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ABSTRACT: We present real, complex, and quaternionic versions of a simple randomized
polynomial time algorithm to approximate the permanent of a nonnegative matrix and, more
generally, the mixed discriminant of positive semidefinite matrices. The algorithm provides
an unbiased estimator, which, with high probability, approximates the true value within a

Ž n. Ž .factor of O c , where n is the size of the matrix matrices and where cf0.28 for the real
version, cf0.56 for the complex version, and cf0.76 for the quaternionic version. We
discuss possible extensions of our method as well as applications of mixed discriminants to
problems of combinatorial counting. Q 1999 John Wiley & Sons, Inc. Random Struct. Alg., 14,
29]61, 1999
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1. INTRODUCTION

In this paper, we construct a family of randomized polynomial time algorithms to
approximate the permanent of a nonnegative matrix. In particular, one of our

Ž .algorithms the quaternionic algorithm of Section 2.3 provides the best known
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polynomial time approximation for the permanent of an arbitrary nonnegative
matrix. Our approximation algorithms generalize naturally to mixed discriminants,
quantities of independent interest. Possible extensions of our method and applica-
tions of mixed discriminants to problems of combinatorial counting are discussed
in the last two sections.

1.1. Permanent

Ž .Let As a be an n=n matrix and let S be the symmetric group, that is thei j n
� 4group of all permutations of the set 1, . . . , n . The number,

n

per As aÝ Ł is Ž i.
is1sgSn

is called the permanent of A. We assume that A is nonnegative, that is a G0 fori j
all i, js1, . . . , n. If A is a 0-1 matrix, then per A can be interpreted as the number
of perfect matchings in a bipartite graph G on 2n vertices ¨ , . . . , ¨ and u , . . . , u ,1 n 1 n

Ž .where ¨ , u is an edge of G if and only if a s1. To compute the permanent of ai j i j
given 0-1 matrix is a aP-complete problem and even to estimate per A seems to be
difficult. Polynomial time algorithms for computing per A are known when A has

w xsome special structure, for example, when A has a small rank 5 , or when A is a
Ž w x w x.0-1 matrix and per A is small see 14 and Section 7.3 of 25 .

Since the exact computation is difficult, a natural question is how well one can
approximate the permanent in polynomial time. In particular, is it true that for any

Ž .e)0 there is a polynomial time possibly randomized algorithm that approximates
the permanent of a given matrix within a relative error e? In other words, does
there exist a polynomial time approximation scheme? Polynomial time approxima-

w xtion schemes are known for dense 0-1 matrices 15 , for ‘‘almost all’’ 0-1 matrices
Ž w x w x.see 15, 12 , and 27 and for some special 0-1 matrices, such as those correspond-

Ž w x .ing to lattice graphs see 16 for a survey on approximation algorithms . However,
Žno polynomial time approximation scheme is known for an arbitrary 0-1 matrix see

w x .18 for the fastest known ‘‘mildly exponential’’ approximation scheme .
w xIn 6 , the author suggested a polynomial time randomized algorithm, which,

given an n=n nonnegative matrix A, outputs a nonnegative number a approxi-
mating per A within a simply exponential in n factor. The algorithm uses random-
ization, so a is a random variable. The expectation of a is per A and with high

Ž .probability say, with probability at least 0.9 we have

cn per AFaFC per A , 1.1.1Ž .

Ž .where C and c)0 are absolute constants with cf0.28 . However, as usual, the
probability 0.9 can be improved to 1ye by running the algorithm independently
Ž y1 .O log e times and choosing a to be the median of the computed a s.

w xRecently, N. Linial, A. Samorodnitsky, and A. Wigderson 22 constructed a
Ž .polynomial time deterministic algorithm, which achieves 1.1.1 with Cs1 and

cs1ref0.37. The algorithm uses a scaling of a given nonnegative matrix to a
doubly stochastic matrix.
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In this paper, we present a family of randomized polynomial time algorithms for
approximating the permanent within a simply exponential factor. We present real,
complex, and quaternionic versions of an unbiased estimator, each achieving a
better degree of approximation than the previous one. Our estimators produce a
number a whose expectation is the permanent and which with high probability

Ž .satisfies 1.1.1 , where cf0.28 for the real algorithm, cf0.56 for the complex
algorithm, and cf0.76 for the quaternionic algorithm. The last algorithm provides
the best known polynomial time approximation for the permanent of an arbitrary
nonnegative matrix. The algorithms have a much simpler structure and are easier

w xto implement than the algorithm of 6 .
Ž w x.The first version see 7 of the paper contained the real algorithm only. The

w xcomplex algorithm was suggested to the author by M. Dyer and M. Jerrum 8 .
Building on the complex version, the author constructed the quaternionic version.

1.2. Mixed Discriminant

Let Q , . . . , Q be n=n real symmetric matrices and let t , . . . , t be variables.1 n 1 n
Ž .Then det t Q q ??? qt Q is a homogeneous polynomial of degree n in t , . . . , t .1 1 n n 1 n

The number,

 n

D Q , . . . , Q s det t Q q ??? qt QŽ . Ž .1 n 1 1 n n t ???  t1 n

is called the mixed discriminant of Q , . . . , Q . Sometimes the normalizing factor1 n
Ž w x. Ž .1rn! is used cf. 21 . The mixed discriminant D Q , . . . , Q is a polynomial in the1 n

Ž .entries of Q , . . . , Q : for Q s q : i, js1, . . . , n, ks1, . . . , n, we have1 n k i j, k

n

D Q , . . . , Q s sgn s sgn s q . 1.2.1Ž . Ž . Ž . Ž .Ý Ł1 n 1 2 s Žk .s Žk . , k1 2
ks1s , s gS1 2 n

The mixed discriminant can be considered as a generalization of the permanent.
Ž .Indeed, from 1.2.1 we deduce that for diagonal matrices Q , . . . , Q , where1 n

� 4Q sdiag a , . . . , a , we havei i1 in

D Q , . . . , Q sper A , where As a .Ž . Ž .1 n i j

Mixed discriminants were introduced by A. D. Aleksandrov in his proof of the
Žw x w x.Aleksandrov]Fenchel inequality for mixed volumes 2 , see also 21 . The relation

between the mixed discriminant and the permanent was used in the proof of the
Ž w x.van der Waerden conjecture for permanents of doubly stochastic matrices see 9 .

Ž .It is known that D Q , . . . , Q G0 provided Q , . . . , Q are positive semidefinite1 n 1 n
Ž w x.see 21 . Just as it is natural to restrict the permanent to nonnegative matrices, it
is natural to restrict the mixed discriminant to positive semidefinite matrices.

Mixed discriminants generalize permanents but they also have some indepen-
dent applications to computationally hard problems of combinatorial counting,
some of which we describe in this paper. Suppose, for example, we are given a
connected graph with nq1 vertices, whose edges are colored in n colors. Then the
number of spanning trees having exactly one edge of each color can be expressed
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as the mixed discriminant of some n positive semidefinite matrices, explicitly
computed from the incidence matrix of the graph. Mixed discriminants play an

Ž w x.important role in convex and integral geometry see 21 and the problem of their
Žefficient computation]approximation is not less interesting but certainly less

.publicized than the problem of efficient computation]approximation of perma-
nents.

w xIn 6 , the author suggested a randomized polynomial time algorithm, which,
given n positive semidefinite matrices Q , . . . , Q , computes a number a , which1 n
with high probability satisfies the inequalities,

cnD Q , . . . , Q FaFC ?D Q , . . . , Q ,Ž . Ž .1 n 1 n

Ž .where c)0 and C are absolute constants with cf0.28 . In this paper, we
Ž .construct a family of algorithms again, real, complex, and quaternionic , which

Ž . Ž . Ž .achieve cf0.28 real , cf0.56 complex , and cf0.76 quaternionic . The algo-
rithms are natural generalizations of the permanent approximation algorithms. The

Ž .real algorithm Section 3.1 can be interpreted as a ‘‘parallelization’’ of the
w xalgorithm from 6 . One can note that the permanent approximation algorithm of

w x22 does not obviously generalize to mixed discriminants.
The paper is organized as follows.
In Section 2, we describe the permanent approximation algorithms. In Section 3,

we describe the mixed discriminant approximation algorithms. In Section 4, we
prove some general inequalities for quadratic forms on Euclidean spaces endowed
with a Gaussian measure. The results of the section constitute the core of our
proofs. In Section 5, we prove a technical martingale-type result, which we use in
our proofs. In Section 6, we prove the main results of the paper. In Section 7, we
discuss possible extensions of our method. In particular, we discuss how to
approximate hafnians and sums of subpermanents of a rectangular matrix. In
Section 8, we discuss some applications of mixed discriminants to counting.

1.3. Notation

Our approximation constants belong to a certain family which we define here. For
a positive integer k let x , . . . , x be independent real valued random variables1 k
having the Gaussian distribution with the density

2k kx
c x s exp y .Ž . ( ½ 52p 2

Thus the expectation of x is 0 and the expectation of x 2 is 1rk, so the expectedi i
2 2 Ž 2value of x q ??? qx is 1. Let us define C to be the expectation of ln x1 k k 1

2 .q ??? qx ; that is,k

kr2 2 2k k x q ??? qxŽ .1 k2 2C s ln x q ??? qx exp y dx ??? dx .Ž .Hk 1 k 1 k½ 5ž / k2p 2R

In particular, we will be interested in the following values,

C fy1.270362845, C fy0.5772156649, and C fy0.2703628455.1 2 4
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One can show that C sygy ln 2, C syg , and C s1ygy ln 2, where gf1 2 4
0.5772156649 is the Euler constant. Let us define

� 4c sexp C .k k

In particular,

eyg

ygc s f0.2807297419, c se f0.5614594836, and1 22

e1yg

c s f0.7631025558.4 2

It turns out that c is the approximation constant in the real algorithms, c is the1 2
approximation constant in the complex algorithms, and c is the approximation4
constant in the quaternionic algorithms.

