A Hybrid Genetic/Optimization Algorithm for
a Task Allocation Problem

Atidel Ben Hadj-Alouane
James C. Bean
Katta G. Murty
Department of Industrial & Operations Engineering
University of Michigan
Ann Arbor, MI 48109

Technical Report 93-30

December 1996

A Hybrid Genetic/Optimization Algorithm for
a Task Allocation Problem *

Atidel Ben Hadj-Alouane
James C. Bean
Katta G. Murty

Department of Industrial and Operations Engineéring
University of Michigan
Ann Arbor, MI 48109-2117

December 16, 1996

Abstract

We consider the problem of designing a distributed computing system for han-
dling a set of repetetive tasks on a periodic basis. Tasks assigned to different
processors need communication link capacity, tasks executing on the same proces-
sor do not. The aim is to develop a design of minimum total cost that can handle
all the tasks. We compare the performances of a genetic algorithm, a commercial
0 — 1 integer programming software and a hybrid approach from the literature, in
solving real instances of the problem.

*This work was supported in part by the National Science Foundation under Grant DDM-9018515
and DDM-9308432 to the University of Michigan.

1 Introduction

The task allocation problem arises in distributed computing systems where a number
of tasks (dealing with files, programs, data, etc.) are to be assigned to a set of processors
(computers, disks, consoles, etc.) to make sure that all tasks are executed within a certain
cycle time. The aim is to minimize the cost of the processors and the interprocessor data
communication bandwidth installed in order to achieve this objective.

In this paper, we deal with a specific task allocation problem in the automobile
industry discussed by K. N. Rao [22]. In the modern automobile, many tasks such as
integrated chassis and active suspension monitoring, fuel injection monitoring, etc., are
performed by a subsystem consisting of micro-computers linked by high speed and/or
low speed communication lines. The cost of the subsystem is the sum of the costs of the
processors (or microcomputers), and the installation costs of the data links that provide
interprocessor communication bandwidth.

Each task deals with the processing of data coming from sensors, actuators, signal
processors, digital filters, etc., and has a throughput requirement in KOP (thousand
operations per second). Several types of processors are available. For each, we are
given its purchase cost and its throughput capacity in terms of the KOP it can handle.
- The tasks are interdependent; to complete a task -we may need data related to some
other task. Hence, if two tasks are assigned to different processors, they may need
communication link capacity (in bits/second). Tasks executing in the same processor
do not have communication overhead. Also, each task may have to be allocated only to
potential processors in a specified subset. The communication load between two tasks is
independent of the processors to which they are assigned. This assumption of uniform
communication load is valid for local networks such as the one considered in this paper
([3] and [1.6]) and is valid for the real auto industry problem tested.

We also assume that if there is need for communication between a pair of processors,
it is provided by a direct link between them. This assumption is reasonable since (1) the

number of processors in the system is small, and (2) the company preferred the simple

architecture resulting from this assumption.

Define
m = number of tasks to be performed
n = number of processors under consideration; only a subset of these will be
installed | |
P, = set of processors to which task ¢t may be assigned
a; = throughput requirement (in KOP) of task ¢, ¢ =1 to m

$pybp, = cost ($), and capacity in KOP of processor p, p=1ton
¢, = cost ($) of installing communication bandwidth between task pair ¢, " if
they are assigned to different processors (this cost term may depend on

whether the link needed is a low-speed or hi-speed communication link).

To model this problem, we define the following 0 — 1 decision variables for ¢t = 1 to

m,p=1ton.

1, if task ¢ is assigned to processor p
xtp =

0, otherwise

1, if processor p is used (i.e. allotted some tasks)
Yp =
0, otherwise

In term of these decision variables, the model for the minimum cost design for the micro-

computer architecture is the following quadratic 0 — 1 integer program

m—-1 m

min f(z,y) = Z » (1= Z‘Ttpxt'p) + Z SpYp
p=1 p=1

/

t=1 ¢'=t41

s. t. Zat:rtp < by, forp=1lton (1)
t=1

(T) Y 2y <my,, forp=1ton (2)
t=1

thpzl, fort=1tom (3)
pEP:

Tipy Yp € {0,1}, for all t, p.

