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SUMMARY

In this paper, we formulate robust stability and performance bounds in terms of guaranteed cost
inequalities. We derive new guaranteed cost bounds for plants with real structured uncertainty, and we
reformulate them as linear matrix inequalities (LMIs). In particular, we obtain a shifted linear bound and a
shifted inverse bound, and give LMI forms for a shifted bounded real bound, a shifted Popov bound, a
shifted linear bound and a shifted inverse bound. Several examples are used to compare the shifted bounds
with their unshifted counterparts and to make comparisons among these new bounds and vertex LMI
bounds. Copyright © 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

For unstructured time-varying or complex uncertainty, the small gain theorem provides a non-
conservative test for robust stability [1-6]. For structured and possibly real uncertainty,
however, the small gain theorem is known to be conservative, and structured singular value
bounds, which involve multipliers and complex scalings, can be used [7,8]. Linear matrix
inequalities (LMIs) are also used to guarantee robust stability [9-15].

Within the context of robust H, performance, the small gain theorem is equivalent to the
bounded real bound [1-3], which plays the role of a guaranteed cost bound [4]. Various
guaranteed cost bounds have been developed including quadratic and non-quadratic bounds.
Quadratic bounds include the bounded real [1-3], positive real [6,16], and Popov bounds [6,17]
(see Table I), while non-quadratic bounds include the absolute value and linear bounds [21-23]
(see Table II).

In the present paper we reformulate the bounded real, Popov, inverse, shifted bounded real
[18], and shifted Popov [19] bounds as guaranteed cost inequalities. In addition, we present two
new guaranteed cost bounds, namely, the shifted linear and shifted inverse bounds, which we
also reformulate as linear matrix inequalities.
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Table I. Quadratic guaranteed cost bounds.

Bound

Reference

Bounded real
Positive real

Popov

Shifted bounded real
Shifted positive real
Shifted Popov
Implicit small gain

Anderson et al. [1], Noldus [2], Peterson and Hollot [3]
Anderson [16], Haddad and Bernstein [6]

Haddad and Bernstein [6,17]

Tyan and Bernstein [18]

Tyan and Bernstein [18]

Kapila et al. [19]

Haddad et al. [20]

Table II. Non-quadratic guaranteed cost bounds.

Bound

Reference

Absolute value
Linear

Inverse

Double commutator
Shifted linear
Shifted inverse

Chang and Peng [21]

Jain [22], Bernstein [23], Kosmidou and Bertrand [24]
Bernstein and Haddad [4]

Tyan et al. [25]

This paper

This paper

The guaranteed cost bounds that we consider are either parameter independent or parameter
dependent. Parameter-independent bounds, such as the bounded real bound, use a common
Lyapunov function, whereas parameter-dependent bounds, such as the Popov bound, use a
family of Lyapunov functions. For polytopic uncertainty we show that the least conservative
common (parameter-independent) guaranteed cost bound can be determined by solving an
optimization problem involving a set of linear matrix inequalities. The interesting feature of the
guaranteed cost bounds is the fact that they give rise to sets of LMIs whose dimensions are less
than the dimensions of the vertex LMIs.

The contents of the paper are as follows. In Section 2 we consider the robust analysis problem
in a guaranteed H; cost inequality framework. In Section 3 we consider the use of vertex LMI’s
to obtain guaranteed H, cost bounds. In Sections 4 and 5 we review and analyse the shifted
bounded real and shifted Popov bounds, while in Sections 6 and 7 we present the shifted linear
bound and shifted inverse bound. Finally, in Section 8 several examples are considered to
compare the guaranteed cost and vertex LMI bounds.

Proofs can be found in Appendix A.

2. ROBUST PERFORMANCE AND GUARANTEED COST BOUNDS

Let % = R™” denote an uncertainty set and consider the uncertain p x m transfer function
Gauls) = E(sI — A — AA)"'D, where A e R™", Ade %, De R, and EeRP". If A+ A4 is
asymptotically stable for all A4 € %, then we define the worst-case H, performance by

J()= sup |Gasll;- (1
AAel
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It follows from standard results that

J(U) = sup tr PagV, (2)
AAel

where ¥V =DDT and P4 is the unique, non-negative-definite solution to the Lyapunov
equation
(A4 AA)"Pay + Pas(A+ A4) + R =0, 3)
where R=ETE.
The following definition will be used to construct bounds for J(%).
Definition 1
Let /"cS", Q: A - S"and Py:% — S". Then (Q, Py) is a bounding pair if
0<P+ P(AA), Pe N, AAdeUu 4)
and
AATP + PAA + (A 4+ AA) Py(AA) + Py(AA)A + A <Q(P), Pe NV, AAdeU. ®)

The following result, which is slightly stronger form of Theorem 3.1 of Reference [17]
provides a bound for J(%).