One can argue that the quaternionic version of our algorithms is more efficient
than the complex version and that the latter is more efficient than the real version.
However, the author believes that all three versions are of interest, and, conse-
quently, discusses all three in detail. The general method can be extended to other

Ž .problems of approximate counting see Section 7 and it may happen, for example,
that there is an obvious real extension, whereas the existence of a quaternionic
extension is problematic.

2. PERMANENT APPROXIMATION ALGORITHMS

In this section, we present the three versions of the permanent approximation
algorithm: real, complex, and quaternionic. The algorithms are very similar: their

Ž .input is an n=n nonnegative matrix As a and the output is a nonnegativei j
number a , approximating per A. Our algorithms are randomized. In the course of
the computation, we generate a random variable, so the output a is a random
variable. Specifically, we use sampling from the Gaussian distribution in R1 with

2 2yx r2 s'Ž . Ž . Žthe density c x s 1rs 2p e . However, as is known see, for example,s

w x.Section 3.4.1 of 20 , sampling from the Gaussian distribution can be efficiently
Ž .simulated from the standard Bernoulli distribution sampling a random bit . The

output a is an unbiased estimator for per A and it turns out that a is unlikely to
Ž .overestimate per A by a large constant factor easy to prove and unlikely to

Ž n.underestimate per A by a factor of O c , where c)0 is an absolute constant
Ž .harder to prove . For example, it follows that for all sufficiently large n, the
probability that a satisfies the inequalities,

cn per AFaF3 per A

is at least 0.6. However, as we noted in Section 1, for any e)0 we can improve the
Ž y1 .probability to 1ye by running the algorithm O log e times and choosing the

w xmedian of the computed a s, cf. 17 . We can choose cs0.28 in the real algorithm,
cs0.56 in the complex algorithm, and cs0.76 in the quaternionic algorithm.

Ž .The computational model is the RAM random access machine with the
Ž w x.uniform cost criterion see 1 , so the algorithms operate with real numbers and
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Ž .allow arithmetic operations addition, subtraction, multiplication, and division and
comparison of real numbers. A preprocessing requires taking the square root of
each entry of the matrix A.

The computational complexity of the algorithms is bounded by a polynomial in
n. Each subsequent algorithm attains a better degree of approximation but is more
time-consuming. The real version reduces to the computation of the determinant
of an n=n real matrix, the complex version reduces to the computation of the
determinant of an n=n complex matrix, and the quaternionic version reduces to
the computation of the determinant of a 2n=2n complex matrix. However, as is
known, the determinant of an n=n real or complex matrix can be routinely

Ž 3.computed using O n arithmetic operations. Our algorithms can be rewritten in
Ž .the binary ‘‘Turing’’ mode, so that they remain in polynomial time. This transfor-

w xmation is straightforward; it is sketched in the first version of the paper 7 . The
general technique of going from ‘‘real randomized’’ to ‘‘binary randomized’’

w xalgorithms can be found in 24 .

2.1. The Real Algorithm

Input: A nonnegative n=n matrix A.

Output: A nonnegative number a approximating per A.

Algorithm: Sample independently n2 numbers u : i, js1, . . . , n at random fromi j
2yx r2'Ž . Ž .the Gaussian distribution in R with the density c x s 1r 2p e . Com-R

2Ž . Ž .pute the n=n matrix Bs b , where b su a . Compute as det B .'i j i j i j i j

Output a .

2.1.1. Theorem.

( )1 The expectation of a is per A.
( )2 For any C)1 the probability that

aGC ?per A

does not exceed Cy1.
( )3 For any 1)e)0 the probability that

n
aF e c per AŽ .1

Ž 2 .does not exceed 8r n ln e , where c f0.28 is the constant defined in Section1
1.3.

Ž .Remark Relation to the Godsil]Gutman Estimator . It is immediately seen that
Ž w x.Algorithm 2.1 is a modification of the Godsil]Gutman estimator see 13 and

w x.Chap. 8 of 23 . Indeed, in the Godsil]Gutman estimator we sample u from thei j
binary distribution,

11, with probability ,2
u si j 1½ y1, with probability .2
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Furthermore, parts 1 and 2 of Theorem 2.1.1 remain true as long as we sample ui j
independently from some distribution with the expectation 0 and variance 1.

However, part 3 does not hold true for the binary distribution. In fact, one can
Žshow that as long as u are sampled from some fixed discrete distribution or, morei j

.generally, from some distribution with atoms , there exist 0-1 matrices with
arbitrarily large permanents, for which the expected number of trials to produce a
nonzero a is exponentially large. Indeed, consider a version of the Godsil]Gut-
man estimator, where u can accept a certain value with a positive probability. Leti j
us fix an integer k)1 and let us consider the k=k matrix J filled with 1s. If wek

Ž .multiply the i, j th entry of J by u , there is some positive probability p)0 thatk i j
we get a matrix with two identical rows, so the obtained matrix has the zero

Ž . Ž .determinant. For n)0, consider an nk = nk matrix A which consists of n
Ž .n Ž .ndiagonal blocks J . Then per A s per J s k! . However, the probability thatk n k

Ž .nthe output as0 is at least 1y 1yp , which approaches 1 exponentially fast as n
Ž .1r nkgrows. Note that even the scaled value per A can be made arbitrarily large,n

Ž .1r nk Ž .ksince per A s k! fkre for large k. For example, let us choose ks8.n
Ž .nThen A is a 0-1 8n=8n matrix and per A s 40, 320 . The described aboven n

binary version of the Godsil]Gutman estimator outputs 0 with the probability at
Ž .n w x Žleast 1y 0.8 . The complex discrete version of 19 see also the remark in
. Ž .nSection 2.2 outputs 0 with the probability at least 1y 0.99 . Algorithm 2.1

Ž .noutputs at least 1.52 with the probability approaching 1 as nªq`. Similarly,
Ž . Ž .nthe complex version Algorithm 2.2 outputs at least 390 and the quaternionic

Ž . Ž .nversion Algorithm 2.3 outputs at least 4, 487 with the probability approaching 1
as nªq`.

Ž .Of course, for other matrices for example, for the identity matrix and even for
Ž w x.the majority of matrices cf. 12 the binary version of the estimator may perform

better than Algorithm 2.1. However, any version of the Godsil]Gutman estimator
which approximates the permanent of an arbitrary 0-1 matrix within some positive
constant in expected polynomial time must either use a continuous distribution or
a sequence of discrete distributions which depend on the size of the matrix.

2.2. The Complex Algorithm

By the standard complex Gaussian distribution in C we mean the distribution of a
complex random variable zsxq iy with the density,

1 12 2 2yŽ x qy . y < z <c z s e s e .Ž .C p p

22 2< < < <'Here z s x qy is the absolute value of z. Note that the expectation of z is
1. To sample from this distribution, it suffices to sample the real and imaginary
parts independently from the Gaussian distribution in R1 with the density

2yx'1r p e . Our algorithm is the following:

Input: A nonnegative n=n matrix A.

Output: A nonnegative number a approximating per A.
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Algorithm: Sample independently n2 numbers u at random from the standardi j
complex Gaussian distribution in C with the density c . Compute the n=nC

2Ž . < <matrix Bs b , where b su a . Compute as det B .'i j i j i j i j

2.2.1. Theorem.

( )1 The expectation of a is per A.
( )2 For any C)1 the probability that

aGC ?per A

does not exceed Cy1.
( )3 For any 1)e)0 the probability that

n
aF e c per AŽ .2

Ž 2 .does not exceed 8r n ln e , where c f0.56 is the constant defined in Section2
1.3.

Ž .Remark Relation to the Karmarkar]Karp]Lipton]Lovasz]Luby Estimator . It´
w xis seen that Algorithm 2.2 is a simple modification of the estimator from 19 . In

w x19 , the authors sample u from the set of roots of unity of degree 3 and then usei j
w xaveraging over a large number of trials. The goal of 19 is somewhat dual to our

goal. We want to minimize the error of approximation keeping the running time
w xpolynomial whereas the authors of 19 want to minimize the time needed to

approximate the permanent keeping the relative error of approximation at most
Ž .1qe , where e)0 is a part of the input. The complexity of the algorithm from
w x Ž . y2 n r2 n19 is poly n e 2 and, while still exponential, is better than n2 complexity of

Ž w x.Ryser’s exact algorithm see Section 7.2 of 25 . Obviously, both approaches have
their advantages. Algorithms 2.1]2.3 provide a quick rough estimate, whereas the

w x w xalgorithms from 18 and 19 are much more precise but also more time-consum-
ing. It would be interesting to find out whether by applying repeated sampling and
averaging in Algorithm 2.2, one can get the running time to achieve the relative

w xerror e comparable to that of 19 , and if that can be extended to arbitrary
Ž w xnonnegative matrices as the performance of the algorithm from 19 is guaranteed
.for 0-1 matrices only .

2.3. The Quaternionic Algorithm

We recall that the algebra H of quaternions is the four-dimensional real vector
space with the basis vectors 1, i, j, k that satisfy the following multiplication rules,

i2 s j2 sk2 sy1,

ijsyjisk, jksykjs i, kisyiks j,

and

1is i1s i, 1js j1s j, 1ksk1sk.

< <The norm h of a quaternion hsaq ibq jcqk d, where a, b, c, dgR, is defined
2 2 2 2'< <as h s a qb qc qd . By the standard quaternionic Gaussian distribution in
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H we mean the distribution of a quaternionic random variable hsaq ibq jcqk d
with the density,

4 2 2 2 2y2 Ža qb qc qd .c h s e .Ž .H 2p

< < 2In particular, the expectation of h is 1. To sample from the distribution, it
suffices to sample a, b, c, and d independently from the Gaussian distribution in

21 y2 x'R with the density 2rp e .
Our algorithm is the following:

Input: A nonnegative n=n matrix A.

Output: A number a approximating per A.