The first constraint (1) guarantees that the total KOP requirements of all the tasks

assigned to processor p does not exceed its KOP capacity of b,. Constraint (2) ensures

2

that a processor is purchased if it is allotted at least one task. Constraint (3) guarantees
that each task is assigned to exactly one processor. In this formulation, constraint (2) is
redundant since it is implied by constraint (1), where the throughput requirements,a,, are
positive. The reason for including constraint (2) is because the penalty transformation,
as shown later in Section 2, involves the relaxation of constraint (1) only. In parallel,
every solution generated by the algorithm developed in this paper satisfies constraint (2),
and not nescessarily constraint (1).

Note that the objective function is quadratic and nonconvex. This problem can
be transformed into a 0 — 1 linear integer program at the expense of increasing the
number of 0 — 1 variables in the model substantially. The linear relaxation of this model
exhibits a large duality gap (about 70% in preliminary experiments). When the number
of processors is only two, it can be transformed into a minimum capacity cut problem [27]
and solved efficiently by network flow techniques. However, for three or more processors,
the problem has been shown to be NP-hard [7] [11] [21].

The uniqueness of this particular problem is that it introduces fixed cost for the
processors. Most studies in the literature consider the processor cost as a function of
the task(s) assigned to it ([4], [6], [16], [17], [21], and [25]), i.e., include only variable
processor costs.

Most task allocation algorithms in the literature are either based on branch-and-
bound, or are heuristics based on constructive initial assignment, or on iterative assignment-
improvement (as classified in [20]). In [4] and [25], branch-and-bound algorithms are
given for task assignment in a heterogeneous multiprocessor system with no capacity
constraints. Several other branch-and-bound-based techniques address problems with
various types of constraints such as preference constraints, exclusion constraints, bounds
on the number of tasks assigned to each processor and also capacity constraints (see
[6], [16], and [17]). Constructive assignment heuristic methods include the clustering
algorithm and the Banded) Heuristic for the uncapacitated heterogeneous system [20],
the allocation technique for the uncapacitated homogeneous system [23], and the graph

matching approach for the heterogeneous system under various constraints [24]. In [23]

and [24], the objective is to balance processor load and minimize interprocessor commu-
nication cost. Only two iterative assignment-improvement techniques are encountered
in the literature. The first is the transformation method proposed in [20]. The second
is the genetic algorithm presented in [14], which addresses the uncapacitated heteroge-
neous system and uses traditional genetic operators (see Section 3.1 for an introduction
to genetic algorithms).

In [2], a genetic algorithm (GA) approach is developed for the Multiple-Choice Integer
Program (MCIP). Some constraints are relaxed using a nonlinear penalty function. Then
a genetic algorithm is used to solve the dual problem defined in terms of the penalty
coefficients. The task allocation problem (T') shares the multiple-choice constraints (3)
with the MCIP, but has a nonlinear objective function that is easy to compute. This is
the major requirement for an efficient genetic algorithm. In this paper, we expand the
approach developed for the MCIP to find good solutions for the task allocation problem.
Note that (') is nonlinear and, hence, the algorithm to be discussed here is not a direct
application of the results in [2].

To the best of our knowledge, the closest work related to our task allocation problem
is the hybrid allocation algorithm presented in [9]. It combines notions of heuristics
and implicit enumeration techniques to solve the special case of (T') where all costs of
processors are zero. Computational results presented later in this paper compare that
hybrid allocation algorithm and our genetic algorithm for some problem instances. We
are aware of no other published works that address this formulation.

It is interesting to note the similarity between the structure of our penalty transfor-
mation (PT)), defined in the next section, and the uncapacitated hub location problem
formulated in [5]. Each of the variables z,, is analogous to the variable representing
the assignment of origin/destination pair to a pair of hubs. The processor “usability”
variables, y,, are similar to those that represent whether a certain location is a hub. In
addition, the objective function of the uncapacitated hub location problem is very similar
to the objective of (PT)), in the special case where A = 0. See [15] and [19] for algorithms

tailored for the uncapacitated hub problem. Therefore, the algorithm presented here can

be applied to the uncapacitated hub location problem, but it may not be competitive with
codes designed specifically for the hub location problem because of capacity constraints.
Much of the machinery in our approach exists to handle the capacity constraints specific
to the task allocation problem.