Theorem 1
Let (Q, Ry) be a bounding pair and assume there exists P € /" satisfying
AP + P4+ Q(P) + R<0 (6)

Then (4 + AA4, E) is detectable for all A4 € % if and only if A + A4 is asymptotically stable for all
AA € 7/. In this case,

Prg <P+ Py(A4), AAe, 7
where Pry € N” is given by (3), and
J(U)< J(U) ®)
where
J(U)=tr PV + sup tr By(AA)V. )
Adew
Remark 1 B
If there exists Py € S” such that
Py(AA)< Py, Adeu, (10)
then
JU)< J (an
where
=P+ Py)V]. (12)
Remark 2

In Theorem 3.1 of Reference [17], inequality (6) appears as an equation. Inequality (6) is
desirable since it permits the use of LMI techniques.

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:1275-1297
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A bounding pair (Q, Fy) is parameter dependent if Py is not constant. Alternatively, a bounding
pair (Q, Py) is parameter independent if Py is constant. In this case, Py(A4) is replaced by Py and
Py = Py so that ¢ = #(U) = tr[(P + Py)V].

The remainder of the paper is concerned with the construction of bounding pairs (Q, Py). To
construct a bounding pair (Q,Py) we must specify the set .4/ < S" along with the functions
Q /> S"and Py: % — S" that satisfy (4) and (5). No other assumptions on Q and P, are
required. To apply Theorem 1, however, requires the existence of a solution P € ./ to inequality
(6). LMI techniques will be used to obtain such solutions.

For a given bounding pair (Q,F), the following immediate result yields an equivalent
bounding pair (Q, Py).

Proposition 1 B
Let Q : /" cS" 2 S", Pe A, and Py — S” satisfy (4)-(6), and let Py e S" satisfy (10).
Furthermore, let Py € S”, and define /" = S", Q: A — S" and Py: % — S" by

NE N+ By— Py, (13)
Q(P) £ QP — Py + Py) — AT(Py — By) — (P — Pp)d, Pe i, (14)

and
Po(Ad) = Py(AA) — Py + By (15)

Then (4)—(6)_and (10) are satisfied with /4", Q, P, Fy, and Po replaced by A, Q P+ Py —
Py, Py, and Py. Furthermore, the bounding pairs (Q, Py) and (Q P()) yield the same performance
bound Z(%).

Remark 3
If there exists A4 € % such that Py(A4) = 0, then (4) implies P>=0 for all P € ./, and thus
without loss of generality we can assume A4~ < N”.

Remark 4 B

Let (Q,B) be a parameter-independent bounding pair with Py = Py. Letting Py =0 in
Proposition 1 yields the equivalent parameter-independent bounding pair (fl, 0). Thus, without
loss of generality, we can consider parameter-independent bounding pairs of the form (Q,0),
where, by Remark 3, /" < N”".

In the following sections, % is given by either the parametric uncertainty set

Up(R) = {AA: Ad =" 5:4;, where (31,...,5,) € J)} (16)
i=1
where 2 c R" and 4; e R"*", i =1,...,r, or the factored uncertainty set
Ue(F) = {AA: AAd = BoFCy, where F € 7}, (17)

where Z < R"*2, By e R/ and C, € R>*".
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Note that the parametric uncertainty set %,(#) requires specification of the set #, while the
factored uncertainty set % (%) requires specification of the set % . These sets will be specified in
later sections for each bounding pair that we consider.

Next we show that %,(Z) is a special case of %;(F) for a special choice of #. To show this,
let B; € R™% and C; e R satisfy

Ai:B,’C,', i=1,...,r, (18)
and define
G
By=[B; ---B,] € R", Co=| : | eR"™", (19)
ol
where k= >"7_, k;. Then
Ad =" 54; = ByFCy, (20)
i=1

where F' = diag(d1/x,,...,0,0x.) € R** 5o that /; = [, = k. Hence, with (18) and (19), it follows
that
UF 2) = Up(R), (21)

where % (F y) is the factored parametric uncertainty set, where
F g ={F e SF: F = diag(611y,,...,0.01,), (01,...,0,) € R}. (22)

3. VERTEX LMIs FOR ROBUST PERFORMANCE

In this section linear matrix inequalities are used to construct parameter-independent bounding
pairs. For y > 0 define the polytopic uncertainty set

Uo(R,) = {AA: AAd = 0;A;, where |6,|<y, i= 1,...,r}, (23)
i=1
where
Ry =4{(S1,...,6,):10i|<y, i=1,...,r}. (24)
With (18) and (19), the factored polytopic uncertainty set is given by
U(T 2,) = Up(Ry), (25)
where, with #Z = %, in (22),
T g, ={F eS': F=diag(61L,,....0:Iy), 10i<y, i=1,...,7}. (26)
Lemma 1
P e N" satisfies the 2" LMIs
AP+ PA + p(ATP + P4)) + --- + y(ATP + P4,) + R<O (27)
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Table III. LMI dimensions for continuous-time polytopic uncertainty bounds. For the linear and inverse
families of bounds, « must be chosen separately.

