=—-Kkj=1, ki= —ik =},
and
li=il=i, 1j=j1=j, 1k =kl =k.

The norm || of a quaternion & =a + ib + jc + kd, where a,b,c,d € R, is defined

as |hl=Va*+b%+c*+d>. By the standard quaternionic Gaussian distribution in
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H we mean the distribution of a quaternionic random variable 7 =a + ib + jc + kd
with the density,

4 :
Yy(h) = ?672(a2+b2+02+d‘)'

In particular, the expectation of |A|> is 1. To sample from the distribution, it
suffices to sample a, b, ¢, and d independently from the Gaussian distribution in
R' with the density /2/me 2",

Our algorithm is the following:

Input: A nonnegative n X n matrix A.
Output: A number o approximating per A.

Algorithm: Sample independently n”> quaternions u;; at random from the stan-
dard quaternionic Gaussian distribution in H with the density ¢;. Compute the
n Xn quaternionic matrix H = (h;;), where h;; = uij@. Write H=R +iB +
jC + kD, where R, B, C, and D are real n X n matrices. Construct the 2n X 2n
complex matrix,

4. - R+iB  C+iD
¢c“\-c+ip R-iB)

Compute o =det H..
Output «.

2.3.1. Theorem.

(1) The output « is a nonnegative real number and its expectation is per A.
(2) For any C > 1 the probability that

a>C-perA

does not exceed C™1.
(3) For any 1> €> 0 the probability that

a<(ec,) perA

does not exceed 8 /(nIn* €), where ¢, = 0.76 is the constant defined in Section
1.3.

Remark (Relations to the Real and Complex Estimators). An obvious obstacle to
constructing a quaternionic version of Algorithms 2.1 and 2.2 is that it appears that
we need to use the “determinant” of a quaternionic matrix. However, a closer look
reveals that what we need is the squared norm of the determinant. This “squared
norm of the determinant” can be defined using the canonical two-dimensional
complex representation of the quaternions. It turns out that the determinant of the
complex matrix H;, computed in Algorithm 2.3, is the right definition of the
squared norm of the determinant of a quaternionic matrix H (it is known as the
“reduced norm,” or the squared norm of the Dieudonné determinant, see Chap.
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VI, Section 1 of [3]). As an analogue, let us point out that the squared absolute
value of the determinant of an n X n complex matrix can be interpreted as the
determinant of a 2n X 2n real matrix,

|det( 4 +iB)|2=det( A B).

-B A

Example (The Identity Matrix). The following example provides some intuition
why the quaternionic estimator gives a better approximation than the complex
estimator and why the complex estimator gives a better approximation than the

real estimator. Suppose that 4 =1 is the n X n identity matrix, so per 4 = 1.
Algorithm 2.1 approximates 1 by the product,

where x;=u; are independent random variables sampled from the standard
Gaussian distribution in R'. The expectation E(x?) of each factor is 1, so the
expected value of the product is 1. However, since the values of x? can deviate
from the expectation, we can accumulate an exponentially large deviation. Since

Ine 12
—=—) Inx?,

n ni_q

the law of large numbers implies that (In a)/n concentrates around €, = E(In x?)
(cf. Section 1.3), so « is reasonably close to exp{rn(&,} = ¢} most of the time.
Algorithm 2.2 approximates 1 by the product,

2.2
Xi+yi
2

2 2
Xn +yn
2

o=

where x;, y; are independent random variables sampled from the standard Gauss-
ian distribution in R'. Again, the expectation of each factor is 1, but because of the
averaging, (x?+y?)/2 is concentrated around its expectation somewhat more
sharp than either x}? or y?. Therefore, the accumulated error, while still exponen-
tial, is smaller than that in Algorithm 2.1. Indeed, we have (cf. Section 1.3),

}>cl.

Finally, Algorithm 2.3 approximates 1 by the product,

2, .2
X; +y;

€, = exp{E(ln

al+bi+ci+d?
4

a’l+b?+c2+d?
4

o=

where a;, b;,c;,d; are independent random variables sampled from the standard
Gaussian distribution in R'. Here we have a still sharper concentration of each
factor around its expectation, so the total error gets smaller. For the constant c,
we have (cf. Section 1.3),

a’+b? +ct+d?
¢,=exp{E|In 1
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It appears that the Algorithms 2.1-2.3 are related to Clifford algebras R, C, and H
with 0, 1, and 3 generators, respectively, (cf. Sect. 41 of [26]). There seem to be
ways to associate an approximation algorithm with any Clifford algebra, but it is
not clear at the moment whether those algorithms can be of any interest. It would
be interesting to find out whether for any k there is a version of our algorithm
achieving a ¢} approximation (we note that ¢, = 1 as k — +).

Remark. How well can we approximate the permanent in polynomial time?
Suppose we have a polynomial time (probabilistic or deterministic) algorithm that
for any given n X n (nonnegative or 0-1) matrix 4 computes a number « such that

d(n)perA <a<perA.

What sort of function might ¢(n) be? For an n Xn matrix 4 and k> 0, let us
construct the nk X nk block-diagonal matrix A4,, having k diagonal copies of A.
We observe that A, is nonnegative if A is nonnegative and A4, is 0-1 if A4 is 0-1,
and that per 4 = (per 4,)"/*. Applying our algorithm to 4, and taking the root we
get an approximation «,, where

(p(nk))"* per A < a, < per A.

Therefore, we can always improve ¢ to ¢, =(p(nk))/*, where k must be
bounded by a polynomial in 7 to keep polynomial time complexity. For example, if
d(n)=n"* for some B>0 or if ¢(n)=exp{—nP} for some 0 < B <1, then by
choosing a sufficiently large k = k(n) we can always improve ¢ to ¢, = (1 — €) with
any given 1 > € > 0.

There are few obvious choices for “nonimprovable” functions ¢.

(a) ¢(n)=1. This does not look likely, given that the problem is #P-hard.

(b) For any € > 0 one can choose ¢.(n) =1 — €, and the algorithm is polynomial
in € !. In the author’s opinion this conjecture is overly optimistic.

(¢) For any €>0 one can choose ¢ (n)=(1—€)", but the algorithm is not
polynomial in €~ '. The existence of this type of approximation was conjec-
tured by V. D. Milman.

(@) ¢(n)=c" for some fixed constant c. This is the type of a bound achieved by
Algorithms 2.1-2.3. An interesting question is, what is the best possible
constant c¢?