The remainder of this paper is organized as follows. The second section presents the
penalty transformation and expands the strong duality results of [2] to the task allocation
problem. The third section describes the genetic algorithm developed for (T'). The last

section presents computational results for real problems from the auto industry.

2 Penalty Transformation

The common characteristic between the problem discussed in [2], (MCIP), and (T') is
that they both have the multiple-choice structure (constraints (3)). We relax constraint
(1) with a penalty function and calculate values of y (constraint (2)) directly from z. The
penalty term added to the objective function is the sum of weighted squares of violations

of constraint (1), given as:
pa(z,y) = Z Ap[min(0, by, — Z a),
p=1 t=1

where A = (A,) € ®", is > 0. Then, the relaxed problem is the following 0 — 1 nonlinear

program

min f(;v,'y) + pa(z,y)

m
s. to th,,,g my,, forp=1ton
t=1

(PT)) Y xp=1, fort=1tom

pEP
Tip,Yp € {0,1}, for all t, p.

For the MCIP, the penalty term turns a linear problem into a nonlinear problem. Loss
of linearity of the objective function is not particularly critical for a GA and empirical
tests show that the approach works well. The addition of a nonlinear objective in (T)

adds no complexity.

This relaxation differs from the common Lagrangian relaxation in that the penalty
term is nonlinear here and linear in the Lagrangian case. The Lagrangian approach is
not effective here since it can result in a large duality gap [8].

In [2], for the case of multiple-choice integer programs, it is shown that there exist
finite values for multipliers (represented by the vector A) such that the relaxed problem
solves the original problem exactly. That is, the nonlinear relaxation has the property
of strong duality, that is, no duality gaps. In this paper we state similar results for the
quadratic integer program, (T'). Let v(-) be the global optimal objective value of prob-
lem (+). The following theorem describes the relationship between v(PT)) and v(T') for
a fixed .

Theorem 1 (Fixed)

a— For a given XA > 0, if (z,y) ts a global minimum of (PTy) and (z,y) satisfies

constraint (1), then (z,y) is a global minimum of (T').

b- For a given X\ > 0 and ¢ > 0, if (z,y) is e-optimal to (PT\) and (z,y)

satisfies constraint (1), then (z,y) is e-optimal to (T).

The next theorem establishes the existence of some value of the vector A for which The-

orem l-a can be applied. This establishes strong duality for the dual maxy>o v(PT)).

Theorem 2 (Strong Duality) Let S\ be the set of global optimal solutions to (PT)).
If (T) is feasible, then there exists A > 0 and (z,y) € Sy such that, for all X >),

pa(z,y) =0 and (z,y) is optimal to (T).

The proofs of the above two theorems are similar to those presented in [2]. Indeed,

these results only depend on the boundedness and discreteness of the set of feasible

6

solutions of (PT)). In Theorem 2, a sufficient value of A is given as \ = max{Ag; 0}en,

o= max {f(x*,y*)—f(w,y)}’)

(z)€X a(zy)#0 o(z,y)
en = (1,1,...,1)T € R, (z*,y*) is an optimal solution to (T'),
X = {(z,y) € {0,1}("+") . Constraints (2) and (3) are satisfied}, and

where

Ot(:L', y) = Z=1[min(0, bpyp - 2?;1 atth)P'

This result is used in the genetic algorithm described in the next section.

3 Genetic Algorithm Approach

3.1 Introduction

Genetic algorithms are random search techniques that imitate natural evolution. They
are initiated by selecting a population of randomly generated solutions to the problem.
They move from one generation of solutions to another by breeding new solutions using
only objective evaluation and the so-called genetic operators. In this sense, it can be clas-
sified as an iterative assignment-improvement technique. In general, genetic algorithms
work with an encoding of the variables rather than the variables themselves. Typically, a
solution is represented with a string of bits (also called chromosome). Each bit position is
called a gene, and the values that each gene can take are calléd aHeIes (for an elementary
account of genetic algorithms see [18]; and for more details about encoding see [10]).