Bound Variables Variable size LMI dimension
Vertex LMI Prop.2 P n’ 2'n?
Shifted bounded real Prop.8 P, N, Y; 2 +2 >k (n+ kP> +2 3 K
Bounded real P n’ (n+ k)
Shifted Popov Prop. 11 P, P, X, Y, N, H 30 +3i> (n+k>+ Q@+ 1n?
Cor.1 P, P, X, Y N H Q+Di2+3k (n+k?>+@r+5n
Popov P, P, N, H (r+ D2 +2k2 (n+k)P?+ Qr+3)n?
Shifted linear Prop. 15 P, N;, Y (r+2)n? (2" +2)n?
Cor.2 P, N, Y (r + 2)n? Qr 4 2)n?
Linear P n’ 2n?
Shifted inverse Prop. 18 P, N;, M;, Y Q2r +2)n? (r+ 1*n2 + Q" + Dn?
Remark 12 P, N;, M;, ¥ Gr + Dn? (r+ 1)*n? + Q2r+ Dn?
P, N; (r+ Hn? (r+ 1)*n? + n?
Inverse P n’ (r+ 1)*n + n?

if and only if P satisfies
(A+ AP+ P(A+ A4) + R<0, AAd € Up(R,). (28)

The following result shows that the set of solutions to the 2" vertex LMIs (27) gives rise to a
parameter-independent bounding pair (Qpy, 0). Define

P ={PeN":P satisfies (27)}.

Proposition 2
Let U = Up(#,) and define Qpmp: 2 — N” by

Quvi(P)=—-R—A"P — PA. (29)
Then (Qpwm1,0) is a bounding pair. Furthermore, J(%,(%,))<tr PV for all P € 2.

The next result shows that every bound #(%) obtainable from a parameter-independent
bounding pair (Q,0) is also obtainable from vertex LMIs.

Proposition 3
Let % = U p(#,), let (Q,0) be a bounding pair, where Q : 4" < N" — S”, and assume there exists
P e ./ satisfying (6). Then P satisfies (27).

Propositions 2 and 3 show that there is an equivalence between the performance bounds
obtainable from vertex LMIs and the performance bounds obtainable from parameter-
independent bounding pairs (Q, 0). This equivalence does not suggest, however, that parameter-
independent bounding pairs (€, 0) are of no interest. Rather, as can be seen in Table III, the
bounding pairs (2, 0) may entail LMIs that are of lower dimensionality than vertex LMIs. With
this motivation in mind, we turn our attention to the construction of parameter-independent
and parameter-dependent bounding pairs.
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4. SHIFTED BOUNDED REAL BOUND
Define Z gr(M) = R'"*" by
Fpr(M)={F e R FTE <My, (30)
where M e N2 The following result concerns the classical bounded real bound [3,5].

Proposition 4
Let % = U¢(F gr(M)), A = N", and

Q(P) = PByB} P + CIMC,. (31)

Then (©,0) is a bounding pair.
Next, define

Fars(M,N)= {F e R" . (F+ N)'(F + N)<s M}, (32)

where M € N2 and N € R"*2. Note that Z grs(M,0) = Zgr(M). The following result concerns
the shifted bounded real bound [18].

Proposition 5
Let % = U¢(F grs(M,N)), N =N", and

Q(P) = PByBY P — (BoNCy)" P — PByNC, + CIMC,. (33)
Then (Q,0) is a bounding pair.

The shifted bounded real bound inequality is given by (6) with Q given by (33), which has the
form

(4 — BoNCy)"P + P(4 — ByNCy) + PBoBYP + CIMC, + R<0. (34)

Remark 5
Note that

A+ U(F grs(M,N)) = {4 + BoFCy : F € Zgrs(M,N)}
= {A+ ByFCy : (F + N)"(F + N)<M}
— {4+ By(F — N)Cy: FTE<M)}
— (A, + BoFCy: F E<M)
=4, + Ui(7 Br(M)),
where 45 =4 — ByNCy. This identity suggests that the shifted bounded real bound is not more
general than the bounded real bound. However, this is definitely not the case. Rather, the shifted

bounded real bound has the form of the bounded real bound for a shiffed nominal dynamics

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:1275-1297
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matrix Ag that is different from the original nominal dynamics matrix 4. The numerical results in
Section 8 show that, for the examples considered, the shifted bounded real bound is markedly
less conservative than the standard bounded real bound.

Remark 6
Other factorizations can be used in place of (32). In particular, [18] uses a factorization of the
form

Frrs(My, N) = {F € R"2 1 (FCy + N)'(FCy + N)< M},

where N and M are chosen to have appropriate dimension. Example 3 in Section 8 uses a
factorization of this form for the shifted bounded-real bound.