Algorithm: Sample independently n2 quaternions u at random from the stan-i j
dard quaternionic Gaussian distribution in H with the density c . Compute theH

Ž .n=n quaternionic matrix Hs h , where h su a . Write HsRq i Bq'i j i j i j i j

jCqk D, where R, B, C, and D are real n=n matrices. Construct the 2n=2n
complex matrix,

Rq iB Cq iDH s .C ž /yCq iD Ry iB

Compute asdet H .C

Output a .

2.3.1. Theorem.

( )1 The output a is a nonnegatï e real number and its expectation is per A.
( )2 For any C)1 the probability that

aGC ?per A

does not exceed Cy1.
( )3 For any 1)e)0 the probability that

n
aF e c per AŽ .4

Ž 2 .does not exceed 8r n ln e , where c f0.76 is the constant defined in Section4
1.3.

Ž .Remark Relations to the Real and Complex Estimators . An obvious obstacle to
constructing a quaternionic version of Algorithms 2.1 and 2.2 is that it appears that
we need to use the ‘‘determinant’’ of a quaternionic matrix. However, a closer look
reveals that what we need is the squared norm of the determinant. This ‘‘squared
norm of the determinant’’ can be defined using the canonical two-dimensional
complex representation of the quaternions. It turns out that the determinant of the
complex matrix H , computed in Algorithm 2.3, is the right definition of theC

Žsquared norm of the determinant of a quaternionic matrix H it is known as the
‘‘reduced norm,’’ or the squared norm of the Dieudonne determinant, see Chap.´
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w x.VI, Section 1 of 3 . As an analogue, let us point out that the squared absolute
value of the determinant of an n=n complex matrix can be interpreted as the
determinant of a 2n=2n real matrix,

2 A Bdet Aq iB sdet .Ž . ž /yB A

Ž .Example The Identity Matrix . The following example provides some intuition
why the quaternionic estimator gives a better approximation than the complex
estimator and why the complex estimator gives a better approximation than the
real estimator. Suppose that AsI is the n=n identity matrix, so per As1.
Algorithm 2.1 approximates 1 by the product,

asx 2 ??? x 2 ,1 n

where x su are independent random variables sampled from the standardi i i
1 Ž 2 .Gaussian distribution in R . The expectation E x of each factor is 1, so thei

expected value of the product is 1. However, since the values of x 2 can deviatei
from the expectation, we can accumulate an exponentially large deviation. Since

nln a 1
2s ln x ,Ý in n is1

Ž . Ž 2 .the law of large numbers implies that ln a rn concentrates around C sE ln x1 i
Ž . � 4 ncf. Section 1.3 , so a is reasonably close to exp nC sc most of the time.1 1

Algorithm 2.2 approximates 1 by the product,

x 2 qy2 x 2 qy2
1 1 n n

as ??? ,ž / ž /2 2

where x , y are independent random variables sampled from the standard Gauss-i i
ian distribution in R1. Again, the expectation of each factor is 1, but because of the

Ž 2 2 .averaging, x qy r2 is concentrated around its expectation somewhat morei i
sharp than either x 2 or y2. Therefore, the accumulated error, while still exponen-i i

Ž .tial, is smaller than that in Algorithm 2.1. Indeed, we have cf. Section 1.3 ,

x 2 qy2
i i

c sexp E ln )c .2 1½ 5ž /2

Finally, Algorithm 2.3 approximates 1 by the product,

a2 qb2 qc2 qd2 a2 qb2 qc2 qd2
1 1 1 1 n n n n

as ??? ,ž / ž /4 4

where a , b , c , d are independent random variables sampled from the standardi i i i
Gaussian distribution in R1. Here we have a still sharper concentration of each
factor around its expectation, so the total error gets smaller. For the constant c 4

Ž .we have cf. Section 1.3 ,

a2 qb2 qc2 qd2
i i i i

c sexp E ln )c .4 2½ 5ž /4
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It appears that the Algorithms 2.1]2.3 are related to Clifford algebras R, C, and H
Ž w x.with 0, 1, and 3 generators, respectively, cf. Sect. 41 of 26 . There seem to be

ways to associate an approximation algorithm with any Clifford algebra, but it is
not clear at the moment whether those algorithms can be of any interest. It would
be interesting to find out whether for any k there is a version of our algorithm

n Ž .achieving a c approximation we note that c ª1 as kªq` .k k

Remark. How well can we approximate the permanent in polynomial time?
Ž .Suppose we have a polynomial time probabilistic or deterministic algorithm that

Ž .for any given n=n nonnegative or 0-1 matrix A computes a number a such that

f n per AFaFper A.Ž .
Ž .What sort of function might f n be? For an n=n matrix A and k)0, let us

construct the nk=nk block-diagonal matrix A , having k diagonal copies of A.k
We observe that A is nonnegative if A is nonnegative and A is 0-1 if A is 0-1,k k

Ž .1r kand that per As per A . Applying our algorithm to A and taking the root wek k
get an approximation a , wherek

1rk
f nk per AFa Fper A.Ž .Ž . k

Ž Ž ..1r kTherefore, we can always improve f to f s f nk , where k must bek
bounded by a polynomial in n to keep polynomial time complexity. For example, if
Ž . yb Ž . � b 4f n sn for some b)0 or if f n sexp yn for some 0-b-1, then by

Ž . Ž .choosing a sufficiently large ksk n we can always improve f to f s 1ye withk
any given 1)e)0.

There are few obvious choices for ‘‘nonimprovable’’ functions f.

( ) Ž .a f n '1. This does not look likely, given that the problem is aP-hard.
( ) Ž .b For any e)0 one can choose f n s1ye , and the algorithm is polynomiale

in ey1. In the author’s opinion this conjecture is overly optimistic.
( ) Ž . Ž .nc For any e)0 one can choose f n s 1ye , but the algorithm is note

polynomial in ey1. The existence of this type of approximation was conjec-
tured by V. D. Milman.

( ) Ž . nd f n sc for some fixed constant c. This is the type of a bound achieved by
Algorithms 2.1]2.3. An interesting question is, what is the best possible
constant c?

3. MIXED DISCRIMINANT APPROXIMATION ALGORITHMS

It turns out that the permanent approximation algorithms of Section 2 can be
naturally extended to mixed discriminants. The input of the algorithms consists of
n=n positive semidefinite matrices Q , . . . , Q and the output is a nonnegative1 n

Ž .number a approximating D Q , . . . , Q . As in Section 2, we use the real model of1 n
computation. A preprocessing requires representing each matrix Q as the producti
Q sT TU of a real matrix and its transpose. This is a standard procedure of lineari i i

Ž 3.algebra, which requires O n arithmetic operations and n square root extractions
Ž w x.see, for example, Chap. 2, Section 10 of 11 .
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3.1. The Real Algorithm

n Ž .The algorithm requires sampling vectors xgR , xs j , . . . , j from the standard1 n
Gaussian distribution in R n with the density,

5 5 2y xynr2 2 2 25 5nc x s 2p exp , where x sj q ??? qj .Ž . Ž .R 1 n½ 52

We interpret x as an n-column of real numbers j , . . . , j . Note that the expecta-1 n
2 2 Ž .tion of j is 1 and that the expectation of ln j is C see Section 1.3 . To samplei i 1

from the distribution, we can sample the coordinates j , . . . , j independently1 n
from the one-dimensional standard Gaussian distribution with the density c sR

2yx r2'1r 2p e , cf. Section 2.1. Our algorithm is the following:

Input: Positive semidefinite n=n matrices Q , . . . , Q .1 n

Ž .Output: A number a approximating the mixed discriminant D Q , . . . , Q .1 n

Algorithm: For is1, . . . , n compute a decomposition Q sT TU. Sample inde-i i i
pendently n vectors u , . . . , u at random from the standard Gaussian distribu-1 n

n Ž .ntion in R with the density c x . ComputeR

2w xas det T u , . . . , T u ,Ž .1 1 n n

the squared determinant of the matrix with the columns T u , . . . , T u . Out-1 1 n n
put a .

3.1.1. Theorem.

( ) Ž .1 The expectation of a is the mixed discriminant D Q , . . . , Q .1 n
( )2 For any C)1 the probability that

aGC ?D Q , . . . , QŽ .1 n

does not exceed Cy1.
( )3 For any 1)e)0 the probability that

n
aF e c D Q , . . . , QŽ . Ž .1 1 n

Ž 2 .does not exceed 8r n ln e , where c f0.28 is the constant defined in Section1
1.3.

Ž w x.Remark Relation to the Estimator from 6 . The first randomized polynomial
time algorithm to approximate the mixed discriminant within an exponential factor

w xwas constructed in the author’s paper 6 . It achieves asymptotically the same
w xdegree of approximation as Algorithm 3.1. The idea of the algorithm from 6 is to

apply repeatedly the following two steps: first, by applying an appropriate linear
transformation, we reduce the problem to the special case, where Q sI is then

Ž . Ž X X .identity matrix. Next, we replace D Q , . . . , Q , I by nD Q , . . . , Q , where1 ny1 1 ny1
X Ž . Ž .Q are ny1 = ny1 symmetric matrices interpreted as projections of Q onto ai i

randomly chosen linear hyperplane in R n. Algorithm 3.1 can be interpreted as a
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w xparallelization of the algorithm from 6 . Instead of the successive projections, we
independently project the matrices Q onto randomly chosen lines in R n.i

3.2. The Complex Algorithm

Ž . nThe algorithm requires sampling random complex vectors zs z , . . . , z gC1 n
from the standard Gaussian distribution with the density,

1 2 2 2 25 5 5 5 < < < <nc z s exp y z , where z s z q ??? q z .� 4Ž .C 1 nnp

We interpret z as an n-column of complex numbers z , . . . , z . Note that the1 n
< < 2 < < 2 Ž .expectation of z is 1 and that the expectation of ln z is C see Section 1.3 .i i 2

To sample from the distribution, we can sample each z independently from thei
Ž .standard one-dimensional complex Gaussian distribution with the density c z sC

1rp ey< z < 2, cf. Section 2.2. Our algorithm is the following:

Input: Real positive semidefinite n=n matrices Q , . . . , Q .1 n

Ž .Output: A real number a approximating the mixed discriminant D Q , . . . , Q .1 n

Algorithm: For is1, . . . , n compute a decomposition Q sT TU. Sample inde-i i i
pendently n vectors u , . . . , u at random from the standard complex Gaussian1 n
distribution in C n.