A basic genetic algorithm has three main operators. The first operator is reproduction
where strings (or solutions) are copied to the next generation with some probability based
on the quality of their objective function value. The second operator is crossover where
randomly selected pairs of strings are mated, creating new ones. The crossover operator
is described in detail in [1] and [10]. The third operator, mutation, is the occasional
random alteration of the allele of a gene. It plays a secondary role in genetic algorithms

since, in practice, it is performed with a very small probability (on the order of 1/1000).

Mutation diversifies the search space and protects from loss of genetic material that can

be caused by reproduction and crossover.

3.2 A Genetic Algorithm for (PT)), A Fixed

We use a direct encoding in which a solution is represented by a string of length equal
to the number of tasks. The allele of a given gene (for a given task), takes the value of
the index of the processor to which it is assigned. Hence, each gene, t, of the string can
take any integer in P,. Note that the variables y,, p = 1 to n, are not included in the
representation. The reason is that they can be easily determined given any task-processor
assignment. Since y, represents whether the processor p is used or not, it is equal to 1 if
at least one gene has a value equal to p, otherwise it is set to zero.

Given a current generation, the next generation is created using the following opera-
tions. The size of the population is held constant always, the operations are carried out

in this order until the next generation is complete.

1. Copy the N, top solutions. The solutions of the current generation are sorted in
increasing order of the objective function value from top to bottom, then the top
N, solutions are copied into the next generation. N, is usually fixed to 10% of
the population size. This approach, called elitist reproduction [10], replaces the
traditional probabilistic reproduction. The advantage of using elitist reproduction
is that the best solution is monotonically improving from one generation to the

next.

2. Mate random pairs: first, randomly select with replacement, two strings (parents)
from the entire current generation. Unlike the traditional GA, each parent is se-
lected by giving each individual in the entire generation equal probability. Next,
create two offspring using the Bernoulli crossover (referred to as parameterized
uniform crossover in [26]). For each gene, toss a biased coin and use the out-
come to determine whether or not to interchange the alleles of the parents. Once

the offspring are created they are evaluated, and only the one with better ob-

jective value is included in the new generation. Formally, the mating operation
can be described as follows. Consider the parent strings S; = s11512. .. $1, and
Sy = 531522 ... 5m, Where s;; is the allele of the jth gene of the string S;. Simi-
larly, let O; = 011012... 01, and Oy = 091052 ... 02, be the offspring created by
mating Sy and S;. Note that, here, the bold style is used for o;; since the latter
denotes the gene of O; and not the allele. Then, the probabilistic interchange of
the m alleles can be modeled using m independent 0 — 1 random variables, say
Wi, Wy, ... Wy, having each the Bernoulli distribution with parameter p.. This

parameter represents the probability of crossover for each gene.

By performing these m independent trials, the genes of the two offspring are built.
Therefore, The offspring genes are functions of the random variables W;’s, given as
follows.

Fory=1,...,m,

01 = (1 = Wj)sij + Wjsy;

025 = Wis1; + (1 — Wj)sy;

In our experiments, we have found that biasing the selection toward one parent (i.e.,
pe # 1/2) works well for many problems. This seems to support the development
of a generalized form of building block.

Continue this process until the required number of children for thé next generation

are produced.

. Create mutations by randomly generating a small number of entirely new solutions
(N = 1% of the population size) and including them in the new generation. A
random solution consists of a string of m random numbers, say r;7,...7,, where
ry is uniformly distributed on the set P, for each ¢t = 1,...,m. This operation
is clearly different from the gene by gene mutation since it involves bringing new
members to the population. In [1] this is referred to as “immigration” and is shown
to have an important role in preventing premature convergence of the population,

especially when it is used with the elitist reproduction as opposed to the proba-

bilistic reproduction.

Continue this process until the required number of immigrants for the next gener-

ation are produced.

The following pseudo-code shows how to perform NN, iterations of the genetic algo-

rithm described above. Note that the best feasible solution found is updated at each new

generation.