3. MIXED DISCRIMINANT APPROXIMATION ALGORITHMS

It turns out that the permanent approximation algorithms of Section 2 can be
naturally extended to mixed discriminants. The input of the algorithms consists of
n X n positive semidefinite matrices Q,,..., 0, and the output is a nonnegative
number « approximating D(Q;,...,Q,). As in Section 2, we use the real model of
computation. A preprocessing requires representing each matrix Q; as the product
Q,=T,T* of a real matrix and its transpose. This is a standard procedure of linear
algebra, which requires O(n?) arithmetic operations and n square root extractions
(see, for example, Chap. 2, Section 10 of [11]).
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3.1. The Real Algorithm

The algorithm requires sampling vectors x € R”, x = (&,,..., &) from the standard
Gaussian distribution in R” with the density,

2
—|lxl

n

Prn(x) = (277)"/26Xp{ } where [|x]|> = &2+ - + &2,

We interpret x as an n-column of real numbers &,,..., §,. Note that the expecta-
tion of ¢ is 1 and that the expectation of In £ is €, (see Section 1.3). To sample
from the distribution, we can sample the coordinates &,,...,¢, independently
from the one-dimensional standard Gaussian distribution with the density ¢ =
1/ V2me ™" /2, cf. Section 2.1. Our algorithm is the following:

Input: Positive semidefinite n X n matrices Q,,...,Q,.
Output: A number « approximating the mixed discriminant D(Q;,...,0,).

Algorithm: For i=1,...,n compute a decomposition Q;= T,7;*. Sample inde-
pendently n vectors u,,...,u, at random from the standard Gaussian distribu-
tion in R” with the density {p.(x). Compute

a=(det[Tyuy,..., T,u,]),

the squared determinant of the matrix with the columns T,u,,...,T,u,. Out-
put a.

3.1.1. Theorem.

(1) The expectation of « is the mixed discriminant D(Q;,...,Q0,).
(2) For any C > 1 the probability that

a>C-D(Q,,...,0,)

does not exceed C™'.
(3) For any 1> €> 0 the probability that

a< (Ecl)nD(Qly--"Qn)

does not exceed 8 /(nIn* €), where ¢, = 0.28 is the constant defined in Section
1.3.

Remark (Relation to the Estimator from [6]). The first randomized polynomial
time algorithm to approximate the mixed discriminant within an exponential factor
was constructed in the author’s paper [6]. It achieves asymptotically the same
degree of approximation as Algorithm 3.1. The idea of the algorithm from [6] is to
apply repeatedly the following two steps: first, by applying an appropriate linear
transformation, we reduce the problem to the special case, where Q, =1 is the
identity matrix. Next, we replace D(Q,,...,Q,_,,1) by nD(Qi,..., Q. _,), where
Q' are (n — 1) X (n — 1) symmetric matrices interpreted as projections of Q, onto a
randomly chosen linear hyperplane in R”. Algorithm 3.1 can be interpreted as a
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parallelization of the algorithm from [6]. Instead of the successive projections, we
independently project the matrices Q; onto randomly chosen lines in R”.

3.2. The Complex Algorithm

The algorithm requires sampling random complex vectors z=({,,...,,) € C”
from the standard Gaussian distribution with the density,

Yer(2) = —exp{—llzI?), where llzI* =1, + - +I¢,1%.

7Tn
We interpret z as an n-column of complex numbers ¢),...,¢,. Note that the
expectation of I{il2 is 1 and that the expectation of In| {,-IZ is €, (see Section 1.3).
To sample from the distribution, we can sample each ¢; independently from the
standard one-dimensional complex Gaussian distribution with the density ¢-({) =
1/me 1V, cf. Section 2.2. Our algorithm is the following:

Input: Real positive semidefinite n X n matrices Qy,...,0,.
Output: A real number « approximating the mixed discriminant D(Q;,...,Q,).
Algorithm: For i=1,...,n compute a decomposition Q, = 7,7;*. Sample inde-
pendently n vectors u,...,u, at random from the standard complex Gaussian
distribution in C".

Compute

a= |det[T1u],...,Tnun]|2,

the squared absolute value of the determinant of the matrix with the columns
Tuy,...,Tu,.
Output «.

3.2.1. Theorem.

(1) The expectation of « is the mixed discriminant D(Q;,...,Q0,).
(2) For any C > 1 the probability that

azC-D(Q,,....0,)

does not exceed C™1.
(3) For any 1> €> 0 the probability that

a< (Ecz)nD(ng---aQn)

does not exceed 8 /(n In* €), where ¢, = 0.56 is the constant defined in Section
1.3.

3.3. The Quaternionic Algorithm

Let H" be the set of all n-tuples (vectors) h = (7,,...,7,) of quaternions 7, € H.
For an n X n real matrix 7 and a vector h =a + ib + jc + kd € H", where a, b, c,d
€ R", by Th € H" we understand the vector Ta + iTbh + jTc + kTd. The algorithm
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requires sampling a random vector & = (1,...,7,) from the standard quaternionic
Gaussian distribution in H" with the density,

n

Vin() = —rexp(=2lhI%), where 1Al =7, + -+,

We interpret 4 as an n-column of quaternions 7,,...,7,. Note that the expectation
of |1-l-|2 is 1 and that the expectation of 1H|Ti|2 is €, (see Section 1.3). To sample
from the distribution, we can sample each 7, € H independently from the standard
one-dimensional quaternionic Gaussian distribution with the density ¢y(7) =
4 /221" cf. Section 2.3. Our algorithm is the following:

Input: Real positive semidefinite n X n matrices Q,,...,0,.
Output: A number « approximating the mixed discriminant D(Q;,...,0Q,).

Algorithm: For i=1,...,n compute a decomposition Q;= T,7;*. Sample inde-
pendently n vectors u,,...,u, at random from the standard quaternionic
Gaussian distribution in H". Compute the n Xn quaternionic matrix H =
[T,uy,...,T,u,l, whose columns are T,u,,...,T,u,. Write H=A+iB+jC +
kD, where A, B, C, and D are real n X n matrices. Construct the 2n X 2n
complex matrix,

g [ A+iB  C+iD
¢\ -c+ip A-iB)

Compute a = det H.
Output «.

3.3.1. Theorem.

(1) The output « is a nonnegative real number and its expectation is the mixed
discriminant D(Qy, ..., Q,).
(2) For any C > 1 the probability that

a>C-D(Q,....,0,)

does not exceed C™'.
(3) For any 1> €> 0 the probability that

aS(€C4)nD(Q1""7Qn)

does not exceed 8/(nIn? €), where ¢, = 0.76 is the constant defined in Section
1.3.