Next we apply the shifted bounded real bound to the factored polytopic uncertainty set
Ui(F 2,) = Up(R,) With By, Cy given by (18) and (19), so that F = diag(é14y,,...,0.l) € 7 »,.
Note that if y*/ <M then F 2, < Fr(M). Now let N = diag(V,...,N,) € Rk where N; €
Rk i=1,...,r. Then

Fprsa(M,N)= Fprs(M,N) " F 4
— (F = diag(61Ls,,...,6,1): (F+NY(F + N)<M,(5,...,6,) € R).

Proposition 6
Let M be given by

M=N'N+yI+7, (35)
where Y =diag(Yi,...,Y,), and ¥; e N&, i=1,...,r, satisfies
SN+ NDSY, 10y, i=1,...,r (36)
Then
F 2, < 7 Brs(M,N). (37)

With M given by (35), (34) becomes
(4 — BoNCy)"P 4 P(4 — BoNCy) + PByBIP + CJ(NTN + 9’1 + Y)Cp + R<0. (38)

The next proposition gives two choices of Y; that satisfy (36).
Proposition 7
Let ¥, e N% j=1,...,r, and consider the conditions
Y=yIN;+NY, i=1,...,r (39)
and
Y <yWN: +NDH<SY, i=1,..,r (40)

Then (39) = (40) < (36).
Next, we formulate an LMI to obtain a feasible solution P € N” to the shifted bounded real
inequality (34) along with M and N. The following result follows from the equivalence of (36)

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:1275-1297
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and (40) as well as by using Schur complements to rewrite (38). Let N = diag(Ny,...,N,) and
Y = diag(1y,..., Y,).

Proposition 8
Let % = Ui(F 2,) and let Pe N", N € R“* and Y € §". Then P, N, Y satisfy (40) and

AP+ PA+ CL(* I+ Y)Cy+R PBy— CINT

<0 (41)
B{P — NCy -1
if and only if P, N, Y satisfy (36) and (38).

Remark 7
The LMI (41) is a special case of (24) in Reference [15] with

O0=ClG I+YV)C+R S=CN", R=-1, B=B), C=1

5. SHIFTED POPOV BOUND

Let [} = I, = k and define Zp < S, #p < PF and 4p = R*F by

fpg{FESkl ML§F<MU}, (42)
Hp={HecP: HF = FH, F € Zp}, (43)
Np={NeR*: N"My = MN, N'F = FN, F € Zp}, (44)

where My, My € S are such that

M =My — My > 0. (45)

The following result concerns the Popov bound [17].

Proposition 9
Let % = U¢(Fp), /'=N", N e Npand H € #p. Assume that

Ro=(HM™" — NCyBy) + (HM~" — NCyBy)" >0 (46)
and let
Q(P) = (HCy + NCyAp + BIP)"Ry ' (HCy + NCyAp + B} P)

+ (BoMy.Co)' P + PByMy.Cy, 47)
where /1}) =4+ BoM Cy, and

Py(A4) = Cy (F — My)NC,. (48)
Then (Q, Py) is a bounding pair.

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:1275-1297
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Remark 8 B
If u e St satisfies = (F — Mpy)N for all F € Zp, then Py = Ci uCy satisfies (10).

The following result concerns the shifted Popov bound [19].

Proposition 10
Let % = Ui (Fp), let X € R¥* and ¥ € S” satisfy

BoX"(F — My)Cy + CH(F — ML)XBy <Y, FeZFp (49)
let /“=N", Ne Vp,and H € #p, let Ry be given by (46), define
Q(P) = (HCy + NCyAp + BY P — XBY)"Ry ' (HCy + NCyAp + BYP — XB])
+ (BoMLCo)'P + PBoML.Cy + Y, (50)
and let Py(AA4) be given by (48). Then (Q, Fy) is a bounding pair.

The shifted Popov bound inequality is given by (6) with Q given by (50), which has the form
(4 + BoMy.Co)" P + P(4 + BoMy.Co) + (HCy + NCoAp + By P — XB))"
x Ry '(HCy + NCyAp + BIP — XBY) + Y + R<0. (51)

Remark 9
Setting X = 0 and Y = 0 in Proposition 10 yields Proposition 9.

Next, define #pq = P¥, A'pg = SFand I,,...,1, € S" by

Hpg=1{H € P*: H = diag(H,,...,H,), HeP" i=1.r}, (52)

Npg={N eS*: N =diag(Ny,...,N,), NyeSh i=1,...r}, (53)
and
iiédiag(okw'"90ki71a1ki>0ki+1"“sok,-)s

where k =>"" | ki. Let =My = My =yl and let Zp < F 4. Then Fp = F ,. The following
result provides an LMI satisfying (49) and (6) with % = U¢(F ,) = U(#,) and with Q given by
(50).