ALGORITHM A4,

Initialization. Choose a population size, N (experiments show that N € [m,3m]
works well in general), this will be held constant through all the
generations.

Set best objective value so far to infinity. Randomly generate and
evaluate N solutions as described above in the immigration operation.

Let GG be the set of these solutions. Set k = 1.

10

Main Step. While (k < N,)
BEGIN
Set Gk+1 = @

1. Sort the solutions in Gy in increasing order of objective value from top
to bottom.
Include the top N. solutions in Gjyy.

If top solution in Gy is feasible, update best feasible solution so far.

2. While (|Gk41] < (N = Nyp))
BEGIN (Crossover)
e Randomly (uniformly) select two solutions, P, and P, from Gj.
e Mate P, and P, to produce offspring O; and O,.

o Evaluate O; and O,, and include in Gy the one with

lower objective value.
END (Crossover)
3. Randomly generate N,, solutions and include them in Gjyy.

Set k=k+1.

3.3 A Genetic Algorithm for (T

In this section we briefly describe the dual genetic algorithm for (T') modified from [2].
The basic idea is to run algorithm A; with an oscillating penalty parameter, A. In this
algorithm, the vector A maintains equal components through all iterations. This means
that all the multipliers are adjusted with the same amount. This simple approach seems
to work well with the constraints involved in the task allocation problem. Varying the
multpliers independently, along the lines of the subgradient algorithm [8], is one way of

extending the GA approach to other types of problems.

11

Here, we fix A at a certain value (empirically determined) and run algorithm A; while
keeping track of the penalty value of the top solution at every generation. Periodically
(every Ny generations), we check for possible alteration of the value of A. There are three

possible situations.

1. If the top solution had a nonzero penalty for all N; past generations (i.e., infeasible),
the value of A is increased to give the solution a higher penalty for violating the

capacity constraints; hence, push it to the bottom of the population.

2. If the top solution had a zero penalty for all Ny past generations, the value of X is
decreased to allow more infeasible solutions to compete for the top position; in this
case, the purpose of changing A is to diversify the search (each infeasible solution

acts as a seed that has the potential to lead to better solutions not explored so far).

3. If the penalty value of the top solution has oscillated between zero and nonzero at

least once in the past N; generation, continue the algorithm with the same value

of A.

Note that in the first two situations, all solutions of the current generation are re-
evaluated with the new X before the algorithm continues.

The value of A is increased by the multiplicative factor f;, and decreased (divided) by
the factor fB;, where 3; and ; are different real constants chosen empirically (8,8, > 1).
In general, B, is chosen to be larger than S, to allow for a fast move towards feasibility
at the early stages of the algorithm.

In [2], for the MCIP, the initial value of A used is based on an approximation of
Ao from an optimal solution of the linear programming relaxation. However, (T) is a
nonconvex quadratic problem for which even the continuous version is difficult to solve.
Therefore a different approximation of Ay is used. This approximation uses a heuristic
solution in which only the cost of processors is minimized, since it is usually higher
than interprocessor communication costs (by a factor of 100). The tasks (taken in any
order) are assigned successively to the least expensive processor without exceeding its

capacity. This is similar to the First-Fit bin packing heuristic [13] except that the bins (or

12

processors) are sorted in increasing order of cost. Let (z,,y,) be the resulting solution.
Then the following approximation is used. A(*) = max{ Mo; €}en, where € > 0 and arbitrary

small, and

o 1N Y (f(wa,ya) —f(ﬂfi,yi))’

i€G1,a(zi,5i)#0 a(zi, yi)
where () is the set of solutions in the initial generation, N; is the number of solutions,
in G, and with nonzero penalty (i.e., with a(z;,y;) # 0).
If run long enough, the procedure described above will find an optimal solution to (T')
with probability one (see [1] for more detail). However, it is typically stopped heuristi-
cally by setting a limit to the number of generations created. A pseudo-code describing

this heuristic procedure is given below.

ALGORITHM A4,

Initialization. Choose two scalars 3; > (8, > 1. The values used here are §; = 8 and 3, = 5.6.