3.4. Relation to the Permanent Approximation Algorithms

Let A=(a;) be an nXn nonnegative matrix. Let us construct n matrices
0,,...,Q, by placing the ith row of A4 as the diagonal of Q;: O, = diag{a,,,...,a;,}.
Then we have per 4 =D(Q,,...,0,) (cf. Section 1.2). Since A is nonnegative,
Q,,...,0, are positive semidefinite matrices. Now it is seen that if we choose
T, = diag{‘/a, e ‘/a}, then Algorithms 3.1-3.3 with the input Q,,...,Q, trans-
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form into Algorithms 2.1-2.3 with the input 4. Hence Theorems 3.1.1-3.3.1 are
straightforward generalizations of Theorems 2.1.1-2.3.1.

4. GAUSSIAN MEASURES AND QUADRATIC FORMS

4.1. Gaussian Measures

Given a space X with a probability measure w, we denote the expectation of a
function f: X — R by E(f). In this paper, X will be the space R", C" = R?*", or
H" = R** and u will be a Gaussian measure (distribution).

Let |lxll= /&7 + -+ + &2 be the standard norm of a vector x =(§&,,..., &) in
R™. As usual we interpret x € R™ as an m-column of numbers §1, s -
The probability measure w in R” with the density ¢(x) = Q)" /% exp{ —||x[I* /2}
is called the standard Gaussian (or normal) distribution. A Gaussian distribution in
R™ is the distribution of the vector Tx where x € R™ has the standard Gaussian
distribution and T is a fixed m X m matrix (if T is degenerate, the distribution is
concentrated on the image of T).

If p is a probability distribution of x =(£,,..., £,,) € R, the matrix Q = (qij),
where g;; =E(§;§), is called the covariance matrix of x. For example, if w is the
standard Gaussian distribution in R™, the covariance matrix is the m X m identity
matrix /. We often use the following fact: if x € R™ has the standard Gaussian
distribution in R” and T is an m X m matrix, then the covariance matrix of the
vector Tx is Q =TT*.

4.2. Theorem. Let us fix a Gaussian measure p in R". Let q: R" — R be a positive
semidefinite quadratic form, such that

E(q) =1.
Then
¢, <E(lng) <0, (1)
where &, = —1.27 is the constant defined in Section 1.3, and

0 <E(In*q) <8. 2

Proof. Without loss of generality, we can assume that w is the standard Gaussian
measure with the density,

w2 —llxl?
() = 2m) " esp 5|,

(otherwise, we apply a suitable linear transformation). Since In is a concave
function, by Jensen’s inequality we have E(In ¢) < InE(g) = 0. Let us decompose ¢
into a nonnegative linear combination g = A,q, + - + A, g, of positive semidefi-
nite forms g, of rank 1. We can scale g; so that E(q;,) =1 for i =1,...,n and then
we have A, + --- + A, =1. In fact, one can choose A; to be the eigenvalues of the
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matrix of ¢ and g, = (x,u,)*, where u, is the corresponding unit eigenvector and
(-, is the standard scalar product in R”. Since In is a concave function, we have
In(A, g, + - +A,q,) = A\, Ing, + - + A, In g,. Furthermore, since g; is a positive
semidefinite form of rank 1, by an orthogonal transformation of the coordinates it
can be brought into the form ¢,(x)= axj. Since E(x})=1, we conclude that

a = 1. Therefore, E(In ¢;) = E(In x}) = €, (cf. Sections 3.1 and 1.3) and
E(Ing) > ME(Ing,) + .- +A,E(Ing,) = (A, + - +1,) ¢, =C¢,,
so Part 1 is proved [we note that this reasoning proves that E(In ¢) is well-defined].
Let X={xeR": g(x) <1} and Y=R" \ X. Then
E(ln*q) = f #(x)In? q(x) dx + f #(x)In? g(x) dx.
X Y

Let us estimate the first integral. Decomposing ¢ = A,q, + - +A,,q, as above, we
getlng> A Ing, + -+ +A,Ing,. Since In g(x) <0 for x € X, we get that

In®g(x) < ) AiAj(lnqi(x))(lnqj(x))’
ij=1
for x € X. Therefore,

[ oo gy drs T an [ b(0(na(0))(ng () ds

ij=1
1/2

n 1/2
< ¥ oan(fpomaa] ([ scomaal)
ij=1 X X
(we applied the Cauchy—Schwartz inequality),

A (E(in? a.))(E(n* q,))

1/2
<

i

e

Now, as in the proof of Part 1 we have

8 4 :
E(In? g;) = E(In* x}) = ﬁf; (In*r)e""/? d = 6.548623960 < 7.

Summarizing, we get

lep(x)lnzq(x)dxs i )\i/\j(E(lnzqi))l/z(E(lnij))

<7 Y aA=T.
i,j=1 i,j=1

Since for 0 <Int <Vt for > 1, we have

J w0 q(x) dv < [ g(x)@(x) dx <E(q) = 1.
Y Y

Therefore, E(In” ¢) <7+ 1 = 8 and Part 2 is proved. ]
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Remark (Role of the Gaussian Distribution). Let us consider Algorithm 3.1. A
natural question is to what extent it is important to sample vectors u,,...,u, from
the Gaussian distribution, as compared to sampling from some other distribution u
in R". Our method carries over as long as u satisfies the following properties: first,
the expectation of a random vector x € R"” is 0 and the covariance matrix is the
identity matrix I and second, if g: R” — R is a positive semidefinite quadratic form
such that E(g) = 1, then E(In ¢) is bounded below by a universal constant € = €( w).
Furthermore, the closer to 0 that & can be chosen, the better approximation we
get. It is seen that any discrete distribution (or, more generally, a distribution with
atoms) fails the test for n > 1, since if a vector x € R" occurs with a positive
probability and g(x) = 0, then E(In g) = — . One can use continuous distributions
other than Gaussian, but the author suspects that asymptotically, for large n, the
Gaussian distribution provides the best constant €. For example, the uniform
distribution on the sphere &2+ --- +¢2 =n in R” might give better constants for
small n, but asymptotically it gives the same constant €, (cf. Theorem 3.5 of [6]).

The next two results of this section state that for quadratic forms from some
particular classes and some special Gaussian distributions we can get better
estimates than in the general case.

Hermitian Forms. We recall that a function q: C" —» R,

q(z)= Y B;&g, where z=({,...,¢,),

ij=1

and B;; = ,B_,, fori,j=1,...,n is called a Hermitian form with the matrix ( ,Bij) (see,
for example, Section 19 of [26]). The form is called positive semidefinite, if g(z) >0
for all z€ C”. We note that g can be considered as a real quadratic form ¢:
R*" > R, if we identify C" = R?". We fix the standard complex Gaussian distribu-
tion in C" with the density e, = 1/7"¢ 12", ¢f. Section 3.2.