Proposition 11 N
Let % = Uy(,), and let A" denote the set of (P,X,Y,N,H)e N" x R % §" x N 'py X Hpg
satisfying

ASP+PAp +Y+R  CTH+ ApCIN + PBy — BoX™ B ”
HCy + NCyAp + By P — XB} NCoBy + BICIN —y'H
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and the 2"+! LMIs
+ 9(BoXTCy + CIXBY) + y(BoX "1, Cy + CI 1, XB])
+ o & p(BoX1,Co + Cy I, XBj)<Y. (55)

Then (6), with Q given by (50), and (49) are satisfied for all (P,X,Y,N,H) € . Furthermore, if
Py € S” satisfies the 2t TMIs

yCo (I + 1y + Iy + - + [)NCo< Py, (56)
then (10) is satisfied.

Corollary 1
Let X e R and let Y;,..., Y., € S" satisfy

Y, <yBoX',Co +yCoXT,By <Y, i=1,...,r, (57)
Y1 SYBoXTCo + yCy XBY < Y1, (58)
let N e A'p, and let Py,..., P4 € S" satisfy
—P<yC{IiNCo<P, i=1,...,r, (59)
—P 1 SYCNCo < Py 1. (60)

Then Y = Z?Ll Y; satisfies (49). Finally, let Py(A4) be given by (48). Then Py = Zf:ll P; satisfies
(10).
6. SHIFTED LINEAR BOUND

In this section we consider the linear bound [22-24].

Proposition 12
Let % = WU p(#;), o> 0 and A" = N", and define

1 2 r
QP) = arP + 3" 4TPA,. (61)
xS
Then (©,0) is a bounding pair.
Next, the shifted linear bound is obtained.

Proposition 13

Let % = Uy(#,) and «> 0, let Ny,...,N,, Y € S” satisfy
S SAIN, + NIAY< Y, 81<y, i=L...n, (62)
i1

and define 4" = N" n ("_, [N" + N;]) and

r

QP) = Z [oc(P —N) + V—ZA,T(P — NA4;| + 7. (63)
i1 o«

Then (©,0) is a bounding pair.
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Remark 10
Setting Ny = --- =N, =0 and Y = 0 in Proposition 13 yields Proposition 12.

The shifted linear bound inequality is given by (6) with Q given by (63), which has the form

r )
AP+ PA+ Y [oc(P —N)+ %AiT(P - M—)A,—] +Y + R<O. (64)
i1
The next result provides a method for computing P satisfying
r n2
AP+ PA+Y [ac(P —N)+ %A,-T(P - N,»)A,} +Y+R=0. (65)
i1

Proposition 14
Let >0, Ny,...,N,e€S", and Y =y AN, + N 4;|. Suppose

;zié(A—k%I)@(A+%I)+§§(Ai®fli) (66)

is invertible. Then (65) has the unique solution
P = —vec (/T vecRy), (67)

where
- 2
Ry= Z [“/VliTNi + N;A;| — aN; — y_A,'TNiAi] LR
i1 o
If, in addition, .« is asymptotically stable and Ry is non-negative definite, then P>0.

Remark 11
The last statement of Proposition 14 follows from techniques used in Reference [26].

Proposition 15 y

Let % = Up(#,), let o> 0, and let 4" denote the set of (P, Ny,...,N,,Y) e N" x (S"y*! satisfying
r 2
AP+ PA+ Y {oc(P—M)—i—%AiT(P—N,»)Ai +Y +R<0 (68)

i=1

and the 2" LMIs
Then (62) and (63) are satisfied for all (P, Ny,...,N,,Y) e N

Letting N; = --- = N, = N in Proposition 13 yields the following specialization of the shifted
linear bound.

Corollary 2
Let >0 and let N, Yy,..., 7, € S" satisfy

S{AIN + NAYKY;, 10il<y, i=1,...,7, (70)
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and define /"= N" n (N" + N) and

I

r 2 r
QP) =P~ N)+ > %AIT(P — N+ S T
i=1 =1

Then (Q,0) is a bounding pair.

7. SHIFTED INVERSE BOUND
The following result concerns the inverse bound [4].

Proposition 16
Let U = Up(#,), o.>0 and A" = P", and define

QP) = aprP + = S (TP + PAYP' (AT P + PA)).
4o 4=

Then (Q,0) is a bounding pair.

1287

(71)

(72)

The inverse bound inequality, which is given by (6) with Q given by (72), has the form

ATP 4+ PA + ayrP + 41 S (TP + PAYP (TP + PA) + R<0.
o
i=1

Equation (73) can be written as
5T 3 7N T —1 T
Ay P+ Py + ;:1 (ATPA; + PAP'4TP) + R0,

where Aipy =4 + okl + L S A2,
Next, the shifted inverse bound is obtained.

