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ABSTRACT

In this paper the multiple-input multiple-output (MIMO) recursive structural dy-
namics identification problem is considered. The emphasis is on the development of
methods capable of overcoming the inconsistency problem of Recursive Least Squares
(RLS) and offering accurate modal parameter estimates from noise-corrupted data. A
number of approaches, each one based on a discrete, stochastic estimation scheme and
an appropriate modal parameter extraction procedure, are considered. The estimation
schemes are multivariable extensions of a recently introduced Recursive Pseudo-Linear
Regression (RPLR), the Recursive Extended Least Squares (RELS), and the Recursive
Maximum Likelihood (RML) algorithms. The significance of the modal parameter ex-
traction procedure in obtaining accurate mode shape estimates is illustrated, and its
close relationship to experiment design and model structure selection issues revealed.
Two such procedures are then presented and incorporated in the proposed methods.

The performance of the proposed recursive modal analysis methods is examined
through simulated and experimental vibration data, and issues such as estimated model
accuracy, convergence, noise rejection, and computational complexity, are critically eval-
uated with structures characterized by well-separated as well as closely-spaced vibra-

tional modes.



1 INTRODUCTION

The field of Experimental Structural Dynamics Identification has grown rapidly in
recent years as new techniques have been introduced and significant advances realized
(Ibrahim amd Mikulcik, 1973; Vold and Rocklin, 1982; Eman and Kim, 1983; Juang
and Pappa, 1985; Leuridan et al, 1986; Braun and Ram, 1987; Snoyes et al, 1987;
Fassois et al, 1989a). The vast majority of the currently available methods are based on
batch (nonrecursive) procedures which operate on available data records in an off-line
fashion. For a number of applications, however, including the modeling of structures with
time-dependent characteristics, adaptive modal control, and the detection of unforeseen
structural changes, recursive techniques are necessary. These techniques sequentially
update a structural dynamics model every time that new information becomes available,
and also offer a number of advantages, such as dramatically reduced computer memory
requirements and the possibility of data processing until sufficient accuracy (as indicated
by the directly available estimator covariance matrix) is achieved, that make them useful
alternatives to off-line methods.

Nevertheless, recursive experimental modal analysis methods have been so far dis-
cussed in a rather limited number of studies. Davies and Hammond (1984) compared
the Recursive Least Squares (RLS) to the Instrumental Variable (IV) and the classical
Fourier and Prony methods, and concluded that the RLS can provide accurate modal
parameter estimates only in cases where the noise-to-signal (N/S) ratio approaches zero.
Indeed, the RLS method is known to give estimates which are highly biased in the pres-

ence of noise (ﬁstrbm and Eykhoff, 1971); a fact that severely limits its applicability



in experimental modal analysis (also see Section 3 of the present paper). The same
authors (Davies and Hammond, 1986) utilized the RLS method for the determination
of a rough or gross description of multi-modal systems based on estimated lower-order
models. Sundararajan and Montgomery (1985) used a recursive least-squares lattice fil-
ter for the on-line identification of the order, mode shapes, and modal amplitudes of
structural systems. This information was then processed by a recursive, gradient-type
equation-error identification algorithm for modal parameter estimation. The method
was successfully utilized in an adaptive modal control scheme proposed by Sundararajan
et al (1985), and also the identification of the structural dynamics characteristics of a
two-dimensional grid structure (Montgomery and Sundararajan, 1985). This approach
is, however, also known to perform well only in low N/S ratio environments, and tends
to fit the noise dynamics otherwise (Sundararajan et al, 1985).

It is thus evident that the techniques that have been so far proposed for recur-
sive structural dynamics identification are inherently deterministic, and thus inappro-
priate for any environment where the N/S ratio is not negiigible. Moreover, the issue of
modal parameter extraction is essentially neglected, and the impulse-invariance discrete-
to-continuous transformation typically used without any particular attention paid to the
form of the excitation signal and its consequences on the estimated modal parameter
accuracy (Davies and Hammond, 1984; Leuridan et al, 1986). In this paper it is shown
that accurate mode shape estimation is an issue closely related to experiment design,
critically depending upon the excitation signal type (specifically the intersample behav-
ior of the excitation), the model structure, and the particular discrete-to-continuous

transformation.