4.3. Theorem. Let us fix the standard complex Gaussian distribution in C". Let q:
C" —» R be a positive semidefinite Hermitian form such that ¥(q) = 1. Then

¢,<E(lng) <0,
where &, = —0.58 is the constant defined in Section 1.3.

Proof. The proof is similar to that of part (1) of Theorem 4.2. Since ¢ is a positive
semidefinite Hermitian form, it can be represented as a convex combination
q=MAgq,+ - +1,q, of positive semidefinite Hermitian forms ¢q; of rank1 such
that E(g,) = 1. Since In is a concave function, we get that

E(Ing) > \\E(Ing,) + --- +A,E(Ing,).

Since g; is a positive semidefinite Hermitian form of rank 1, by a unitary transfor-
mation of C”, it can be brought into the form

qi(z) =a|§l|2’ where Z=(§1,...,§n),
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and « is nonnegative real. Since E(g;) =1, we must have a=1, so E(lng,) =
E(n|¢ l|2) =, (cf. Sections 3.2 and 1.3). Summarizing, we get

and the proof follows. ]

As we see, the lower bound for the expectation of In g, where ¢ is a Hermitian
form, is better than for general quadratic forms. The reason for this improvement
is, roughly, the following: the “worst possible” forms are those of rank 1. However,
a Hermitian form of rank 1 is a real form of rank 2. Next, we see that quaternionic
quadratic forms provide a still better bound.

Quaternionic Forms. Let H" be a real vector space of all n-tuples (74,...,7,) of
quaternions 7, € H. As a vector space, H can be identified with R* via the
identification a +ib + jc + kd = (a, b, c,d), and so H" can be identified with R*".
We fix the structure of a right H-module of H": for u =(r,...,7,) and 7€ H, we
let ur=(r7,...,7,7). We note that the right multiplication by i, j, and k are
orthogonal transformations of R*" without fixed nonzero vectors. By a quadratic
form on H" we understand a function g: H” — R which is an ordinary quadratic
form under the identification H” = R*". We say that ¢ is positive semidefinite if
q(u) = 0 for any u € H". Let us fix the standard quaternionic Gaussian distribution
in H" with the density (1) = 4" /72"~ 214I’| cf. Section 3.3.

4.4. Theorem. Let us fix the standard quaternionic Gaussian distribution in H". Let
q: H" > R be a positive semidefinite quadratic form such that E(q) = 1. Suppose
further, that q(u) = q(ui) = g(uj) = g(uk) for any u € H". Then

¢,<E(lng) <0,
where ©, = —0.27 is the constant defined in Section 1.3.

Proof. Let Q be the 4n X 4n real symmetric matrix of ¢: R*" >R as a real
quadratic form, so g(x) = {Qx, x), where {-,-) is the standard scalar product on
R*". Then for the differential of g at a point x € R*" we have dq (-) =2{(Qx,-).
Let S ={x < H": ||x||= 1} be the unit sphere. As is known, x € § is an eigenvector
of O with an eigenvalue A if and only if x is a critical point of the restriction g:
S — R (that is, dg, is 0 on the tangent space at x) with the corresponding critical
value A = g(x).

Since g is invariant under the orthogonal transformations given by right multi-
plication by i, j, and k, we conclude that if x is an eigenvector of Q with an
eigenvalue A, then so are xi, xj, and xk. It follows that each eigenspace of Q is a
right H-submodule of H". In particular, the multiplicity of each eigenvalue of Q is
a multiple of 4. Therefore, g can be expressed as a nonnegative linear combination
q=Aq, + -+ +,q, of quadratic forms, such that for each i, E(g;) =1 and by an
orthogonal transformation of R*", g, can be written as a normalized sum of four
squared coordinates: q,(x) = a(&2 + &7 + £ + &€7). Since E(g,) = 1 we have a =1
and E(ln ¢;) = €, (cf. Sections 3.3 and 1.3). Since In is a concave function, we
conclude that

E(Ing) > M\E(Ing,) + .- +1,E(Ing,) = (A, + - +1,)C,,
and the proof follows. ]
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5. A MARTINGALE INEQUALITY

In this section, we prove a general result from the probability theory. Although the
technique is quite standard, we present a complete proof here, since we need our
estimate in a particular form suitable for proving the main results of the paper.

5.1. Conditional Expectations

In this subsection, we summarize some general results on measures and integra-
tion, which we exploit in Lemma 5.2 below. As a general source, we
use [4].

Let us fix a probability measure w on the Eulidean space R™. Suppose that w is
absolutely continuous with respect to the Lebesgue measure and let (x) be the
density of u. Suppose that we have k copies of the Euclidean space R™, each
endowed with the measure w. We consider functions f: R” X --- X R™ — R that
are defined almost everywhere and integrable with respect to the measure v, = u
X -+ X . Let f(uy,...,u,) be such a function. Then for almost all (k — 1)-tuples
(uy,...,u,_y) with u, € R™, the function f(u,,...,u,_,,-) is integrable (Fubini’s
theorem) and we can define the conditional expectation E,(f), which is a function
of the first k — 1 variables u,,...,u,_;,

Be(F) (et = [ fQcttm ) () d
Fubini’s theorem implies that

E(f) =E, - E(f),

where E is the expectation with respect to the product measure v,. Tonelli’s
theorem states that if f is »,-measurable and nonnegative almost surely with
respect to v, and if E; - E,(g) < + o, then f is v,-integrable.

If f(u,,...,u,) is a function of i <k arguments, we may formally extend it to
R™ X -+« X R™ (k times) by letting f(uy,...,u,) =f(uy,...,u). If flu,,...,u;) is
v-integrable, then f(u,,...,u,) is v -integrable.

We note the following useful facts:

(5.1.1) The operator E, is linear and monotone, that is, if f(u,,...,u,) <
g(uy,...,u,) almost surely with respect to v,, then E,(f) < E,(g) almost
surely with respect to v, _;.

(5.1.2) If f(uy,...,u,) is integrable and g(u,,...,u;), i <k is a vi-measurable
function, then E, (gf) = gE,(f).

(5.1.3) If f= « is a constant almost surely with respect to v, then E, (f) =a
almost surely with respect to v, _;.

In this section, we prove the following technical lemma (a martingale inequality).