Compute
2w xas det T u , . . . , T u ,1 1 n n

the squared absolute value of the determinant of the matrix with the columns
T u , . . . , T u .1 1 n n
Output a .

3.2.1. Theorem.

( ) Ž .1 The expectation of a is the mixed discriminant D Q , . . . , Q .1 n
( )2 For any C)1 the probability that

aGC ?D Q , . . . , QŽ .1 n

does not exceed Cy1.
( )3 For any 1)e)0 the probability that

n
aF e c D Q , . . . , QŽ . Ž .2 1 n

Ž 2 .does not exceed 8r n ln e , where c f0.56 is the constant defined in Section2
1.3.

3.3. The Quaternionic Algorithm

n Ž . Ž .Let H be the set of all n-tuples vectors hs t , . . . , t of quaternions t gH.1 n i
For an n=n real matrix T and a vector hsaq ibq jcqk dgHn, where a, b, c, d
gR n, by ThgHn we understand the vector Taq iTbq jTcqkTd. The algorithm
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Ž .requires sampling a random vector hs t , . . . , t from the standard quaternionic1 n
Gaussian distribution in Hn with the density,

4n
2 2 2 25 5 5 5 < < < <nc h s exp y2 h , where h s t q ??? q t .� 4Ž .H 1 n2 np

We interpret h as an n-column of quaternions t , . . . , t . Note that the expectation1 n
< < 2 < < 2 Ž .of t is 1 and that the expectation of ln t is C see Section 1.3 . To samplei i 4

from the distribution, we can sample each t gH independently from the standardi
Ž .one-dimensional quaternionic Gaussian distribution with the density c t sH

4rp 2ey2 <t < 2, cf. Section 2.3. Our algorithm is the following:

Input: Real positive semidefinite n=n matrices Q , . . . , Q .1 n

Ž .Output: A number a approximating the mixed discriminant D Q , . . . , Q .1 n

Algorithm: For is1, . . . , n compute a decomposition Q sT TU. Sample inde-i i i
pendently n vectors u , . . . , u at random from the standard quaternionic1 n
Gaussian distribution in Hn. Compute the n=n quaternionic matrix Hs
w xT u , . . . , T u , whose columns are T u , . . . , T u . Write HsAq i Bq jCq1 1 n n 1 1 n n
k D, where A, B, C, and D are real n=n matrices. Construct the 2n=2n
complex matrix,

Aq iB Cq iDH s .C ž /yCq iD Ay iB

Compute asdet H .C

Output a .

3.3.1. Theorem.

( )1 The output a is a nonnegatï e real number and its expectation is the mixed
Ž .discriminant D Q , . . . , Q .1 n

( )2 For any C)1 the probability that

aGC ?D Q , . . . , QŽ .1 n

does not exceed Cy1.
( )3 For any 1)e)0 the probability that

n
aF e c D Q , . . . , QŽ . Ž .4 1 n

Ž 2 .does not exceed 8r n ln e , where c f0.76 is the constant defined in Section4
1.3.

3.4. Relation to the Permanent Approximation Algorithms

Ž .Let As a be an n=n nonnegative matrix. Let us construct n matricesi j
� 4Q , . . . , Q by placing the ith row of A as the diagonal of Q : Q sdiag a , . . . , a .1 n i i i1 in

Ž . Ž .Then we have per AsD Q , . . . , Q cf. Section 1.2 . Since A is nonnegative,1 n
Q , . . . , Q are positive semidefinite matrices. Now it is seen that if we choose1 n

� 4T sdiag a , . . . , a , then Algorithms 3.1]3.3 with the input Q , . . . , Q trans-' 'i i1 in 1 n
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form into Algorithms 2.1]2.3 with the input A. Hence Theorems 3.1.1]3.3.1 are
straightforward generalizations of Theorems 2.1.1]2.3.1.

4. GAUSSIAN MEASURES AND QUADRATIC FORMS

4.1. Gaussian Measures

Given a space X with a probability measure m, we denote the expectation of a
Ž . n n 2 nfunction f : XªR by E f . In this paper, X will be the space R , C sR , or

n 4 n Ž .H sR and m will be a Gaussian measure distribution .
2 25 5 Ž .'Let x s j q ??? qj be the standard norm of a vector xs j , . . . , j in1 m 1 m

R m. As usual, we interpret xgR m as an m-column of numbers j , . . . , j .1 m
m Ž . Ž .ym r2 � 5 5 2 4The probability measure m in R with the density c x s 2p exp y x r2
Ž .is called the standard Gaussian or normal distribution. A Gaussian distribution in

R m is the distribution of the vector Tx where xgR m has the standard Gaussian
Ždistribution and T is a fixed m=m matrix if T is degenerate, the distribution is

.concentrated on the image of T .
Ž . m Ž .If m is a probability distribution of xs j , . . . , j gR , the matrix Qs q ,1 m i j

Ž .where q sE j j , is called the co¨ariance matrix of x. For example, if m is thei j i j
standard Gaussian distribution in R m, the covariance matrix is the m=m identity
matrix I. We often use the following fact: if xgR m has the standard Gaussian
distribution in R m and T is an m=m matrix, then the covariance matrix of the
vector Tx is QsTTU.

4.2. Theorem. Let us fix a Gaussian measure m in R n. Let q: R n ªR be a positï e
semidefinite quadratic form, such that

E q s1.Ž .
Then

C FE ln q F0, 1Ž . Ž .1

where C fy1.27 is the constant defined in Section 1.3, and1

0FE ln2 q F8. 2Ž .Ž .

Proof. Without loss of generality, we can assume that m is the standard Gaussian
measure with the density,

5 5 2y xynr2
c x s 2p exp ,Ž . Ž . ½ 52

Ž .otherwise, we apply a suitable linear transformation . Since ln is a concave
Ž . Ž .function, by Jensen’s inequality we have E ln q F ln E q s0. Let us decompose q

into a nonnegative linear combination qsl q q ??? ql q of positive semidefi-1 1 n n
Ž .nite forms q of rank 1. We can scale q so that E q s1 for is1, . . . , n and theni i i

we have l q ??? ql s1. In fact, one can choose l to be the eigenvalues of the1 n i
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² :2matrix of q and q s x, u , where u is the corresponding unit eigenvector andi i i
² : n? , ? is the standard scalar product in R . Since ln is a concave function, we have
Ž .ln l q q ??? ql q Gl ln q q ??? ql ln q . Furthermore, since q is a positive1 1 n n 1 1 n n i

semidefinite form of rank 1, by an orthogonal transformation of the coordinates it
Ž . 2 Ž 2 .can be brought into the form q x sa x . Since E x s1, we conclude thati 1 1

Ž . Ž 2 . Ž .as1. Therefore, E ln q sE ln x sC cf. Sections 3.1 and 1.3 andi 1 1

E ln q Gl E ln q q ??? ql E ln q s l q ??? ql C sC ,Ž . Ž . Ž . Ž .1 1 n n 1 n 1 1

w Ž . xso Part 1 is proved we note that this reasoning proves that E ln q is well-defined .
� n Ž . 4 nLet Xs xgR : q x F1 and YsR RX. Then

E ln2 q s c x ln2 q x dxq c x ln2 q x dx.Ž . Ž . Ž . Ž .Ž . H H
X Y

Let us estimate the first integral. Decomposing qsl q q ??? ql q as above, we1 1 n n
Ž .get ln qGl ln q q ??? ql ln q . Since ln q x F0 for xgX, we get that1 1 n n

n
2ln q x F l l ln q x ln q x ,Ž . Ž . Ž .Ž . Ž .Ý i j i j

i , js1

for xgX. Therefore,

n
2c x ln q x dxF l l c x ln q x ln q x dxŽ . Ž . Ž . Ž . Ž .Ž . Ž .ÝH Hi j i j

X Xi , js1

1r2 1r2n
2 2F l l c x ln q x dx c x ln q x dx ,Ž . Ž . Ž . Ž .Ý H Hi j i jž / ž /X Xi , js1

Ž .we applied the Cauchy]Schwartz inequality ,

n 1r21r22 2F l l E ln q E ln q .Ž .Ž . Ž .Ý ž /i j i j
i , js1

Now, as in the proof of Part 1 we have

q`8 22 2 2 2 yt r2E ln q sE ln x s ln t e dtf6.548623960F7.Ž .Ž . Ž . Hi 1 '2p 0

Summarizing, we get

n n1r21r22 2 2c x ln q x dxF l l E ln q E ln q F7 l l s7.Ž . Ž . Ž .Ž . Ž .Ý ÝH ž /i j i j i j
X i , js1 i , js1

'Since for 0F ln tF t for tG1, we have

c x ln2 q x dxF q x c x dxFE q s1.Ž . Ž . Ž . Ž . Ž .H H
Y Y

Ž 2 .Therefore, E ln q F7q1s8 and Part 2 is proved. B
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Ž .Remark Role of the Gaussian Distribution . Let us consider Algorithm 3.1. A
natural question is to what extent it is important to sample vectors u , . . . , u from1 n
the Gaussian distribution, as compared to sampling from some other distribution m
in R n. Our method carries over as long as m satisfies the following properties: first,
the expectation of a random vector xgR n is 0 and the covariance matrix is the
identity matrix I and second, if q: R n ªR is a positive semidefinite quadratic form

Ž . Ž . Ž .such that E q s1, then E ln q is bounded below by a universal constant CsC m .
Furthermore, the closer to 0 that C can be chosen, the better approximation we

Žget. It is seen that any discrete distribution or, more generally, a distribution with
. natoms fails the test for n)1, since if a vector xgR occurs with a positive

Ž . Ž .probability and q x s0, then E ln q sy`. One can use continuous distributions
other than Gaussian, but the author suspects that asymptotically, for large n, the
Gaussian distribution provides the best constant C. For example, the uniform
distribution on the sphere j 2 q ??? qj 2 sn in R n might give better constants for1 n

Ž w x.small n, but asymptotically it gives the same constant C cf. Theorem 3.5 of 6 .1
The next two results of this section state that for quadratic forms from some

particular classes and some special Gaussian distributions we can get better
estimates than in the general case.