The main objective of the present paper is the development of effective Multiple-
Input Multiple-Output (MIMO), recursive, stochastic structural dynamics identification
methods capable of providing accurate modal parameter estimates at realistic N/S ra-
tios and reasonable computational costs. A number of methods are presented based on
combinations of MIMO versions of three recursive stochastic estimation algorithms and
two modal parameter extractién techniques. The estimation algorithms are multivari-
able versions of a Recursive Pseudo-Linear Regression (RPLR) algorithm introduced in
Fassois (1986) and effectively used in an adaptive control scheme discussed in Fassois et
al (1989b), the Recursive Extended Least Squares (RELS), and the Recursive Maximum
Likelihood (RML) (Séderstrom et al, 1978). The modal parameter extraction techniques
are based on either impulsive-type excitation combined with model structures with no
time-delay and the Impulse Invariance (L.I.) transformation, or, random step excitation
combined with model structures with unit time-delay and the Step Invariance (S.I.)
transformation. The performance of the proposed modal analysis methods is examined
by using both simulated and actual experimental data, and issues such as estimated
model accuracy, convergence, noise rejection, and computational complexity are criti-
cally evaluated with structures characterized by well-separated as well as closely-spaced
modes.

The paper is organized as follows: The Modal Analysis problem is formulated in Sec-
tion 2, and the bias error associated with the RLS method briefly discussed in Section
3, where its asymptotic form is derived. The three recursive, stochastic, MIMO estima-
tion algorithms are also presented in Section 3, whereas the issue of modal parameter

extraction is addressed in Section 4. Simulation results and a critical evaluation of the



proposed modal analysis methods with structures characterized by both well-separated
and closely-spaced modes are presented in subsection 5.1, and their application to the
structural dynamics identification of a free-free beam from experimental data in 5.2. The

conclusions from this work are finally summarized in Section 6.

2 PROBLEM FORMULATION

The dynamics of a linear, viscously damped structure may be represented by a vector

differential equation of the form :
M¥(t) + Cv(t) + Kv(t) = u(t) (1)
or, equivalently :
V(s) = [Ms? + Cs + K]71U(s) = G(s)U(s) (2)
where M, C,K represent the mass, damping and stiffness matrices, {u(¢)}, {v(t)} the
force excitation and resulting displacement vectors, respectively, s the Laplace Transform

variable, and G(s) the corresponding transfer matrix. Each element G;;(s) of G(s) is a

transfer function that may be expressed as :

Giss) = X”: (Aiji + A%, )s = (Aijopk + A, k)
WATS T 82 4 26pwn, s + w%k

(3)

k=1
where p represents the number of degrees of freedom, * complex conjugation, and Aije s
Pk, Wy, €k the k-th mode residue, eigenvalue, natural frequency, and damping factor,
respectively.

The Experimental Structural Dynamics Identification problem may be then stated

as follows : Given excitation {u(¢)} and corrupted response {x(¢)} data, where :

x(t) = v(t) + n(t) (4



with {n(%)} representing a zero-mean, stationary stochastic noise process with autoco-
variance {T'nn(7)}, estimate a model of the form (1), or equivalently its corresponding
natural frequencies, damping factors, and mode shapes, that characterize the structure
under study.

In achieving this objective both stochastic discrete estimation algorithms and ap-
propriate discrete-to-continuous dynamic system transformation techniques for modal

parameter extraction are required.

3 MIMO STOCHASTIC RECURSIVE ESTIMATION
ALGORITHMS

A sampled-data representation of eqs. (2) and (4) is :

x[k] = G(B)ulk] + nlk] = v[K] + n[#] (5)

where k represents discrete time, G(B) the discrete transfer function matrix correspond-
ing to G(s), B the backshift operator (B x[k] = x[k — 1]), and {u[k]}, {v[k]}, {x[k]},
{n[k]}, the sampled versions of the excitation, uncorrupted response, corrupted response,
and noise signals, respectively. The transfer matrix G(B) may be parametrized as (El-

Sherief and Sinha, 1979) :

[ BL(B Bip(B) |
2By 225)
G(B) = : : (6)
By (B) By (B)
L 4p(B) Ap(B) |



with the polynomials B;;(B), A;(B) being of the form :
Bij(B) = boij + b1,i B + o + by, 5 B™ (7)

A(B)=1+a1;B+ ...+ (U, i B™ (8)

with A;(B) (1 <i < p) constrained to be minimum phase. Furthermore, by assuming
that the noise autocovariance matrix I's,(7) is diagonal for every 7 (a reasonable assump-
tion implying that the scalar noise components that corrupt the response of the structure
at each measurement location are uncross-correlated), the multivariable discrete system
(5) may be decomposed into p multiple-input single-output (MISO) subsystems of the

form :