Set AW = max{\o, e}e, as described above.

Choose a frequency, Ny, for altering A (here we use Ny = m/2).
Choose a value for N,,;, the maximum number of generations to be
created (here we use Ny, = 5000).

Randomly generate a population of solutions (as described in

Initialization step of Algorithm A;) and evaluate objective values.

Set k = 1.

13

Main Step. While (k < Npqz)
BEGIN
Create a new generation as in Main Step of Algorithm A;.
If the last N; consecutive generations have top solution with nonzero
penalty, let \¥+1) = 8, \(*%) and re-evaluate current generation with A+,
If the last Ny consecutive generatidns have top solution with zero

k+1) = A(¥) /B, and re-evaluate current generation with A(F+1).

Otherwise A\k+1) = \(F),
k=k+1.
END

penalty, let Al

4 Computational Results

The GA approach was applied to several instances of the task allocation problem, (T),
ranging from 15 to 41 tasks and up to 12 processors. All programming was done in C
and the computation below is reported in seconds on an IBM RS/6000-320H.

Two tests were run: six real data sets from auto manufacturing where the GA is
compared to a commercial integer programming code, and two data sets from Hughes
Air-defense System where the GA is compared to the hybrid approach in [9].

In the first test set, three instances for each of the sizes 20 x 6 (20 tasks x 6 proces—b
sors) and 40 x 12 were considered. The integer programming code used is IBM’s OSL
[12] applied to the linearization of the quadratic problem (T') [18] with over ﬂm2_—1)£ more

binary variables, and mn more constraints than those in (T'), the most efficient lineariza-

tion for this problem. The resulting 0 — 1 integer program is shown in the Appendix.
Table 1 presents the results from 60 runs of the GA on 6 different problem instances.

Each column shows the name and size of the problem instance, and reports the outcome

of 10 runs of the GA, each with a different random seed. Each GA run was terminated

14

Table 1: Problems from the Automobile Microcomputer system

Computational effort over 10 random seeds

Problem datl dat2 dat3 dat4 dat5 dat6
Size | 20x 6 20x6 | 20x6 | 40x12 | 40x 12 | 40x 12

Best min 13804 11946 | 11120 39680 36575 35821
obj. value med 13866 11946 | 11228 39869 37214 36427

found max 13903 11946 | 11864 41149 38767 36568
min 135 421 274 2521 649 551
GA | Generations med 1021 1146 748 3377 3782 4266
max 3444 2933 1833 4863 4900 4857

min 3.43 10.56 6.94 205.21 52.79 44.80
CPU (sec) med 25.93 28.74 18.95 274.89 307.61 346.84
max 87.48 73.56 46.45 395.85 389.54 394.89

Solution 14839 13097 | 12288 43547 43673 39152
OSL | Nodes 23055 2492 t 6691 t 582
CPU (sec) 3600.04 | 486.46 t 10589.10 t 2050.53

t Shut down with no solution better than the initial bound after 18000 seconds of CPU time.

after 5000 generations. However, the table shows the number of generations and CPU
times elapsed until the best solution was found. Population sizes of 100 and 120 were
used for the 20 x 6 and 40 x 12 problems respectively. Each column also reports the
best solution found by IBM’s OSL package in a certain time frame (about one day real
time). In the last two lines, the number of nodes and the associated CPU times, are
those required by OSL’s branch-and-bound routine to find the reported best solution
value found.

Note that the GA was able to find better solutions for these problems, in 100 to 400
CPU seconds, than the 0 — 1 IP software package OSL was able to find in 2000 to 11000
CPU seconds. Also, note that computation time of the GA increases with problem size
in a reasonable manner. These results show that the GA outperforms OSL in all problem
instances of Table 1. In fact, the GA was at least 7 times faster than OSL; moreover, it
found solutions that are at least 4% better. Note that for one instance (problem dat3),

OSL did not find any solution better than the initial bound (solution of the First-Fit bin

15

packing heuristic) even after 18000 seconds of CPU time.