Hermitian Forms. We recall that a function q: C n ªR,

n

q z s b z z , where zs z , . . . , z ,Ž . Ž .Ý i j i j 1 n
i , js1

Ž . Žand b sb for i, js1, . . . , n is called a Hermitian form with the matrix b see,i j ji i j
w x. Ž .for example, Section 19 of 26 . The form is called positive semidefinite, if q z G0

for all zgC n. We note that q can be considered as a real quadratic form q:
R2 n ªR, if we identify C n sR2 n. We fix the standard complex Gaussian distribu-
tion in C n with the density c n s1rp ney5 z 5 2

, cf. Section 3.2.C

4.3. Theorem. Let us fix the standard complex Gaussian distribution in C n. Let q:
n Ž .C ªR be a positï e semidefinite Hermitian form such that E q s1. Then

C FE ln q F0,Ž .2

where C fy0.58 is the constant defined in Section 1.3.2

Ž .Proof. The proof is similar to that of part 1 of Theorem 4.2. Since q is a positive
semidefinite Hermitian form, it can be represented as a convex combination
qsl q q ??? ql q of positive semidefinite Hermitian forms q of rank 1 such1 1 n n i

Ž .that E q s1. Since ln is a concave function, we get thati

E ln q Gl E ln q q ??? ql E ln q .Ž . Ž . Ž .1 1 n n

Since q is a positive semidefinite Hermitian form of rank 1, by a unitary transfor-i
mation of C n, it can be brought into the form

< < 2q z sa z , where zs z , . . . , z ,Ž . Ž .i 1 1 n
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Ž . Ž .and a is nonnegative real. Since E q s1, we must have as1, so E ln q si i
Ž < < 2 . Ž .E ln z sC cf. Sections 3.2 and 1.3 . Summarizing, we get1 2

E ln q Gl E q q ??? ql E q s l q ??? ql C ,Ž . Ž . Ž . Ž .1 i n n 1 n 2

and the proof follows. B

As we see, the lower bound for the expectation of ln q, where q is a Hermitian
form, is better than for general quadratic forms. The reason for this improvement
is, roughly, the following: the ‘‘worst possible’’ forms are those of rank 1. However,
a Hermitian form of rank 1 is a real form of rank 2. Next, we see that quaternionic
quadratic forms provide a still better bound.

n Ž .Quaternionic Forms. Let H be a real vector space of all n-tuples t , . . . , t of1 n
quaternions t gH. As a vector space, H can be identified with R4 via thei

Ž . n 4 nidentification aq ibq jcqk ds a, b, c, d , and so H can be identified with R .
n Ž .We fix the structure of a right H-module of H : for us t , . . . , t and tgH, we1 n

Ž .let uts t t , . . . , t t . We note that the right multiplication by i, j, and k are1 n
orthogonal transformations of R4 n without fixed nonzero vectors. By a quadratic
form on Hn we understand a function q: Hn ªR which is an ordinary quadratic
form under the identification Hn sR4 n. We say that q is positive semidefinite if
Ž . nq u G0 for any ugH . Let us fix the standard quaternionic Gaussian distribution

n Ž . n 2 n y2 5 u 5 2
nin H with the density c u s4 rp e , cf. Section 3.3.H

4.4. Theorem. Let us fix the standard quaternionic Gaussian distribution in Hn. Let
n Ž .q: H ªR be a positï e semidefinite quadratic form such that E q s1. Suppose

Ž . Ž . Ž . Ž . nfurther, that q u sq ui sq u j sq uk for any ugH . Then

C FE ln q F0,Ž .4

where C fy0.27 is the constant defined in Section 1.3.4

Proof. Let Q be the 4n=4n real symmetric matrix of q: R4 n ªR as a real
Ž . ² : ² :quadratic form, so q x s Qx, x , where ? , ? is the standard scalar product on

4 n 4 n Ž . ² :R . Then for the differential of q at a point xgR we have dq ? s2 Qx, ? .x
� n 5 5 4Let Ss xgH : x s1 be the unit sphere. As is known, xgS is an eigenvector

of Q with an eigenvalue l if and only if x is a critical point of the restriction q:
Ž .SªR that is, dq is 0 on the tangent space at x with the corresponding criticalx

Ž .value lsq x .
Since q is invariant under the orthogonal transformations given by right multi-

plication by i, j, and k, we conclude that if x is an eigenvector of Q with an
eigenvalue l, then so are x i, x j, and xk. It follows that each eigenspace of Q is a
right H-submodule of Hn. In particular, the multiplicity of each eigenvalue of Q is
a multiple of 4. Therefore, q can be expressed as a nonnegative linear combination

Ž .qsl q q ??? ql q of quadratic forms, such that for each i, E q s1 and by an1 1 n n i
orthogonal transformation of R4 n, q can be written as a normalized sum of fouri

Ž . Ž 2 2 2 2 . Ž .squared coordinates: q x sa j qj qj qj . Since E q s1 we have as1i 1 2 3 4 i
Ž . Ž .and E ln q sC cf. Sections 3.3 and 1.3 . Since ln is a concave function, wei 4

conclude that

E ln q Gl E ln q q ??? ql E ln q G l q ??? ql C ,Ž . Ž . Ž . Ž .1 1 n n 1 n 4

and the proof follows. B
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5. A MARTINGALE INEQUALITY

In this section, we prove a general result from the probability theory. Although the
technique is quite standard, we present a complete proof here, since we need our
estimate in a particular form suitable for proving the main results of the paper.

5.1. Conditional Expectations

In this subsection, we summarize some general results on measures and integra-
tion, which we exploit in Lemma 5.2 below. As a general source, we

w xuse 4 .
Let us fix a probability measure m on the Eulidean space R m. Suppose that m is

Ž .absolutely continuous with respect to the Lebesgue measure and let c x be the
density of m. Suppose that we have k copies of the Euclidean space R m, each
endowed with the measure m. We consider functions f : R m = ??? =R m ªR that
are defined almost everywhere and integrable with respect to the measure n smk

Ž . Ž .= ??? =m. Let f u , . . . , u be such a function. Then for almost all ky1 -tuples1 k
Ž . m Ž . Žu , . . . , u with u gR , the function f u , . . . , u , ? is integrable Fubini’s1 ky1 i 1 ky1

. Ž .theorem and we can define the conditional expectation E f , which is a functionk
of the first ky1 variables u , . . . , u ,1 ky1

E f u , . . . , u s f u , . . . , u , u c u du .Ž . Ž . Ž . Ž .Hk 1 ky1 1 ky1 k k k
mR

Fubini’s theorem implies that

E f sE ??? E f ,Ž . Ž .1 k

where E is the expectation with respect to the product measure n . Tonelli’sk
theorem states that if f is n -measurable and nonnegative almost surely withk

Ž .respect to n and if E ??? E g -q`, then f is n -integrable.k 1 k k
Ž .If f u , . . . , u is a function of i-k arguments, we may formally extend it to1 i

m m Ž . Ž . Ž . Ž .R = ??? =R k times by letting f u , . . . , u s f u , . . . , u . If f u , . . . , u is1 k 1 i 1 i
Ž .n -integrable, then f u , . . . , u is n -integrable.i 1 k k

We note the following useful facts:

( ) Ž .5.1.1 The operator E is linear and monotone, that is, if f u , . . . , u Fk 1 k
Ž . Ž . Ž .g u , . . . , u almost surely with respect to n , then E f FE g almost1 k k k k

surely with respect to n .ky1
( ) Ž . Ž .5.1.2 If f u , . . . , u is integrable and g u , . . . , u , i-k is a n -measurable1 k 1 i i

Ž . Ž .function, then E gf sgE f .k k
( ) Ž .5.1.3 If fsa is a constant almost surely with respect to n , then E f sak k

almost surely with respect to n .ky1

Ž .In this section, we prove the following technical lemma a martingale inequality .