Ai(B)zilk] = 3 Bi(Byus [k + ikl (1 <i<p) (9)

i=1

where {z;[k]},{u;[k]}, represent the i-th component of the corrupted response and exci-

tation signals, respectively, and {#;[k]} a noise term defined as :
alk] = Ai(B)nilH] | (10)

By further assuming that the process {n;[k]} is characterized by a rational spectral den-
sity, the spectral factorization theorem (Astrbm, 1970) allows for the following Moving

Average (MA) innovations representation of {#;[k]} :
ik} = Ci(B)wilk] (11)
where C;(B) is a minimum phase polynomial of the form :

Ci(B)=1+c1;B+ ...+ ¢, ;B" (12)



and possibly infinite order /;, and {w;[k]} a zero-mean, white noise process with variance

2

O

One of the simplest possible approaches for the recursive estimation of the polyno-
mials A;(B) and B;;(B) (1 < ¢ < p) in the subsystem equation (9) then is the one
based on the Recursive Least Squares (RLS) algorithm ( Astrém and Eykhoff, 1971). In
the time interval (t, t+1) the RLS attempts to fit an AutoRegressive with eXogeneous

inputs (ARX) model of the form :

A(B,plt])-z[k] = 3 B;(B, plt]).u;[k] + e[k, p[t]] <=

7=1
<= z[k] = rT[k].p[t] + e[k, p[t]] (0<k <) (13)
to the input/output data. In this representation the subscript i was dropped for the
sake of simplicity, the polynomials B;(B,plt]), A(B,plt]) are of the form (7) and (8),
respectively, {e[k,p[t]]} represents the prediction error sequence associated with the

model, r{k] the regression vector :
rlk] = [~z[k - 1]... — 2k — n] | wi[k]..usk — mq] | ... | wp[k)..up[k — mo)IT  (14)
and p[t] the parameter vector to be estimated :

p[t] = [al....an ! bo,l----bm1,1 | I bo,p....bmp,p]T (15)

Despite its simplicity and low computational complexity, the RLS algorithm is known
( Astrém and Eykhoff, 1971) to provide estimates that are highly inconsistent (asymp-
totically biased) in the presence of noise. As an illustration of this phenomenon, consider
the RLS-based modal analysis of the two degree-of-freedom system with natural frequen-

cies and damping factors presented in Table 1. The modal parameter estimates are very
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accurate in the noise-free case, but, as expected, the situation drastically changes as
noise is added, and high estimation errors are observed in the 10% N/S case.

This bias error depends on the second-order properties of the noise and excitation
signals as well as the actual system characteristics, and it is very significant even at
relatively low N/S ratios. An expression of the asymptotic form of the error for the

single-input case may be derived as (see Appendix A):

éa (Tow 4 Tnn = Do TZITT ) 1y
ép = = - (16.a)
éb P;JF'L];u(I‘UU + an - FUUF;& F;{u)_l'yﬁn

where éa, b represent the bias errors associated with the estimates of the coefficients
of the A and B polynomials, respectively, I',, the covariance of the uncorrupted output
vector v[k] = [v[k — 1]...v[k — n]]T, T, the covariance of the input vector ulk] =
[ulk]....u[k — m]]T, T, the covariance of the noise vector nlk] = [n[k — 1]...n[k — n]]7,
I'yy the cross-covariance between v[k] and ufk] , and :
n n n
Yin = [ aYanlk = 11 3 apyunlk = 2] oo S apymnlk = n]IT (16.b)
k=0 k=0 k=0

with {ynn[k]} representing the autocovariance of {n[k]}, and a, = 1. From this expression
it is evident that the asymptotic bias error will be nonzero even in the uncorrelated noise

{n[k]} case. Indeed (16.b) then becomes :
Van = 02[a1 az....an]’ = ola (16.c)

and :
(Fvv + U’I2LI - Fqu;JPgu)"la
op = —o? (16.d)
DT, (Tu + 021 = [u 5T, ) a

uu



where o2 represents the variance of {n[k]} and I the identity matrix.

As a result of the inconsistency problem the RLS algorithm will not be further
discussed, and the emphasis will be on stochastic algorithms capable of offering con-
sistent estimates in the presence of noise. Three such algorithms, based on a Recursive
Pseudo-Linear Regression (RPLR) method (Fassois, 1986), the Recursive Extended Least
Squares (RELS), and the Recusive Maximum Likelihood (RML) schemes (Sédestrom et

al, 1978), are presented in the sequel.