For the second test set, there is only one instance for each of the 15 x 5 and 41 x 4
problems. These two problems are part of an experimental study found in [9]. They are
special cases of (T') since all processor costs are zero (s, =0forp=1,2,...n). The 41 x4
problem was derived from an existing Hughes-built air defense system and the following
variation was considered: eight objects were preallocated, specifically, z¢; = z10; = 1,
Tia2 = Toa2 = 1, Ta13 = 2343 = 1, and 214 = 2414 = 4. Therefore, for this specific
problem, the genetic algorithm is slightly modified by fixing the alleles of the genes
corresponding to the above preallocation. Note that fixed genes are not affected by
the crossover operator. Although this modification does not seem very efficient (since
unnecessary crossover of the fixed genes is still performed), computation shows that the
GA still preserves its high performance.

As for the 15 x 5 problem, it was designed to be difficult by making the data traffic
and the graph associated with it symmetric and without cycles of length three. In [9],
these two problems are solved either optimally or heuristically using a Hybrid Allocation
(HA) algorithm based on implicit enumeration.

Table 2 shows results from 20 runs of the GA on the two problems described above
against those found in [9] using the HA approach. For each problem instance, GA
runs were performed with different random seeds and were also terminated after 5000
generations. Population sizes of 100 and 120 were used for the 15 x 5 and 41 x 4 problems
respectively. Computation for the HA algorithm was carried out on an Amdahl 470 using
a PL/I compiler. Time in terms of CPU seconds used is not available; therefore only the
number of iterations to find the best solution is reported.

;From Table 2, note the GA solutions were at least as good as HA’s. In fact, GA
found better solutions than HA for the 15 x 5 problem: it found the optimal solution
(known to be 16) in 9 out 10 runs in at most 7 seconds. However, the best solution found
by the HA algorithm, using various branching and bounding strategies, has a value of
18.

Results of GA and HA for the 41 x4 problem are comparable, since the HA algorithm

16

Table 2: Problems from Hughes-built Air Defense system

Computational effort over 10 random seeds

Problem | 15x5 | 41 x 4

Best min 16 53

obj. value med 16 53

found max 17 80

min 76 26

GA | Generations med 158 170

max 397 4400

min 1.31 2.02
CPU (sec) med | 2.73 13.23

max 6.87 342.60
HA | Solution 18 53

Iterations t 16787

t Different methods were used but no computational effort was reported.

found the optimal solution and so did the GA for most runs. Note that the HA algorithm
found the optimal solution in 16787 iterations. However, it took 645 additional iterations

to prove its optimality.

5 Conclusion

A genetic algorithm is proposed. for the 0 — 1 integer program with nonlinear objective
function. The application of this GA approach to the task allocation problem shows
excellent results for various real problems. In all instances considered, it outperformed
OSL and HA in terms of solution quality and computational time. The simplicity of the
GA’s data structure, its robustness, and the ease with which it can be adopted to various
platforms-are also appealing. Moreover, this algorithm can be easily modified to handle

other variations of the task allocation problem.

Acknowledgment

We would like to thank K. N. Rao for bringing this problem to our attention and

17

providing us with some data. Our thanks also go to anonymous referees for their insightful

comments and suggestions.

18

Appendix

A Linearization of (T)

min Z (1= Z Ztt’p) + SpYp
1

t=1 /=41 p=1 p=

m t-1
scto Y zy,+ Y zpy,—(m=1)zy, <0, fort=1tom,p=1ton (5)
t'=1

Y awwy < by, forp=1ton
thp <my,, forp=1ton

Y ap=1, fort=1tom

p=1

Lps Yp € {071}’ fOT all ta D,

where for t =1tom,t =t+1tom, and p=1ton,

1, if both tasks t and ¢ are assigned to processor p

T _
0, otherwise.

Constraint (5) in the above formulation insures that the processor p to which task ¢ is

assigned, is not assigned more than m — 1 other tasks.

19

References

[1]

2]

3]

[4]

[5]

[6]

[9]

J. C. Bean. Genetic algorithms and random keys for sequencing and optimization.

ORSA Journal On Computing, 6:154-160, 1994.