Ž .5.2. Lemma. Suppose that f u , . . . , u , ks1, . . . , n is an integrable function on thek 1 k
product R m = ??? =R m of k copies of R m, and let n sm= ??? =m be the nthn
product measure. Suppose that for some a, bgR and all ks1, . . . , n,

aFE f and E f 2 Fb almost surely with respect to n .Ž . Ž .k k k k ky1
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Then for any d)0,

n1 b
n u , . . . , u : f u , . . . , u Fayd F .Ž . Ž .Ýn 1 n k 1 k 2½ 5n ndks1

Ž .Proof. Let g sE f and let h s f yg . Since g does not depend on u ,k k k k k k k k
Ž .using 5.1.2 , we get

E h2 sE f 2 y2E g f qE g 2 sE f 2 yg 2 .Ž .Ž . Ž . Ž . Ž .k k k k k k k k k k k k

Hence we may write

f sg qh , where E h s0, g Ga, and E h2 Fb ,Ž . Ž .k k k k k k k k

almost surely with respect to n . Letky1

n1
H u , . . . , u s h u , . . . , u .Ž . Ž .Ý1 n k 1 kn ks1

Ž .Now for Us u , . . . , u we have1 n

n1
n U: f u , . . . , u FaydŽ .Ýn k 1 k½ 5n ks1

n1
sn U: H U q g u , . . . , u FaydŽ . Ž .Ýn k 1 ky1½ 5n ks1

E H 2Ž .
Fn U: H U Fyd F we used Chebyshev’s inequality� 4Ž . Ž .n 2d

n1 2
2s E h q E h h .Ž .Ž .Ý Ýk i j2 2 2 2d n d nks1 1Fi-jFn

We note that it is legitimate to pass to global expectations E here. Indeed, since
2 2 2 Ž . Ž .h is nonnegative and E h FE f Fb it follows by formulas 5.1.1 5.1.3 , andk k k k k

2 < < Ž 2 2 .Tonelli’s theorem that h is n -integrable. Since h h F h qh r2, the productsk n i j i j
h h are also n -integrable. Therefore, H 2 is n -integrable.i j n n

Ž . Ž 2 .Since h does not depend on u , . . . , u , using 5.1.2 , we have E h sk kq1 n k
2 2 2 Ž .E ??? E h sE ??? E h and since E h Fb almost surely on n , by 5.1.1 and1 n k 1 k k k k ky1

Ž . Ž 2 .5.1.3 we get that E h Fb for each ks1, . . . , n. Furthermore, since h does notk i
Ž . Ž .depend on u , . . . , u , using formulas 5.1.2 and 5.1.3 we get that for j) i,iq1 n

E h h sE ??? E h h sE ??? E h h sE ??? E h E h s0.Ž . Ž . Ž . Ž .i j 1 n i j 1 j i j i jy1 i j j

The proof now follows. B
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6. PROOFS

As we noted in Section 3.4, Theorems 3.1.1]3.3.1 imply Theorems 2.1.1]2.3.1.
Proofs of Theorems 3.1.1, 3.2.1, and 3.3.1 are very similar. Theorem 3.3.1 provides
the best approximation known so far and it is the hardest to prove, so we present
its detailed proof here. Theorem 2.1.1 is the easiest to prove, so we present its
detailed proof as well, because there the main ideas of the general method can be
easily traced. Then we describe the modifications one needs to make to prove
Theorems 2.2.1, 3.1.1, and 3.2.1.

Proof of Theorem 2.1.1. The proof of part 1 follows the proof that the Godsil]
Ž w x.Gutman estimator is unbiased see Chap. 8 of 23 . Let us write a as a polynomial

in u ,i j

2n
2

as det B s sgn s u aŽ . 'Ý Ł is Ž i. is Ž i.ž /is1sgSn

n

s sgn s sgn s u u a a .Ž . Ž .Ý Ł '1 2 is Ž i. is Ž i. is Ž i. is Ž i.1 2 1 2
is1s , s gS1 2 n

For every pair of permutations s , s gS , the corresponding summand is a1 2 n
monomial in variables u . Each variable u from the monomial occurs either withi j i j

Ž . Ž .degree 2 if s i ss i s j, or with degree 1 otherwise. Next, we observe that1 2
unless s ss , the corresponding summand contains some u with degree 1. Since1 2 i j
the expectation of u is 0, the expectation of the whole monomial is 0. Hence,i j

n
2 2E a s sgn s E u a .Ž . Ž .Ý Ł is Ž i. is Ž i.ž /is1sgSn

Ž .2 Ž .Since u are independent and E u s1, we conclude that E a sper A.i j i j

Part 2 follows from part 1, the nonnegativity of a , and the Chebyshev inequality.
To prove part 3, let us introduce vectors u , . . . , u gR n, where1 n

u s u , . . . , uŽ .i i1 in

is the ith row of the matrix u . Thus u , . . . , u are vectors sampled independentlyi j 1 n
n Ž .from the standard Gaussian distribution in R and the output asa u , . . . , u is1 n

a function of u , . . . , u ,1 n

a : R n = ??? =R n ªR.
Ž .2Since as det B and the determinant is a linear function in every row, we

conclude that for each is1, . . . , n, the output a is a quadratic form in u gR n,i
provided u , . . . , u , u , . . . , u are fixed. Furthermore, since aG0, we deduce1 iy1 iq1 n
that a is a positive semidefinite quadratic form in u .i

As in Section 5.1, let us introduce the conditional expectation E with respect tok
u , ks1, . . . , n. Hence we can writek

per AsE a sE ??? E a u , . . . , u .Ž . Ž .1 n 1 n

Ž . Ž .Let a u , . . . , u sE ??? E a . Thus a is a polynomial function in the first kk 1 k kq1 n k
vectors u , . . . , u , and a is a positive semidefinite quadratic form in u , provided1 k k k
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u , . . . , u are fixed. Naturally, a sper A and a sa . Without loss of general-1 ky1 0 n
ity, we may assume that per A)0, for if per As0, then by part 2, as0 almost

Ž .surely and part 3 is obvious. Hence a u , . . . , u )0 for almost all k-tuplesk 1 k
Ž .u , . . . , u .1 k

We may write

na a u , . . . , uŽ .k 1 ks ,Łper A a u , . . . , uŽ .ks1 ky1 1 ky1

and, therefore,

n1 a 1 a u , . . . , uŽ .k 1 k
ln s ln .Ýn per A n a u , . . . , uŽ .ky1 1 ky1ks1

Ž . Ž . ŽWe observe that for each fixed ky1 -tuple u , . . . , u such that a u , . . . ,1 ky1 ky1 1
.u /0, the ratioky1

a u , . . . , uŽ .k 1 k

a u , . . . , uŽ .ky1 1 ky1

is a positive semidefinite quadratic form in u whose expectation is 1. Therefore byk
Theorem 4.2,

a u , . . . , uŽ .k 1 k
C FE ln ,1 k ž /a u , . . . , uŽ .ky1 1 ky1

and

a u , . . . , uŽ .k 1 k2E ln F8.k ž /a u , . . . , uŽ .ky1 1 ky1

Now we apply Lemma 5.2 with

a u , . . . , uŽ .k 1 k
f u , . . . , u s ln , asC , bs8, and dsyln e ,Ž .k 1 k 1a u , . . . , uŽ .ky1 1 ky1

to conclude that for any 1)e)0,

1 a 8
Probability ln FC q ln e F ,1 2½ 5n per A n ln e

� 4 Ž .and, since c sexp C see Section 1.3 ,1 1

8n
Probability aF c e per A F .Ž .� 41 2n ln e

The proof of part 3 now follows. B

As we see, the proof is based on the following three observations:
First, the output a is a nonnegative number. Second, the expectation of a is

the value we are seeking to approximate. Third, a can be represented as a function
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Ž .a u , . . . , u of vectors u , drawn independently from a Gaussian distribution in1 n i
R n, so that for any fixed u , . . . , u , u , . . . , u , the function a is a quadratic1 iy1 iq1 n
form in u .i

To obtain the proof of Theorem 3.1.1, we need to do some minor modifications.
Ž .First, we note that it is clear that a is nonnegative and that a u , . . . , u is a1 n

quadratic form in u , provided u , . . . , u , u , . . . , u are fixed. The proof that ai 1 iy1 iq1 n
provides an unbiased estimator is very similar to that of Theorem 2.1.1. Let

Ž . U Žw sT u , w s v , . . . , v . Then the covariance matrix of w is T T sQ cf.k k k k k1 k n k k k k
. Ž . Ž .Section 4.1 , so E v v sq , where Q s q . Furthermore, vectors w andk i k j i j, k k i j, k i

w are independent for i/ j. Nowj

2n
2w xE a sE det w , . . . , w sE sgn s vŽ . Ž . Ý Ł1 n ks Žk .ž /ks1sgSn

n

sE sgn s sgn s v vŽ . Ž .Ý Ł1 2 ks Žk . ks Žk .1 2ž /ks1s , s gS1 2 n

n

s sgn s sgn s E v vŽ . Ž . Ž .Ý Ł1 2 ks Žk . ks Žk .1 2
ks1s , s gS1 2 n

n

s sgn s sgn s q sD Q , . . . , QŽ . Ž . Ž .Ý Ł1 2 s Žk .s Žk . , k 1 n1 2
ks1s , s gS1 2 n

Ž .by 1.2.1 .
To prove Theorems 2.2.1 and 3.2.1, we note that, if u , . . . , u , u , . . . , u gC n

1 iy1 iq1 n
are fixed, a is a Hermitian form in u gC n, so instead of part 1 of Theorem 4.2i
one should refer to Theorem 4.3.

The proof of Theorem 3.3.1 is much simplified if we use the exterior algebra
Ž w x.formalism see, for example, Section 28 of 26 .

6.1. Exterior Algebra

Let V be a complex vector space and suppose that dim Vsm. Recall that the
exterior algebra HV, as a vector space, is the direct sum HVs[m Hk V, whereks1
Hk V is spanned by wedge products,

¨ n ??? n¨ , ¨ gV , is1, . . . , k ,1 k i

which are linear in each argument,

¨ n ??? n¨ n a ¨ X qb ¨Y n¨ n ??? n¨Ž .1 iy1 i i iq1 k

sa ¨ n ??? n¨ n¨ X n¨ n ??? n¨Ž .1 iy1 i iq1 k

qb ¨ n ??? n¨ n¨Y n¨ n ??? n¨Ž .1 iy1 i iq1 k

and skew-symmetric,

¨ n ??? n¨ s sgn s ¨ n ??? n¨ ,Ž . Ž .s Ž1. s Žk . 1 k

for any permutation sgS . Vectors from Hk V are called k-vectors.k
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Let us fix a basis e , . . . , e of V, thus identifying VsC m. For an m=m matrix1 m
U with the columns u , . . . , u gC m we have1 m

u n ??? nu s det U e n ??? ne .Ž . Ž .1 m 1 m

m Ž m.We identify H C sC, so we write simply

u n ??? nu sdet U.1 m

Ž . Ž . mLet xs j , . . . , j , ys h , . . . , h gC . Then1 m 1 m

xnys j h yj h e ne . 6.1.1Ž .Ž . Ž .Ý i j j i i j
1Fi-jFm

n Ž . 2 2 n6.2. Proposition. For a ¨ector ugH , let us define a 2-¨ector v u gH C as
follows: if usaq ibq jcqk d with a, b, c, dgR n, we let

v u s aq ib, ycq id n cq id, ay ib .Ž . Ž . Ž .
Then

( ) n Ž . Ž . Ž . Ž .1 For any ugH , v u sv ui sv u j sv uk .
( ) n2 Suppose that H is a quaternionic n=n matrix with the columns u , . . . , u gH .1 n