3.1 The Recursive Pseudo-Linear Regression (RPLR) Algorithm

In this algorithm an output-error model of the form:

A(B,p[t])-elk] = ) B;(B,plt).u;[k] + A(B,plt)-eo[k, plt] <=

J=1
ol = Zlbpllol)+ eolbpll] (0 k<) (17)
is to be estimated in the time interval (¢,¢ + 1). In this model structure {e,[k,p[t]]}
represents the output error sequence (defined as the difference between the corrupted
system and model responses), p[t] the parameter vector defined by (15), and r,[k, p[t]]

the regression vector :

1

r.[k,p[t]] = m[o...o | ug[k].n [k = ma] | oo | uplE] [k — mp])T (18)

The estimator p[t] is then defined as :

ﬁ[t] =arg minJo(p[t]) =arg min Z 7[tak]'eg[k7 p[t]] (19)
k=1

where arg min stands for minimizing argument, and 7[t,k| is a forgetting factor in-

troduced in order to enhance the tracking capability of the algorithm. Because of the
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dependence of the regression vector ro[k, p(t]] on the parameter vector p[t], the mini-
mization of J,(p[t]), however, is a highly nonlinear problem, and a number of difficulties,
including high computational complexity and the possible existence of local minima, are
encountered.

In order to overcome these problems, the Recursive Pseudo-Linear Regression method

is based on the following modified model structure :

A(B,plt]).zlk] = ZBj(B,p[t])-uJ'[k] + A(B, p[t - 1]).e1k, p[t]] =
<> af (k] = ri[k,plt-1]lp[]+elk,pl]] (0<k<?) (20)

with {e;[k, p[t]]} representing the prediction error sequence associated with the model,

and ry[k, p[t — 1]] the regression vector :

r1lk, Bt — 1]l = qpprmprik] =

= [—(I)t k—1]..—z; [ —n]| uﬁ[k]uﬁ[k —mi] | ... | uﬁ[k]ug;[k - mp]]T (21)
where :
1 .
ufy k] = m-uj[k] (1<k<t;1<5<p) (22.a)
A — P (225)

A(B,plt - 1))’
Because of the linear form of the dependence of the model (20) on the parameter vector
p(t], the estimator :

t

p[t] = arg minJ(p[i] Z t,k).e3k, p[t]] (23)

11



may be now expressed in the simple linear least squares form. Furthermore, by assuming
small variations in the coefficients of the estimated autoregressive A(B) polynomial at

two consecutive sampling instants such that :
A(B,p[t]) = A(B,plt — 1)) (24)

the model structure (20) approximates the output-error structure (17), and hence the
estimator (23) the output-error estimator (19).

By further assuming that |y[t,k]| < 1 (¢ # k), as is typically the case, and that the
estimated autoregressive polynomial A(B,plt]) varies slowly with time, the estimator
(23) may be recursively updated. In this work a U-D version (Ljung, 1983) of the

algorithm, in which the covariance matrix P[t] of the estimator p[t] is factored as :
P[t] = U[t].F[t].UT[{] (25)

where U[t] represents an upper triangular matrix with diagonal elements equal to unity
and F[t] a diagonal matrix, is used. This approach guarantees the positive definiteness
of the covariance matrix and improves the numerical properties of the algorithm. The

recursive U-D version of the RPLR algorithm may be then shown to be :

1 - Compute :
£ = UT[t — 1].re[t, B[t — 1]] (26.a)
g="F[t-1]f (26.b)
Bo = Alt] (26.c)



2 - For j = 1,....,d ( where d is the number of parameters to be estimated) perform steps

3-5:

3 - Compute :

4-Fori=1,....

5 - Compute :

6 - Compute :

B; = Bj—1+ f;-9;

_ BiaFylt = 1]

Filt) = =g\
Uj =95
__fi
w= Bi-1

U;;(t] = Uylt — 1] + vy

v; = v + Uyt — 1).v;

ault) = oF'[1] - r7t, Bt - UlBlt — 1] = ealt, Blt - 1]

13

(26.4)

(26.e)

(26.1)

(26.g)

(26.h)

(26.1)

(26.))