Proposition 17

Let % = Up(#,) and o> 0, and let My;, M>; e R, i=1,...,r, and ¥ € " satisfy
r 5[_

> ST+ My) + (M + MDAISY, 0<y, i=L...r.

i=1

Let Ny,...,N,.e€S", and define

N =N"'n <h[Pn+Ni])
i=1

and

4o

i=1

QP) = Z (l[A,T(P — M) + (P — MapA)(P — Ny~

<P = 30+ (P~ Mo (P = N)) + Y.
Then (Q,0) is a bounding pair.
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Substituting Q(P) into (6) yields the shifted inverse bound inequality

AP +PA+Y (l[A,T(P — M) + (P = Ma)A)(P — Ny~
P 4o

X[AT(P — M) + (P — May)A]" — ocyN,-) +ayrP + Y + R<0. (78)

Let M;y = My, =M,;€S", i=1,...,r. The next result uses LMIs to find P € P” and M, ...,
M,,Ny,...,N. and Y € S" satisfying (75) and (78).

Proposition 18 N
Let % = WUp(#,) and let o> 0. Let A" denote the set of (P,Ni,...,N.,My,...,M,,Y)eN" x
(SM¥*! satisfying

ATP+PA+oy> )l ((P—N)+Y+R AT(P—M)+ P M)A, - AP — M)+ (P — M)A,

A;F(P—Ml)-F(P—Ml)A] —%(P—Nl) 0 0
<0

: 0 0

AL (P —M,) + (P — M4, 0 0 ~ %P - N,
(79)
and the 2" LMIs

+p(ATMy + Midy) + - + Y(ATM, + M,4,)<Y. (80)

Then (75) and (78) are satisfied for all (P, Ny,...,N,,My,...,M,, Y) € N

Remark 12
As in Corollary 1, (80) can be recast as 2rn* constraints.

Corollary 3

Assume A+AT<0 and A4;+A4f =0, let B>0 satisfy BA+A4T)+R<0, let >0,
and define N; = (oryr) '[f(4 +A")+R]+ pI and My =M» =0, i=1,...,r. Then P = pI
satisfies (78).

8. EXAMPLES

In this section we use LMI methods to calculate solutions along with optimal scalings
for the linear, bounded real, inverse, and Popov bounds, as well as their shifted counter-
parts. In the case of the inverse and linear bounds, the o scalings must be chosen separately.
In Example 1 through Example 3, vertex LMIs were used to obtain the best para-
meter-independent bound from Proposition 2 (marked LMI), along with the Popov and shifted
Popov bounds.
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Example 1
Let
—0.0002  0.2208 0 0
—0.2208 —0.0002 0 0 022 D
N 0 0 —0.0103  1.4322 - [—12 Ozle’
0 0 —1.4322 —-0.0103

where the uncertainty represents modal coupling. Furthermore, let R = I and V' = I4, and let B
and C, be given by
[2 ngz 02><2 12
5 Cl - .
02><2 —]2 ]2 O2><2

Each plot in Figure 1 shows the exact worst-case performance along with the LMI bound
given by Proposition 2. As can be seen in Figure 1(a), the bounded real bound given by
Proposition 4 guarantees stability for |6] <0.0003. Applying Proposition 8, the shifted bounded
real bound is shown in Figure 1(a) and guarantees stability for all § € R. Next, the Popov bound

B =

10° , 10°
’ .
i -
| AT
<
4 /
- 10 y R d .....
_ W gnite!
Exact Worst Case 'Exact Worst Case
10° . 10°
10 10 10° 10°
(a) Y b Y
10° 10°
o S 4 I i 41 inverse _
= 10 - 10 / \N\\andShiﬂed
............... st Worsd Cags ST AR Tt
3 3
10 10
10° 10° 10° 10°
(c) Y (d) Y

Figure 1. Comparison of shifted, unshifted, and vertex LMI bounds for Example 1
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in Figure 1(b) guarantees stability for || <0.1, while the shifted Popov bound using Proposition
11 is less conservative than the parameter-independent LMI bound given by Proposition 2. The
linear bound in Figure 1(c) guarantees stability for |§| <6 x 1074, while the shifted linear bound
is less conservative for |§|<6 x 107, Finally, the inverse bound in Figure 1(d) guarantees
stability for all 6 € R, while the shifted inverse bound with M; = 0 coincides with the vertex LMI
bound given by Proposition 2. It can be seen that the shifted bounds provide significant
improvement over their classical counterparts.