Let us write HsAq i Bq jCqk D for n=n real matrices A, B, C, and D
and let H be the 2n=2n complex matrix,C

Aq iB Cq iDH s .C ž /yCq iD AyIB

Then

w Ž .xn ny1 r2det H s y1 v u n ??? nv u .Ž . Ž . Ž .C 1 n

( ) U Ž .3 Let T be an n=n real matrix and let QsTT , Qs q . Suppose that u isi j
sampled from the standard quaternionic Gaussian distribution in Hn. Then the

Ž .expectation of v Tu is the 2-¨ector,

n

q e ne ,Ž .Ý i j i jqn
i , js1

where e , . . . , e is the standard basis of C2 n.1 2 n

Ž .Proof. Part 1 is proved by direct computation. Let us denote ¨ s aq ib, ycq id ,1
Ž . Ž . Ž . Ž . Ž .¨ s cq id, ay ib , so v u s¨ n¨ . Then v ui s ï n yï s¨ n¨ ,2 1 2 1 2 1 2

Ž . Ž . Ž . Ž . Ž . Ž .v u j s y¨ n¨ s¨ n¨ , and v uk s ï n ï sy ¨ n¨ s¨ n¨ .2 1 1 2 2 1 2 1 1 2
It is convenient to think of vectors as columns of numbers, so we write

aq ib cq id
v u s n ,Ž . ž / ž /ycq id ay ib

for usaq ibq jcqk d.
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To prove part 2, let us denote the kth column of A, B, C, and D by a , b , c ,k k k
and d , respectively. Thenk

a q ib a q ib c q id1 1 n n 1 1Aq iB Cq iDdet s n ??? n n n ???ž / ž / ž / ž /yCq iD Ay iB yc q id yc q id a y ib1 1 n n 1 1

c q idn nn .ž /a y ibn n

Rearranging the vectors in the wedge product, we get

a q ib c q idw Ž .x 1 1 1 1Aq iB Cq iD n ny1 r2det s y1 n n ???Ž .ž / ž / ž /yCq iD Ay iB yc q id a y ib1 1 1 1

a q ib c q idn n n nn nž / ž /yc q id a y ibn n n n

w Ž .xn ny1 r2s y1 v u n ??? nv u .Ž . Ž . Ž .1 n

To prove part 3, let usaq ibq jcqk d for a, b, c, dgR n. Then TusTaq iTbq
jTcqkTd and

Taq iTb Tcq iTd
v Tu s n .Ž . ž / ž /yTcq iTd Tay iTb

Ž . Ž . Ž . Ž .Let Tas a , . . . , a , Tbs b , . . . , b , Tcs g , . . . , g , and Tds d , . . . , d be1 n 1 n 1 n 1 n
the coordinates of Ta, Tb, Tc, and Td, respectively. Since a, b, c, and d are
sampled independently from the Gaussian distribution in R n with the covariance

1Ž .matrix I, it follows that Ta, Tb, Tc, and Td are sampled from the distribution4
1Ž . Ž .with the covariance matrix Q see Section 4.1 , so4

qi j
E a a sE b b sE g g sE d d s ,Ž . Ž .Ž . Ž .i j i j i j i j 4

and all other pairs from the set a , b , g , d , . . . , a , b , g , d are uncorrelated.1 1 1 1 n n n n
Ž .Using 6.1.1 , we can write

v Tu sIqIIqIII,Ž .
where

Is a q ib g q id y a q ib g q id e ne ,Ž . Ž . Ž . Ž . Ž .Ž .Ý k k s s s s k k k s
1Fk-sFn

IIs a q ib a y ib y yg q id g q id e ne ,Ž . Ž . Ž . Ž . Ž .Ž .Ý k k s s s s k k k sqn
1Fk , sFn

and

III s yg q id a y ib y yg q id a y ib e ne .Ž . Ž . Ž . Ž . Ž .Ž .Ý k k s s s s k k kqn sqn
1Fi-sFn

It is seen that the expectations of the first and the last sum are 0, whereas the
expectation of the second sum is

q e ne . BŽ .Ý k s k sqn
1Fk , sFn
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Proof of Theorem 3.3.1. The output a is a nonnegative real number, since it is the
Ž . Žreduced norm squared Dieudonne determinant of a quaternionic matrix see´

w x. Ž w x.Chap. IV, Section 1 of 3 . A direct proof of this fact is as follows cf. 3 . One can
observe that det H sdet H , so asdet H is a real number. The correspon-C C C

Ž .dence H¬H is an embedding of the group GL H of the nondegenerate n=nC n
Ž .quaternionic matrices in the group GL C of 2n=2n nondegenerate complex2 n

Ž .matrices. The group GL H is known to be connected, therefore det H can notn C

change sign as H changes within the group. Substituting the identity matrix HsI,
Ž . Ž .we conclude that det H is positive for any HgGL H . Since the group GL HC n n

is dense in the space of all n=n quaternionic matrices H, we conclude that the
output a is nonnegative.

Ž .Let us prove that the expectation of a is the mixed discriminant D Q , . . . , Q .1 n
Applying part 2 of Proposition 6.2, we can write

w Ž .xn ny1 r2
asa u , . . . , u s y1 v T u n ??? nv T u .Ž . Ž . Ž . Ž .1 n 1 1 n n

Let E be the conditional expectation with respect to u gHn. Since the wedgek k
product is linear in every term, we may write

w Ž .xn ny1 r2E a sE ??? E a s y1 E v T u n ??? nE v T u .Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 n 1 1 1 n n n

Ž .Let Q= q for ks1, . . . , n and 1F i, jFn. Applying part 3 of Proposition 6.2,i j, k
we get

n n
w Ž .xn ny1 r2E a s y1 q e ne n ??? n q e ne .Ž . Ž . Ž . Ž .Ý Ýi j , 1 i jqn i j , n i jqnž / ž /

i , js1 i , js1

Rearranging the terms in the wedge product and canceling wedge products
containing repeated vectors, we get

n
wŽ .xny1 r2E a s y1 q e ne n ??? ne neŽ . Ž . Ý Ł i j , k i j q1 i j qnk k 1 1 n nž /ks11Fi , . . . , i ; j , . . . , j Fn1 n 1 n

n
w Ž .xn ny1 r2s y1 q e ne n ???Ž . Ý Ł s Žk .s Žk . , k s Ž1. s Ž1.q11 2 1 2ž /ks1s , s gS1 2 n

ne nes Žn. s Žn.qn1 2

n
w Ž .xn ny1 r2s y1 sgn s sgn s q e ne n ???Ž . Ž . Ž .Ý Ł1 2 s Žk .s Žk . , k 1 nq11 2ž /ks1s , s gS1 2 n

ne nen 2 n

n

s sgn s sgn s q e n ??? ne ne n ???Ž . Ž .Ý Ł1 2 s Žk .s Žk . , k 1 n nq11 2ž /ks1s , s gS1 2 n

ne2 n

sD Q , . . . , Q by 1.2.1Ž . Ž .1 n

and part 1 is proven.
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Part 2 follows by part 1 and the Chebyshev inequality.
Let us prove part 3. As in the proof of Theorem 2.1.1, we introduce conditional

expectations,

a u , . . . , u sE ??? E aŽ . Ž .k 1 k kq1 n

w Ž .xn ny1 r2s y1 v T u n ???Ž . Ž .1 1

nv T u nE v T u n ??? nE v T u .Ž . Ž . Ž .Ž . Ž .k k kq1 kq1 kq1 n n n

Ž .We have a sa and a sD Q , . . . , Q .0 n 1 n
Since the wedge product is linear in every term, we conclude that for any fixed

Ž . Ž .u , . . . , u , the function a u , . . . , u , u is a necessarily positive semidefinite1 ky1 k 1 ky1 k
quadratic form in u gHn. Furthermore, since the multiplications by a real matrixk
T and the quaternion units i, j, and k commute, by part 1 of Proposition 6.2 we

Ž .conclude that a u , . . . , u , u is invariant under the right multiplication of uk 1 ky1 k k
by i, j, and k.

Ž .Without loss of generality, we may suppose that D Q , . . . , Q )0, since if1 n
Ž .D Q , . . . , Q s0, by part 1 we have as0 almost surely and the proof would1 n

Ž .follow immediately. Since a u , . . . , u is a polynomial in u , . . . , u , we concludek 1 k 1 k
Ž .that a u , . . . , u )0 almost surely.k 1 k

We may write
na a u , . . . , uŽ .k 1 ks ,ŁD Q , . . . , Q a u , . . . , uŽ . Ž .ks11 n ky1 1 ky1

and, therefore,
n1 a 1 a u , . . . , uŽ .k 1 k

ln s ln .Ýn D Q , . . . , Q n a u , . . . , uŽ . Ž .1 n ky1 1 ky1ks1

Ž . Ž . ŽWe observe that for each fixed ky1 -tuple u , . . . , u , such that a u , . . . ,1 ky1 ky1 1
.u /0, the ratio,ky1

a u , . . . , uŽ .k 1 k

a u , . . . , uŽ .ky1 1 ky1

is a positive semidefinite quadratic form in u , which is invariant under the rightk
multiplication by i, j, and k and which has expectation 1. Therefore, by Theorem
4.4,

a u , . . . , uŽ .k 1 k
C FE ln ,4 k ž /a u , . . . , uŽ .ky1 1 ky1

and by part 2 of Theorem 4.2,

a u , . . . , uŽ .k 1 k2E ln F8.k ž /a u , . . . , uŽ .ky1 1 ky1

Now we apply Lemma 5.2 with

a u , . . . , uŽ .k 1 k
f u , . . . , u s ln , asC , bs8, and dsyln e ,Ž .k 1 k 4a u , . . . , uŽ .ky1 1 ky1
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to conclude that for any 1)e)0,