(26.k)

(26.1)



B(t) = p(t - 1) +1(2).&[t] (26.m)

where {A[t]} represents a forgetting factor sequence defined as :

7[t7k] = H ’\[.7] 7[tat] =1 (27)

j=k+1

and updated through the recursion :

oAt =1]+1-2x, t<t,
A[t] = (28)
A t>t,
where Ay, A[0], A are constants selected to be equal or slightly smaller than unity, and ¢,

represents an appropriately selected time instant. The algorithm is typically initialized

by selecting :

U0 =1 (29.2)
F[0] = oI a>0 (29.b)
p[0]=0 (29.c)

The algorithm (26) — (29) updates the parameter vector as soon as the new input
and output data samples u;[t] (1 < j < p) and z[t], respectively, become available.
In forming the regression vector ri[t, p[t — 1]], however, the sequences {uft[k]}}’c:t_mj
(1<j<p)and {a:f[k]}}’mt_n need to be evaluated during each recursion. Because

of the recursive nature of the filtering required (see eqs. (22)), some approximation is

14



necessary. In the context of the present work this is done by approximating the Infinite
Impulse Response (IIR) filter A=*(B,p[t — 1]) by a truncated Finite Impulse Response

(FIR) filter of the form (Fassois, 1986):
H(B,p[t—1])) = 14+ hi[t — 1l.B + .... + hy[t — 1].B (30)
with coefficients calculated through the expression :
hilt = 1] = —Zn:&j[t— 1).hi—j[t — 1] (:1=1,2,....,b) (31)
j=1

with hoft — 1] = 1, hy_j[t — 1] = 0 for ¢ < j, and {&;[t — 1]} (1 < j < ) representing
the AR parameter estimates at time t-1. The required filtered signal samples are then
obtained as :

uﬁ[k] = ulk] + zb:hi[t — 1}.u;(k — ] (1<j<p;t—-m; <k<1) (32.a)

=1

P [k] = 2[k] + zb:hi[t —1lalk—i] (t-n<k<t) (32.b)

=1

Although somewhat simpler approximate filtering procedures are possible, the afore-
mentioned approach is used since it was found to give the best accuracy. In addi-
tion, and in order to assure proper operation of the algorithm, the stability of the filter
A~1(B,p[t — 1]) needs to be examined during every recursion. This may be done by
using the Jury criterion (Ackermann, 1985), and in case of instability the filtering may
be performed by using the last estimated A(B) polynomial.

The following remarks may be finally made with respect to the RPLR algorithm :

15



(a) Because of the structure of the model used in this algorithm (compare with the system
structure of egs. (9), (11)), consistency can be achieved in case that the corrupting noise
{n[k]} is uncorrelated.

(b) The computational complexity of the algorithm is : %d2 + %d multiplication/division
operations for the sequence (26), (2n + m + p+ 1)b — in(n + 1) (m = Ti_, m;)
multiplications for approximate recursive filtering, and %n2 + %n — 4 multiplications for
the stability test. This gives a total of 3d® + 2d+ n2 +4n+ 2n+m+p+ 1)b — 4
multiplication/division operations per recursion.

3.2 The Recursive Extended Least Squares (RELS) Algorithm

The RELS algorithm, which is also known as Recursive Maximum Likelihood version
1 (RML1) (Soderstrom et al, 1978; Friedlander, 1982), uses an AutoRegressive Moving
Average with eXogeneous inputs (ARMAX) model structure, which, in the time interval

(t,t+1), may be expressed as :

p

A(B,plt]).alk] = ) Bi(B,plt])-u;[k] + C(B,plt])-ealk, p[t]]  (0< k<) (33)

j=1

where {e;[k,p[t]]} represents the prediction error sequence, B;(B,pt]), A(B,plt]) are

of the form (7), (8), respectively, C(B, p[t]) is defined as :
C(B,plt) =1+ ciB+....+ B (34)
and p[t] is the parameter vector to be estimated defined as:
P(t) = [a1..@n | bo1eebimy 1 | ooe | Dopeenimy p | €10net]T (35)
By defining the regression vector :
rofk, plt]] = [—2[k = 1]... — z[k — n] | uy[k]...us[k — mq] | ... |

16



up[k]...uplk — my] | ealk = 1, plt]]..ealk — I, plt]]]T (36)
the ARMAX model may be rewritten as :
z[k] = r3 [k, plt]]l.p[t] + e2lk, P[] (0< K <t) (37)