5.2. Lemma. Suppose that f,(u,,...,u,), k=1,...,nis an integrable function on the
product R™ X -+ X R™ of k copies of R™, and let v,=puX - X u be the nth
product measure. Suppose that for some a,b € R and all k=1,...,n,

a<E.(f,) and Ek(sz) < b almost surely with respect to v, _,.
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Then for any 6 > 0,

b

1 n
v (tyyeestty): - Y filuy,.uy) <a—39 <
k=1

Proof. Let g, =E/(f,) and let h, =f, —g,. Since g, does not depend on u,,
using (5.1.2), we get

Ek(hi) = Ek(sz) —2E (g fi) + Ek(glg) = Ek(sz) -8
Hence we may write
fi=8i+h, whereE, (h,)=0,g,>a, and E(h;)<b,

almost surely with respect to v,_,. Let
1 n
H(up,..,u,)=— Y h(ug,...,u;).
=1
Now for U = (u,,...,u,) we have
1 n
v,,{U: — Y filuy,eoouy) <a— 8}
=1

1 n
= Vn{Ui HU)+— Y g(uy,.yup_y) ﬁa—S}
k=1

E(H?
82

<y{U:HU) < -6} < (we used Chebyshev’s inequality)

1 2 5 2
52,2 k§1E(hk) + §52n2 ISl_g;snlf‘(hihj)'

We note that it is legitimate to pass to global expectations E here. Indeed, since
hi is nonnegative and E, h; <E, fZ <b it follows by formulas (5.1.1) (5.1.3), and
Tonelli’s theorem that hj is v,-integrable. Since |h;h;| < (h; + h?)/2, the products
h;h; are also v,-integrable. Therefore, H % is v, -integrable.

Since h, does not depend on u.,,...,u,, using (5.1.2), we have E(h})=
E, - E, h; =E, ---E, h; and since E 1} <b almost surely on v,_,, by (5.1.1) and
(5.1.3) we get that E(h}) <b for each k =1,..., n. Furthermore, since h; does not
depend on u;, ,...,u,, using formulas (5.1.2) and (5.1.3) we get that for j >,

E(h,.hj) =E, --~En(hihj) =E, ---Ej(h,»hj) =E, ~~Ej,1hiEj(hj) =0.

The proof now follows. u
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6. PROOFS

As we noted in Section 3.4, Theorems 3.1.1-3.3.1 imply Theorems 2.1.1-2.3.1.
Proofs of Theorems 3.1.1, 3.2.1, and 3.3.1 are very similar. Theorem 3.3.1 provides
the best approximation known so far and it is the hardest to prove, so we present
its detailed proof here. Theorem 2.1.1 is the easiest to prove, so we present its
detailed proof as well, because there the main ideas of the general method can be
easily traced. Then we describe the modifications one needs to make to prove
Theorems 2.2.1, 3.1.1, and 3.2.1.

Proof of Theorem 2.1.1. The proof of part 1 follows the proof that the Godsil—
Gutman estimator is unbiased (see Chap. 8 of [23]). Let us write « as a polynomial
n u;,

2

n
a=(detB)’=| ¥ sgn 0‘_1_[1 Uio i)Y 4io i)
i

oES,

n
Z (sgn o) (sgn o) 1_[1 Uig(ihUioyi) | Yioy()Fioy(i) -
i

01, 0,ES8,
For every pair of permutations o, 0, €S,, the corresponding summand is a
monomial in variables u;;. Each variable u;; from the monomial occurs either with

degree 2 if o(i) = o,(i) =j, or with degree 1 otherwise. Next, we observe that
unless oy = 0,, the corresponding summand contains some u;; with degree 1. Since
the expectation of u;; is 0, the expectation of the whole monomial is 0. Hence,

5 n
E(a) = E (sgno) E( l_lluiza(i)aia(i))-
UES’I =

Since u;; are independent and E(u,;)* =1, we conclude that E(a) = per A.
Part 2 follows from part 1, the nonnegativity of «, and the Chebyshev inequality.

To prove part 3, let us introduce vectors u,,...,u, € R”", where
;= (U, Uy,
is the ith row of the matrix u;;. Thus uy,...,u, are vectors sampled independently
from the standard Gaussian distribution in R” and the output a = a(u,,...,u,) is

a function of u,,...,u

s
a:R"X - XR"—>R.

Since a=(det B)* and the determinant is a linear function in every row, we
conclude that for each i =1,...,n, the output « is a quadratic form in u; € R",
provided uy,...,u;_y,u;,,...,u, are fixed. Furthermore, since a >0, we deduce
that « is a positive semidefinite quadratic form in u;.

As in Section 5.1, let us introduce the conditional expectation E, with respect to
u,, k=1,...,n. Hence we can write

perA=E(a)=E, ---E, a(u,...,u,).

Let o, (uy,...,u,)=E, ., --E (a). Thus e, is a polynomial function in the first k
vectors uy,...,uU;, and «, is a positive semidefinite quadratic form in u,, provided



50 BARVINOK

Uy,...,u;,_, are fixed. Naturally, o, = per A and «, = «. Without loss of general-
ity, we may assume that per 4 > 0, for if per A =0, then by part 2, « =0 almost
surely and part 3 is obvious. Hence o« (u,,...,u,)>0 for almost all k-tuples
(Uyy...,up).

We may write

@ lil ap(Uy,...,uy)

perA o1 ap_(up,e. i)’

and, therefore,

1 634 1 n ak(ul,...,uk)
—In = n .
n perdA n ;= o (up,...u, )

We observe that for each fixed (k — 1)-tuple (uy,...,u,_,) such that o, _(u,,...,
u,_ ) # 0, the ratio

ap(Uyy..nly)

o (U, up )

is a positive semidefinite quadratic form in u, whose expectation is 1. Therefore by
Theorem 4.2,

¢, <E,

ap(ty,y. .. uy) )
In ,
(st )

and

<8.

E(ln2 o (s uy) )
k

o q(Upseesty_y)

Now we apply Lemma 5.2 with

a(Uy,...,uy)

oty Uy _y) ’

filuy,...;u,) =1In a=G¢,, b=8, and 6= —Ine,

to conclude that for any 1 > € > 0,

1 8
Probability{ —1 <G, +1 < ,
rODabIy nnperA e
and, since ¢, = exp{C€} (see Section 1.3),
Probability{e < (¢,€)" per A} < :
roba 11y{a (cy€)” per } e
The proof of part 3 now follows. [ |

As we see, the proof is based on the following three observations:
First, the output « is a nonnegative number. Second, the expectation of « is
the value we are seeking to approximate. Third, « can be represented as a function
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a(uy,...,u,) of vectors u;, drawn independently from a Gaussian distribution in
R", so that for any fixed u,,...,u;_{, 4;;,-...,U,, the function « is a quadratic
form in u,.