Example 2
Let

—0.005 1 0.001 10
A = N Al - s
—1 —0.005 —10 0.001

0.25 0.12 0 0
R= , V= .
0.12 25 0 12
Although the uncertainty is nearly skew symmetric, it is destabilizing. Figure 2 shows the exact
worst case performance. Now let B; and C is given by

1 10000
~10000 1 |

With this choice, the bounded real and linear bounds guarantee stability for |5| <4 x 1074, while
the shifted linear bound yields an improved robust performance bound for || <4 x 10~%. The
shifted Popov bound, using Proposition 11, guarantees stability for |d|<5 and is less
conservative than the vertex LMI bound. The shifted inverse bound guarantees stability for
|0| <5 and coincides with the vertex LMI bound.

By =0.0011y, C = l

Example 3
Here we consider several variations of Example 1 with two uncertain parameters. First, consider
the non-destabilizing skew-symmetric uncertainties

0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 O
Ay = , Ar = , (81)
0 0 0 0 -1 0 0 0
0 -1 0 0 0 0 0 O
and let By and Cj be given by (19), where
0 0 1 0
1 0 0 0 0 1 0 0 0 0 1 0
Bl - b C - b B2 = > C2 = . (82)
0 0 01 00 0 -1 1 0 00
0 -1 0 0

Figure 3(a) shows the performance bound given by the shifted bounded real bound and the
shifted Popov bound, which coincide with the vertex LMI bound given by Proposition 2.
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10. T T T T TorrTTTT T T T T Ty

103 NN | N | i PN

10°

10
Figure 2. Performance bounds for Example 2 for a destabilizing uncertainty.

Next, consider the symmetric and skew-symmetric uncertainties

0 0 0 O 0 0 1 0
0 0 0 0.1 0 0 0 O
Al: 5 AZZ 5 (83)
0 0 0 O -1 0 0 0
0 01 0 O 0 0 0 O
and let By and Cj be given by (19), where
0 0
0.1 0
By = )
0 0
0 0.1

and Cj, B, and C; are given in (82). In this case, the first uncertain parameter is destabilizing.
Figure 3(b) shows the performance bound given by the shifted bounded real bound, which
coincides with the vertex LMI bound, and the shifted Popov bound, which does slightly better
for higher levels of uncertainty.
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10
1ited Bounded Real,
- 10° S vitted Popov, and LMI
3
10 - -
10* 107 107 10"
(a) v
10°
- 104 b
3
10
10° 102 10"
(c) Y

10°

10°

(b)

10

= 10

10°

10"

(d

10°

10° 102 !

10
Y

Figure 3. Performance bounds for Example 3 comparing the shifted bounded real, shifted Popov and vertex
LMI bounds with two uncertain parameters: (a) two skew-symmetric uncertainties, (b) symmetric and skew-
symmetric uncertainty, (c) nilpotent and skew-symmetric uncertainty, (d) two nilpotent uncertainties.

Next, consider the nilpotent and skew-symmetric uncertainties

00 0 O

0 0 0 0.1
A = ,

00 0 O

00 0 O

and let By and Cj be given by (19), where

0

0.1
By = ,
0

Copyright © 2002 John Wiley & Sons, Ltd.

Int.

0 010
0 00 0

Ay = . (84)
~1.0 0 0
0 00 0

C=[0 0 0 1],
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and B, and C; are given in (82). In this case, the first uncertain parameter is destabilizing. Figure
3(c) shows the performance bound given by the shifted bounded real bound, which coincides
with the vertex LMI bound, and the shifted Popov bound, which does slightly better for higher
levels of uncertainty.

Finally, consider the nilpotent uncertainties

00 0 O 0 0 0 O
0 0 0 0.1 0 0 0 O
Al = 5 A2 = B (85)
00 0 O 001 0 0 O
00 0 O 0 0 0 O
and let By and Cy be given by (19), where
0 0
0.1 0
By = , Ci=[0 0 0 1], By= , CG=[1 0 0 0]
0 0.01
0 0

In this case, both uncertain parameters are destabilizing. Figure 3(d) shows the performance
bound given by the shifted bounded real bound and the shifted Popov bound, which coincide
with the vertex LMI bound.

9. CONCLUSIONS

In this paper the shifted bounded real bound [18], the shifted linear bound, the shifted inverse
bound, and the shifted Popov bound [19] have been considered. These bounds were compared
with the bounded real bound, the linecar bound, the inverse bound, the Popov bound, and the
vertex LMI bound. It was shown that these shifted bounds can be recast as guaranteed cost
inequalities described by LMIs. For several examples, it was shown that the shifted bounded
real bound and shifted inverse bound are comparable to the best possible parameter-
independent bound given by Proposition 2. It has also been shown for several numerical
examples that the shifted Popov bound, which is a parameter-dependent bound, may be less
conservative than parameter-independent bounds.