1 a 8
Probability ln FC q ln e F ,4 2½ 5n D Q , . . . , Q n ln eŽ .1 n

� 4 Ž .and, since c sexp C cf. Section 1.3 ,4 4

8n
Probability aF c e D Q , . . . , Q F .Ž . Ž .� 44 1 n 2n ln e

The proof of part 3 now follows. B

7. POSSIBLE RAMIFICATIONS

It appears that our method can be used in the following general situation. Suppose
we want to approximate some quantity a of interest. Suppose that we have a0
function,

a : R m1 = ??? =R m n ªR,

where each space R m i is endowed with a Gaussian probability measure m . Supposei
Ž .that the function a u , . . . , u has the following properties:1 n

( ) Ž .a The value a u , . . . , u is a nonnegative number, which can be efficiently1 n
computed for any given vectors u gR m1, . . . , u gR m n.1 n

( ) Ž .b For any fixed u , . . . , u , u , . . . , u , the value a u , . . . , u is a quadratic1 iy1 iq1 n 1 n
form in u gR m i.i

( )c The expectation of a with respect to the product measure m = ??? =m is1 n
the quantity a .0

Then we get an efficient randomized algorithm to approximate a within a0
Ž n.simply exponential factor O c , where 1)c)0 is an absolute constant. The

algorithm consists of sampling u , . . . , u independently and at random and com-1 n
Ž .puting a u , . . . , u .1 n

Ž . Ž .Example Sums of Subpermanents . Let As a be a rectangular n=m matrix,i j

� 4mGn. For a subset I; 1, . . . , m of the cardinality n, let A be the n=nI
submatrix of A consisting of the columns whose indices are in I. Let

PER As per A ,Ý I
< <I sn

� 4where the sum is taken over all subsets I; 1, . . . , m of the cardinality n.
One can generalize Algorithm 2.1 to come up with an estimator for PER A: let

us sample numbers u independently and at random from the standard Gaussiani j
Ž .distribution in R, cf. Section 2.1. Let us compute an n=m matrix Bs b , wherei j

UŽ .b su a . Finally, let asdet BB . Thus a is a nonnegative numbers. Using'i j i j i j

Ž w x.an identity from linear algebra see the Binet]Cauchy formula in Sect. 2 of 26 ,
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we can write
2Udet BB s det B ,Ž . Ž .Ý I

< <I sn

� 4where the sum is taken over all subsets I; 1, . . . , m of the cardinality n and B isI
the submatrix consisting of the columns indexed by I. Since the expectation of

Ž .every summand is the corresponding permanent per A see Theorem 2.1.1 , weI
conclude that a is an unbiased estimator. Let us introduce vectors u gR m,i

Ž .u s u , . . . , u for is1, . . . , n. Then a is a function of u , . . . , u andi i1 im 1 n
Ž . Ž . Ž .a u , . . . , u satisfies the properties a ] c above. Hence we get a randomized1 n

Ž n.polynomial time algorithm that approximates a within a factor of O c . Note that
n is the smaller dimension of the matrix A. As in Theorem 2.1.1, we have cf0.28.
Similarly, a complex estimator can be constructed, which gives cf0.56. A quater-
nionic version with cf0.76 is more complicated; it requires computation of a
certain Pfaffian.

Ž .It appears that the condition b can be replaced by a weaker condition:

( T . Ž .b For any fixed u , . . . , u , u , . . . , u , The function a u , . . . , u is a1 iy1 iq1 n 1 n
Ž .quadratic polynomial not necessarily homogeneous in u .i

One can construct some interesting estimators satisfying this weaker property.

Ž .Example Approximating the Hafnian . Let A be an n=n nonnegative symmet-
ric matrix. Suppose that n is even, ns2k. The number,

k1
haf As aÝ Ł s Ž2 iy1. , s Ž2 i.k2 k! is1sgSn

w xis called the hafnian of A, see Section 8.2 of 25 . Thus haf A is the sum of all
� 4 � 4monomials a ??? a , where i , j , . . . , i , j constitutes a partition of the seti j i j 1 1 k k1 i k k

� 41, . . . , n into unordered pairs. For example, if A is the adjacency matrix of an
undirected graph, haf A is the number of perfect matchings in the graph.

Let us sample u : 1F i- jFn independently and at random from the standardi j
Ž .Gaussian distribution in R. Let us construct a skew-symmetric matrix Bs b ,i j

where

¡u a , if 1F i- jFn ,'i j i j

~b s yu a , if 1F j- iFn ,i j 'i j i j¢0, if is j.

Let asdet B.
ny i Ž .Let us introduce vectors u gR , is1, . . . , ny1 where u s u , . . . , u .i i i iq1 in

Then a is a function of u , . . . , u . One can prove that a satisfies the properties1 ny1
Ž . Ž T . Ž . Ž w x.a , b , and c cf. Chap. 8 of 23 and that with high probability a approximates

Ž n.haf A within a factor of O c , where 1)c)0 is an absolute constant. Similarly, a
complex estimator can be constructed and the author has a conjecture what a
quaternionic version may look like.
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Ž .Finally an interesting question is what can we gain or lose by further relaxing
Ž T .b to

Ž U . Ž .b For any fixed u , . . . , u , u , . . . , u , the function a u , . . . , u is a1 iy1 iq1 n 1 n
Ž .polynomial of a fixed independent of n degree.

These and related questions will be addressed elsewhere.

8. APPLICATIONS OF MIXED DISCRIMINANTS TO COUNTING

n Ž .For a vector xgR , xs j , . . . , j , let us denote by xmx the n=n matrix whose1 n
Ž .i, j th entry is j ?j . Thus xmx is a positive semidefinite matrix whose rank doesi j
not exceed 1.

Applications of mixed discriminants to problems of combinatorial counting are
based on the following simple result.

8.1. Lemma. Let u , . . . , u be ¨ectors from R n. Then1 n

2w xD u mu , . . . , u mu s det u , . . . , u ,Ž . Ž .1 1 n n 1 n

the squared determinant of the matrix with the columns u , . . . , u .1 n

Proof. Let e , . . . , e be the standard orthonormal basis of R n. Let G be the1 n
Ž . Umatrix with the columns u , . . . , u . Then u sGe , u mu sG e me G and from1 n i i i i i i

Ž .the definition of the mixed discriminant see Section 1.2 , we get

 n

D u mu , . . . , u mu s det t u mu q ??? qt u muŽ . Ž .1 1 n n 1 1 1 n n n t ???  t1 n

 n
Us det G t e me q ??? qt e me GŽ .Ž .1 1 1 n n n t ???  t1 n

 n
Usdet GG det t e me q ??? qt e meŽ . Ž .1 1 1 n n n t ???  t1 n

2s det G .Ž . B

Suppose we are given a rectangular n=m matrix A with the columns u , . . . , u ,1 m
n � 4which we interpret as vectors from R . Suppose that for any subset I; 1, . . . , m ,

� 4 w xIs i , . . . , i , the determinant of the submatrix A s u , . . . , u is either 0, y1,1 n I i i1 n
� 4or 1. Such an A represents a unimodular matroid on the set 1, . . . , m and a subset

Ž w x.I with det A /0 is called a base of the matroid see 29 .I
Suppose now that the columns of A are colored with n different colors. The

� 4coloring induces a partition 1, . . . , m sJ j ??? jJ . We are interested in the1 n
number of bases that have precisely one index of each color. Let us define the
positive semidefinite matrices Q , . . . , Q as follows:1 n

Q s u mu , ks1, . . . , n.Ýk i i
igJk
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Ž .Then the number of bases can be expressed as D Q , . . . , Q . The mixed discrimi-1 n
nant is linear in every argument; that is,

D Q , . . . , Q , a QX qbQY , Q , . . . , QŽ .1 iy1 i i iq1 n

saD Q , . . . , Q , QX , Q , . . . , QŽ .1 iy1 i iq1 n

qbD Q , . . . , Q , QY , Q , . . . , Q ,Ž .1 iy1 i iq1 n

Ž w x.see, for example, 21 . Using the linearity and Lemma 8.1, we have

D Q , . . . , Q s D u mu , . . . , u muŽ . Ž .Ý1 n i i i i1 1 n n
� 4Is i , . . . , i1 n

2w xs det u , . . . , u ,Ž .Ý i i1 n
� 4Is i , . . . , i1 n

where the sums are taken over all n-subsets I, having precisely one element of
each color, and the proof follows. R. Stanley obtained a similar formula which

w xinvolves the mixed volume of zonotopes instead of the mixed discriminant 28 .

Ž .Example Trees in a Graph . Suppose we have a connected graph G with n
vertices and m edges. Suppose further that the edges of G are colored with ny1
different colors. We are interested in spanning trees T in G such that all edges of
T have different colors. Let us number the vertices of G by 1, . . . , n and the edges
of G by 1, . . . , m. Let us make G an oriented graph by orienting its edges

Ž .arbitrarily. We consider the truncated incidence matrix with the last row removed
Ž . Ž .As a for 1F iFny1 and 1F jFm as an ny1 =m matrix such thati j

1, if i is the beginning of j,¡~a s y1, if i is the end of j,i j ¢
0, otherwise.

The spanning trees of G are in a one-to-one correspondence with non-degenerate
Ž . Ž .ny1 = ny1 submatrices of A and the determinant of such a submatrix is

Ž w x.either 1 or y1 see, for example, Chap. 4 of 10 . Hence counting colored trees
reduces to computing the mixed discriminant of some positive semidefinite matri-
ces, computed from the incidence matrix of the graph.

Note Added in Proof: Applications of Mixed Discriminants described in Section
8 are known, see Chapter V of R. B. Bapat and T. E. S. Raghavan, Nonnegative
Matrices and applications, Cambridge University Press, 1997.
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