To obtain the proof of Theorem 3.1.1, we need to do some minor modifications.
First, we note that it is clear that « is nonnegative and that a(u,,...,u,) is a
quadratic form in u;, provided u,,...,u;_{,u;,,-..,u, are fixed. The proof that «
provides an unbiased estimator is very similar to that of Theorem 2.1.1. Let
wi = Tpuy, wi, = (@y, . .., g,). Then the covariance matrix of w, is T, T;F = O, (cf.
Section 4.1), so E(w,, w;;) = q;; «, where Q, = (g;; ;). Furthermore, vectors w; and
w; are independent for i # j. Now

n 2
2
E(a) =E(det[w,,...,w,]) =E| ) sgn a-k]_[lwka(k))

gES,

=E Z (sgn o) (sgn ‘Tz)kljlwkal(k)wkaz(k))

o, 0,ES,

Z (sgn o) (sgn o) kljl E( wk(rl(k)wk(rz(k))

01, 0,E€S8,

> (sgn o) (sgn o) kljl%l(k)az(k),k =D(0Q,..-,0,)

01, 0,ES,

by (1.2.1).

To prove Theorems 2.2.1 and 3.2.1, we note that, if u,...,u;_, u; ..., u, €C"
are fixed, « is a Hermitian form in u; € C", so instead of part 1 of Theorem 4.2
one should refer to Theorem 4.3.

The proof of Theorem 3.3.1 is much simplified if we use the exterior algebra
formalism (see, for example, Section 28 of [26]).

6.1. Exterior Algebra

Let IV be a complex vector space and suppose that dim V" =m. Recall that the
exterior algebra AV, as a vector space, is the direct sum AV = @, AFV, where
A*V is spanned by wedge products,

Dy A = AUy, v,eEV,i=1,...,k,
which are linear in each argument,
Uy A AUy AN (at)+ BUY) Avj A Ay
=a(U A AU AVIAD 1 A ADy)
FB(U A AUy ANV AV AN ATy)
and skew-symmetric,
Ugy N AUgy = (sgn a ) (vy A ==+ Avy),

for any permutation o € S,. Vectors from A*V are called k-vectors.
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Let us fix a basis e, ..., e, of V, thus identifying J'= C™. For an m X m matrix
U with the columns u,,...,u,, € C™ we have

u A Au,, = (detU) (e, A - Aey,).
We identify A" (C™) = C, so we write simply
u, A+ ANu,, =detlU.
Let x=(¢&,,...,¢,), y=(n,...,m,) € C™. Then

xAy= X (fi”lj_fj”k)(ei/\ej)- (6.1.1)

1<i<j<m

6.2. Proposition. For a vector u € H", let us define a 2-vector w(u) € A*C*" as

follows: if u=a+ib + jc + kd with a,b,c,d € R", we let
w(u)=(a+ib,—c+id) A(c+id,a—ib).

Then

1) For any u e H", w(u) = w(ui) = o(uj) = o(uk).

(2) Suppose that H is a quaternionic n X n matrix with the columns u,,...,u, € H".
Let us write H=A +iB + jC + kD for n X n real matrices A, B, C, and D
and let H: be the 2n X 2n complex matrix,

H. - A+iB C+iD
€ —C+iD A-1IB)’
Then

det Ho = (= )" 2 0(u)) A -+ A w(u,).

(3) Let T be an n X n real matrix and let Q =TT*, Q = (q;;). Suppose that u is
sampled from the standard quaternionic Gaussian distribution in H". Then the
expectation of o(Tu) is the 2-vector,

n
Z qij(ei A ej+n)7
ij=1

where e,,...,e,, is the standard basis of C*".

n

Proof. Part 1 is proved by direct computation. Let us denote v, = (a + ib, —c + id),
v,=(c+id,a—ib), so w(u)=v, Av,. Then w(ui)=_(>Gv)A(—iv,)=0,Av,,
ouj)=(—v,) Avy=v; Av,, and o(uk) = (iv,) A (iv) = —(v, Avy) =0, AD,.

It is convenient to think of vectors as columns of numbers, so we write

[ a+ib c+id
w(u)_(—c+id)/\(a—ib)’

for u=a+ib+jc + kd.
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To prove part 2, let us denote the kth column of A4, B, C, and D by a,, b, c,,
and d,, respectively. Then

d A+iB C+iD a, + lbl a, + lbn €y + ldl
et(—c+iD A—iB)_ —c, +id, —c, +id, | "\ a, —ib,
c, +id,
a,—ib, |’
Rearranging the vectors in the wedge product, we get
det( A+iB - C+iD) _(_pyuo-vyz| @ +ib, ¢ tidy|
-C+iD A-iB —c, +id, a, —ib,
a, +ib, ¢, tid,
—c, tid, a, —ib,

=(=D"" 2 o(u) A A w(uy).

To prove part 3, let u =a +ib + jc + kd for a,b,c,d € R". Then Tu = Ta + iTh +
jTc + kTd and

o(Tu) = Ta +iTh Tc +iTd
—Tc +iTd Ta —iTb )"
Let Ta = (ay,..., ), Tb=(By,..., B,), Tc =(yy,...,7,), and Td = (§,,..., §,) be
the coordinates of Ta, 7b, Tc, and Td, respectively. Since a, b, ¢, and d are
sampled independently from the Gaussian distribution in R” with the covariance
matrix (1)1, it follows that Ta, Tb, Tc, and Td are sampled from the distribution
with the covariance matrix (3)Q (see Section 4.1), so
qi;
E( aiaj) = E( B; ﬁ]) = E(%?’j) = E(aiéj) = T],
and all other pairs from the set «y, By, v, 61,---5 @, By V> 6, are uncorrelated.
Using (6.1.1), we can write

o(Tu) =1+ 11 + 111,

where
I= Z ((ak+in)(ys+ias) _(as+iﬁ.¥)(yk+i5k))(ekAes)’
1<k<s<n
II: Z ((ak+iﬁk)(as_iﬁs) _(_Ys+i65)(7k+i8k))(ek/\es+n)’
1<k,s<n
and
a1 = Z ((_yk+i6k)(as_iﬁs)_(_’YS+i6s)(ak_in))(ek+n/\es+n)‘
1<i<s<n

It is seen that the expectations of the first and the last sum are 0, whereas the
expectation of the second sum is

Z ka(ek/\eern)' u

1<k,s<n
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Proof of Theorem 3.3.1. The output « is a nonnegative real number, since it is the
reduced norm (squared Dieudonné determinant) of a quaternionic matrix (see
Chap. 1V, Section 1 of [3]). A direct proof of this fact is as follows (cf. [3]). One can
observe that det H. =det H, so a=det H. is a real number. The correspon-
dence H — H_ is an embedding of the group GL,(H) of the nondegenerate n X n
quaternionic matrices in the group GL,,(C) of 2n X 2n nondegenerate complex
matrices. The group GL,(H) is known to be connected, therefore det H. can not
change sign as H changes within the group. Substituting the identity matrix H =1,
we conclude that det H . is positive for any H € GL,(H). Since the group GL,(H)
is dense in the space of all n X n quaternionic matrices H, we conclude that the
output « is nonnegative.