Table III lists the various bounds discussed in this paper. The dimensionality of each LMI is
compared along with the number of variables required. As can be seen from Table I1I, there are
tradeoffs between the dimension of the constraints and the size of the free variables. The
bounded real bound is a more conservative bound and has a lower dimension than the shifted
bounded real bound. Similarly, the shifted bounded real bound has a lower dimension than the
less conservative Popov and shifted Popov bounds.
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APPENDIX A

Proof of Lemma 1

For arbitrary x € R”, define f,: 2 — R by fi(0) = x"[(4 + S, 8:id)"P+P(A+ 3, 8:d) +
R]x. Note that # defined by (24) is the convex hull of the corner points Zy of a cube in R". By
convexity of fi, fyz < 0 if and only if fyz, <O0. Since x is arbitrary, the result follows. O

Proof of Proposition 2
Let P € #. Thus, from Lemma 1, an immediate consequence of (28) is

0< —R—A"P—P4—A4"P — PA4

= Quvii(P) — AATP — PAA.

Therefore (Qpwmp, 0) is a bounding pair. O
Proof of Proposition 3
Since (€, 0) is a bounded pair and P satisfies (6) then
(A+AA)'P 4+ P(A+ Ad) + R<ATP + PA + Q(P) + R<0.

By Lemma 1, P satisfies (27). Therefore Pe 2, and (28) follows as an immediate

consequence. [

Proof of Proposition 7
To prove (39) = (40), suppose (39) is satisfied. Then it follows that, fori =1,...,r,

T T T T T T

thus (40) is satisfied. Finally, to prove that (40)<>(36), methods from the proof of Lemma 1 can
be used. O

Proof of Proposition 11

First, using the technique used in the proof of Lemma 1, it can be shown that if Py satisfies (56),
then Py > Py(AA4) where Py(AA) is given by (48). Similarly, it can be shown that if ¥ satisfies (55),
then Y also satisfies (49). To show that (54) implies (6) with Q(P) given by (50), premultiply and
postmultiply (54) by S and ST, where S is given by

[ (CTH + ASCIN + PBy — ByX )R

>

0 I
and
Ry =7y 'H — NCyBy — (NCyBy)" > 0.
Now from Theorem 1, it follows that J(%)<tr (P + Po)V . |

Proof of Corollary 1
The proof uses some of the techniques used in the proof of Lemma 1. O
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Proof of Proposition 13
Note that

0< Z 0 1(8;4T — al) (P — N))(8;4; — o)

i=1

= > [P = Np) + o ' GAT (P — N)A; + S:(A Ni + Nidj)] — AA"P — PAA

i=1
< Y [P = N+ o 24T (P~ NpAi + Y — AATP — PAA
i=1

=Q(P) — AATP — PAA. N

Proof of Proposition 15
The proof uses some of the techniques used in the proof of Lemma 1. O

Proof of Proposition 17
Note that

0<ym Y B (P~ N — 5 (ATIP — My + [P Mzi]Ai)]
i=1
[ 1 . T
(P—N) [; (P—N;)— 7y A;[P—M]+[P— Mzi]Ai)]
= Z [ (AP = Mi] + [P — MaJA)(P — N) ™ (A][P — My)]
+ [P — My + % 5} (P —N;) — %(A,-T[zP — My — M)
+[2P — My; — M;E]Ai):|
Z [ (A} [P — My + [P — MoJA)(P — Ny) (A [P — My ]

5
1P = MaA)T + 2 0%P — N = 5 (AT T+ M)+ [V + M)

— AA"P — PA4
< Z [ (A} [P — My] + [P — MoJAi)(P = Ni) ™' (A] [P — M)
i=1

+[P— MyJdy)' +op(P = N))| +Y — Ad"P — PA4

=Q(P) — AA"P — PAA. O
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Proof of Proposition 18
Let P>0,0>0, Ny,...,N., My,...,M, €S" satisfy (79). To show that (79) is equivalent to (78)
with P e A", premultiply and postmultiply (79) by S and ST, where S is given by

I HATP = M) + (P = M)ANP =N o NP = M) + (P = M)A (P =~ N,)™!
0 1 0 0
S= O
0 0
0 0 0 1

Proof of Corollary 3
Suppose P = pI. Then (78) becomes

0=A"P+PA+Y op(P—N)+R

i=1

+ 5" NP~ M) + (P~ Ma)AXP — Ny TP~ My + (P~ Mo ]!
* i3
AT+ Y ay(ﬂl—aiy{é(/l AT +R} _ /31) 4R

=1 r

:B(AT+A)—§i(A+AT). O
i=1

APPENDIX B: NOMENCLATURE

RY d x 1 real column vectors
R m x n real matrices
1,,0,,S" n X n identity matrix, n X n zero matrix, n X n symmetric matrices
N, P" n X n non-negative-definite matrices, n X n positive-definite matrices
A<B, A<B B — A is non-negative definite, B — A4 is positive definite
tr trace
|H| (HH™)'?, where H € R <k
vee, @, ® column stacking operator, Kronecker sum, Kronecker product
(G, H] GH — HG
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