A. Ben Hadj-Alouane and J. C. Bean. A genetic algorithm for the multiple;choice
integer program. Operations Research, 45(1), 1997.

A. Billionnet. Allocating tree structured programs in a distributed system with uni-

form communication costs. IEEF Transactions on Parallel and Distributed Systems,

5(4):445-448, April 1994.

A. Billionnet, M. C. Costa, and A. Sutter. An efficient algorithm for a task allocation
problem. Journal of the Association for Computing Machinery, 39:502-518, 1992.

J. F. Campbell. Integer programming formulations of discrete hub location problems.

Furopean Journal of Operational Research, 72:387-405, 1994.

A. Dutta, G. Koehler, and A. Whinston. On optimal allocation in a distributed

processing environment. Management Science, 28(8):839-853, August 1982.

A. Fernandez-Baca, D.and Medepalli. Approximation algorithms for certain as-
signment problems in distributed systems. Technical Report 91-17, Department of

Computer Science, lowa State University, lowa City, IA, 1991.

M. L. Fisher. The Lagrangian relaxation method for solving integer programming

problems. Management Science, 27(1):1-18, 1981.

A. Gabrielian and D. B. Tyler. Optimal object allocation in distributed systems.
In Proceedings of the International Conference on Distributed Computing Systems,

pages 88-95, 1984. San Francisco, Calif., May 14-18.

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company, Inc., 1989.

[11] M. Gursky. Some complexity results for a multiprocessor scheduling problem. Private

Communication from H. S. Stone, 1981.
[12] IBM Corporation. Optimization Subroutine Library Guide and Reference, 1990.

[13] D. S. Johnson. Fast algorithms for Bin-Packing. Journal of computer and system
sciences, 8:272-314, 1974.

[14] Y. S. Kim, Y. C.and Hong. A task allocation using a genetic algorithm in multi-
computer systems. IEEE TENCON, pages 258-261, 1993.

[15] J. G. Klincewicz. Heuristics for the p-hub location problem. Furopean Journal of
Operational Research, 53:25-37, 1991.

[16] V. M. Lo. Heuristic algorithm for task assignment in distributed systems. IEEFE
Transactions on Computers, 37(11):1384-1397, 1988.

[17] P.R.Ma, E. Y.S. Lee, and M. Tsuchiya. A task allocation model for distributed com-
puting systems. [EEE Transactions on Computers, C-31(1):41-47, January 1982.

(18] K. G. Murty. Operations Research: Deterministic Optimization Models. Prentice
Hall, 1994. To appear.

[19] M. E. O’Kelly. A clustering approach to the planar hub location problem. Annals
of Operations Research, 40:339-353, 1992.

[20] -C. Price and S. Krishnaprasad. Software allocation models for distributed computing
systems. In Proceedings of the International Conference on Distributed Computing

Systems, pages 40-48, 1984. San Francisco, Calif., May 14-18.

[21] G.S.Rao, H. S. Stone, and T. C. Hu. Assignment of tasks in a distributed processor
system with limited memory. IEEE Transactions on Computers, C-28(4):291-299,
April 1979.

[22] K.N. Rao. Optimal synthesis of microcomputers for GM vehicles. Technical report,
1992.

21

[23]

[24]

[25]

[26]

[27]

A. K. Sarje and G. Sagar. Heuristic model for task allocation in distributed computer
systems. In IFE Proceedings. Part E, Computers and Dugital Techniques, volume
138, pages 313-318, September 1991.

C. C. Shen and W. H. Tsai. A graph matching approach to optimal task assignment

in distributed computing systems using a minimax criterion. IEEE Transactions,

C-34:197-203, 1985.

J. B. Sinclair. Efficient computation of optimal assignments for distributed tasks.

Journal of Parallel and Distributed Computing, 4:342-362, 1987.

W. M. Spears and De Jong K. A. On the virtues of parametrized uniform crossover.

In Proceedings of the Fourth International Conference on Genetic Algorithms, pages

230-236, 1991.

H. S. Stone. Multiprocessor scheduling with the aid of network flow algorithms.
[EEE Transactions on Software Engineering, SE-3:85-93, January 1977.

22