Let us prove that the expectation of « is the mixed discriminant D(Q;,...,Q,).
Applying part 2 of Proposition 6.2, we can write

a=a(uy,...,u,)=(—D)""V20(Tu) A Aw(Tu,).

Let E, be the conditional expectation with respect to u, € H". Since the wedge
product is linear in every term, we may write

E(a)=E, E,(a)=(-)""""E(o(Tuy)) A - AE,(a(T,u,)).

Let Q=(q,;,) for k=1,...,n and 1 <i, j <n. Applying part 3 of Proposition 6.2,
we get

n
Z ‘Iij,n(ei A ej+n) .
ij=1

n
[n(n—1)]/2
E(a)=(—-1) / ( Z qz‘j,l(ei/\ej+n))/\"'/\
ij=1

Rearranging the terms in the wedge product and canceling wedge products
containing repeated vectors, we get

n
[(n—1]1/2
E(a)=(-1)""" ) (kl_[l%kjk,k)en Nejpr AN Ne Nej oy

[T Y R A

n
_ [n(n—1]1/2
=(-1) ) (l!._.[lqal(k)az(k),k)eol(l) Nesayr1 N

01,0,E€S,

NegmNe

o(n oy(n)+n

e;Ne, (N

n
[n(n—1)]1/2
=(-1) o Z (sgn o) (sgn U2)(]£[1q(rl(k)rr2(k),k

01,0,€S8,

Ae, Ae,,

e N ANe, Ne, A

h (sgn oy)(sgn o) ( kljl 9,(kyo (k) k

01,0,ES,

Ne,,
=D(Q,,...,0,) by (1.2.1)

and part 1 is proven.
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Part 2 follows by part 1 and the Chebyshev inequality.
Let us prove part 3. As in the proof of Theorem 2.1.1, we introduce conditional
expectations,

ap(up,..u) =E; - E,(a)
= (=D)" "2 w(Tu) A -
AN o(Touy) A Ek+1(w(Tk+1uk+l)) ZAREAA En(w(Tnun))‘

We have ay =« and @, =D(Qy,...,0,).

Since the wedge product is linear in every term, we conclude that for any fixed
Uy,...,U,_q, the function o, (u,,...,u,_,u,) is a (necessarily positive semidefinite)
quadratic form in u, € H". Furthermore, since the multiplications by a real matrix
T and the quaternion units i, j, and k commute, by part 1 of Proposition 6.2 we
conclude that a,(u,,...,u,_,,u,) is invariant under the right multiplication of u,
by i, j, and k.

Without loss of generality, we may suppose that D(Q,,...,Q,) >0, since if
D(Q,,...,0,)=0, by part 1 we have a =0 almost surely and the proof would
follow immediately. Since a,(u,...,u,) is a polynomial in u,,...,u,, we conclude
that o, (u,,...,u,) > 0 almost surely.

We may write

a no oy, Uy)
D0 H
(Q1;-..,0 =1 g (g, Uy 1)
and, therefore,
1 a 1z o (... uy)

—-n———— = In .
n D(Qy,....,0,) n /=, o (uy,...,u;_y)

We observe that for each fixed (kK — D-tuple (uy,...,u,_,), such that «,_,(u,,...,
u,_,) # 0, the ratio,

o (uy,... uy)
(g5 Ug_y)

is a positive semidefinite quadratic form in u,, which is invariant under the right
multiplication by i, j, and k and which has expectation 1. Therefore, by Theorem
4.4,

¢, <E;|In

ap(ty,... uy) )
o (U, up ) ’

and by part 2 of Theorem 4.2,

E,|In?

o (Uyy. .o uy) )
<8.
aq(Uys.o U y)
Now we apply Lemma 5.2 with

a(uy,...,uy)

o (g5 U _y)

filuy,...;u,) =1In a=C,,b=8, and 6= —Ine,
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to conclude that for any 1> e > 0,

1 o 8
Probability{ —In———— < ¢, +1 <
robability nnD(Ql,...,Qn)_ S e
and, since ¢, = exp{¢,} (cf. Section 1.3),
Probability{e < (¢,€)"D(Q;,...,0,)} < e
The proof of part 3 now follows. ]

7. POSSIBLE RAMIFICATIONS

It appears that our method can be used in the following general situation. Suppose
we want to approximate some quantity «, of interest. Suppose that we have a
function,

a:R™ X - XR™ =R,

where each space R™: is endowed with a Gaussian probability measure u,. Suppose

that the function a(u,...,u,) has the following properties:
(a) The value a(u,,...,u,) is a nonnegative number, which can be efficiently
computed for any given vectors u, € R™,...,u, € R™.
(b) For any fixed uy,...,u;_j,U; 1,...,U,, the value a(u,,...,u,) is a quadratic

form in u; € R™.
(¢) The expectation of a with respect to the product measure w, X -+ X p,, is
the quantity «,.

Then we get an efficient randomized algorithm to approximate «, within a
simply exponential factor O(c"), where 1>c¢ >0 is an absolute constant. The
algorithm consists of sampling u,,...,u, independently and at random and com-
puting a(u,,...,u,).

n

Example (Sums of Subpermanents). Let A = (a;;) be a rectangular n X m matrix,
m>n. For a subset IcC{l,...,m} of the cardinality n, let A, be the nXn
submatrix of A4 consisting of the columns whose indices are in I. Let

PER A= ) perA,,
[l=n

where the sum is taken over all subsets I C{1,...,m} of the cardinality n.

One can generalize Algorithm 2.1 to come up with an estimator for PER A: let
us sample numbers u;; independently and at random from the standard Gaussian
distribution in R, cf. Section 2.1. Let us compute an n X m matrix B = (b;;), where
b =u, j\/a,- ;- Finally, let a=det(BB*). Thus « is a nonnegative numbers. Using
an identity from linear algebra (see the Binet—Cauchy formula in Sect. 2 of [26]),
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we can write

det(BB*) = Y (det B,)’,
[Il=n

where the sum is taken over all subsets I C{1,...,m} of the cardinality n» and B, is
the submatrix consisting of the columns indexed by I. Since the expectation of
every summand is the corresponding permanent per A; (see Theorem 2.1.1), we
conclude that « is an unbiased estimator. Let us introduce vectors u; € R™,
u,=;,...,u;,) for i=1,...,n. Then « is a function of wu,...,u, and
a(uy,...,u,) satisfies the properties (a)-(c) above. Hence we get a randomized
polynomial time algorithm that approximates « within a factor of O(c"). Note that
n is the smaller dimension of the matrix A. As in Theorem 2.1.1, we have ¢ = 0.28.
Similarly, a complex estimator can be constructed, which gives ¢ = 0.56. A quater-
nionic version with ¢ = 0.76 is more complicated; it requires computation of a
certain Pfaffian.
It appears that the condition (b) can be replaced by a weaker condition:

(b°) For any fixed wuy,...,u;_q,u;yq,...,u,, The function a(u,,...,u,) is a
quadratic polynomial (not necessarily homogeneous) in u;.

One can construct some interesting estimators satisfying this weaker property.

Example (Approximating the Hafnian). Let A be an n X n nonnegative symmet-
ric matrix. Suppose that » is even, n = 2k. The number,
1

haf A = x

k
Z Haa(Zi—l),o(zi)

gES, i=1

is called the hafnian of A, see Section 8.2 of [25]. Thus haf A is the sum of all
monomials a; ; --- a; ., where {i}, j,},...,{i,,j,} constitutes a partition of the set
. ll]l lAjk . . . . .
{1,...,n} into unordered pairs. For example, if A is the adjacency matrix of an
undirected graph, haf A4 is the number of perfect matchings in the graph.
Let us sample u;;: 1 <i <j <n independently and at random from the standard
Gaussian distribution in R. Let us construct a skew-symmetric matrix B = (b)),

where

upfa;, ifl<i<j<n,
b;; = —u;pnfa;, fl<j<i<n,
0, ifi=j.
Let a=det B.
Let us introduce vectors u; € R"™', i=1,...,n—1 where u;=(u;;, {,...,u;,).
Then « is a function of u,,...,u,_,. One can prove that « satisfies the properties

(a), (b°), and (c) (cf. Chap. 8 of [23]) and that with high probability @ approximates
haf A within a factor of O(c"), where 1> ¢ > 0 is an absolute constant. Similarly, a
complex estimator can be constructed and the author has a conjecture what a
quaternionic version may look like.
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Finally an interesting question is what can we gain (or lose) by further relaxing
(b°) to

(b*) For any fixed wu,...,u;_q,U;,q,...,U,, the function a(u,,...,u,) is a
polynomial of a fixed (independent of n) degree.

These and related questions will be addressed elsewhere.

8. APPLICATIONS OF MIXED DISCRIMINANTS TO COUNTING

For a vector x e R", x = (§,,..., &), let us denote by x ® x the n X n matrix whose
(i, th entry is &-&. Thus x ®x is a positive semidefinite matrix whose rank does
not exceed 1.

Applications of mixed discriminants to problems of combinatorial counting are
based on the following simple result.

8.1. Lemma. Lef u,,...,u, be vectors from R". Then
D(u, ®uy,...,u,®u,) = (det[ul,...,un])z,

the squared determinant of the matrix with the columns u,,...,u,.
Proof. Let ey,...,e, be the standard orthonormal basis of R". Let G be the
matrix with the columns u,...,u,. Then u; = Ge;, u; ® u; = G(e; ® ¢,)G* and from
the definition of the mixed discriminant (see Section 1.2), we get

n

D(u,®uy,...,u,®u,) = ————det(t,u; ®u, + - +t,u, ®u,)
at, -+ dt,
n

J
= Wdet(G(tlel ®e, + - +1,e, ®€H)G*)

n

n

= det(GG*)mdet(t]el ®e + - +1,e, ®€n)

1 n
= (det G)’.
|
Suppose we are given a rectangular n X m matrix A4 with the columns u;,...,u,,,
which we interpret as vectors from R”. Suppose that for any subset I C{1,...,m},
I={i,,...,i,}, the determinant of the submatrix A, =[u,,...,u, ]is either 0, —1,

or 1. Such an A represents a unimodular matroid on the set {1,. ,m} and a subset
I with det A4, # 0 is called a base of the matroid (see [29]).
Suppose now that the columns of A are colored with »n different colors. The

coloring induces a partition {1,...,m}=J, U --- UJ,. We are interested in the
number of bases that have precisely one index of each color. Let us define the
positive semidefinite matrices Q,,...,Q, as follows:

O,= Y u®u, k=1,..,n.

iel,
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Then the number of bases can be expressed as D(Q,,...,Q,). The mixed discrimi-
nant is linear in every argument; that is,

D(Ql""’Qifl’aQZ'—i_:BQ;/’Qz#l"":Qn)
= aD(Qlw--aQi—lsQ;aQHls---’Qn)
+BD(Qy5--,Qi-1.97, Qi 15+, Qy)

(see, for example, [21]). Using the linearity and Lemma 8.1, we have

D(Q,,....0,)= X  D(u,®u,....u; ®u, )

I={i,..., i}

Y (detfuyeu 1),

where the sums are taken over all n-subsets I, having precisely one element of
each color, and the proof follows. R. Stanley obtained a similar formula which
involves the mixed volume of zonotopes instead of the mixed discriminant [28].

Example (Trees in a Graph). Suppose we have a connected graph G with n
vertices and m edges. Suppose further that the edges of G are colored with n — 1
different colors. We are interested in spanning trees 7 in G such that all edges of
T have different colors. Let us number the vertices of G by 1,...,n and the edges
of G by 1,...,m. Let us make G an oriented graph by orienting its edges
arbitrarily. We consider the truncated incidence matrix (with the last row removed)
A=(a;)for1<i<n—1land 1<j<m asan(n—1)Xm matrix such that

1, if i is the beginning of j,
a;=4{ —1, ifiistheendof j,
0, otherwise.

The spanning trees of G are in a one-to-one correspondence with non-degenerate
(n —1) X (n —1) submatrices of A and the determinant of such a submatrix is
either 1 or —1 (see, for example, Chap. 4 of [10]). Hence counting colored trees
reduces to computing the mixed discriminant of some positive semidefinite matri-
ces, computed from the incidence matrix of the graph.

Note Added in Proof: Applications of Mixed Discriminants described in Section
8 are known, see Chapter V of R. B. Bapat and T. E. S. Raghavan, Nonnegative
Matrices and applications, Cambridge University Press, 1997.
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