For the recursive evaluation of the estimate p[t], however, the quantity r[t, p[t]] needs to
be known. This is apparently impossible, since p[t] is yet unavailable, and, in addition,
the prediction errors have to be recursively estimated from (33), starting with k¥ = 0 and
iterating through k£ = ¢. In the context of the RELS algorithm this difficulty is circum-
vented by calculating only one approximate prediction error during every recursion. In

the recursion implemented in the time interval (t,t41), the quantity &;[t], defined as :
&ft] = 2ft] ~ x7 [t]-p[t - 1] (38)
is thus calculated, and ry[t, p[t]] is then approximated as :

roft] = [—z[t—1]...—z[t—n] | wr[t]..wq[t—my] | oo | wplt].uplt —my] | &2t —1]...80[t— 1))
(39)

with the approximate prediction errors {&;[t — i]}\_, determined in preceding recursions.
The recursive U-D version of the RELS is then identical to that of the RPLR algo-
rithm after substituting r1[¢, pt — 1]] by r2[t] in (26.a), (26.1) by (38), and &[t] by &;[t]
in (26.m). As a final remark it is noted that the RELS algorithm requires 3d%+183d mul-
tiplications/divisions per recursion, and, because of the ARMAX model structure used
(which corresponds to the actual system structure of egs.(9), (11)), it has the capabil-
ity of providing consistent estimates in the presence of either correlated or uncorrelated

noise.
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3.3 The Recursive Maximum Likelihood (RML) Algorithm

The RML algorithm, which is also known as Recursive Maximum Likelihood version
2 (RML2) (Séderstrom et al, 1978; Friedlander, 1982), is a recursive, approximate version
of the off-line Maximum Likelihood method of Astrom and Bohlin (1965) based on the
ARMAX model structure of egs. (33) —(37). In this case, however, the regression vector

ro(t, p[t]] is approximated as :

r3[t] = [—z[t=1)...—z[t—n] | wr[t].ui[t—ma] | oo | wpt].upt —my] | es[t—1]...ea[t—1]]7
(40)

with es[k] calculated as :
ealk] = z[k] —rl[k].p[k] (t-1<k<t-1) (41)

and used in approximating the prediction error ey[k, p[t]].
The recursive U-D version of the RML is then identical to that of the RPLR algorithm

after substituting r[t, p[t — 1]] by rf[t], defined as :

Fry _ 1 .
r3t] = CEPE=T) 3[] (42)

in (26.a), changing (26.0) to :
&ft] = «[t] - r3 [t]-p[t — 1] (43)

and substituting &;[t] by é3[t] in (26.m). Once again, and because of the recursive filtering
operation (42), some approximation is necessary, and for the reasons discussed earlier,
the approximate filtering method proposed in the context of the RPLR algorithm is used
here as well. The stability of the filter C~1(B,p[t — 1]) has to be similarly confirmed

before filtering is attempted, and this is done by using the Jury criterion.
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It is finally remarked that, like the RELS, the RML algorithm has the capability
of providing consistent estimates in the presence of correlated or uncorrelated noise,
whereas its computational complexity is the highest among all three algorithms, and
equals 3d% +13d4+ 12+ 41— 44 (n4+1)b+ (2 + 1)b+(m+p)b+(I—1)d multiplication/division

operations per recursion.

4 MODAL PARAMETER EXTRACTION TECHNIQUES

After the discrete-time models have been obtained, the modal parameters may be
evaluated by transforming the estimated models back into the continuous-time domain.
As already mentioned, this procedure is crucial for appropriate mode shape estimation,
and closely related to experiment design. This becomes apparent by considering the
general form of the transformation relationship between the discrete transfer function

G(z™1) = %’%:T—ll—)l and the corresponding continuous one G(s) = %1(-(;8)2 (see Appendix B):

P (Ag + A})s — (Agln Nt + A% ln A )T~
G(s) = kz=:1 S & 2pwnys + 2, &

p Ak.B(/\k) + AZB(/\Z) - (AkB(/\k)/\z + AZ.B(X,:).A;V)Z_I

& G(zY =
(=7) k;l T— (A + A0zt + ApAf2—2

(44)

where (A, A}) represent a pair of complex conjugate residues corresponding to a pair of
complex conjugate eigenvalues of G(s), (A, ;) a pair of complex conjugate eigenvalues
of G(271), T the sampling period, z the z-transform variable, and Bi(Ar) the quantity :

T

BOW =24 [ A Fu(nary.urie) (45)

(i-1)T
with i denoting discrete time (t=iT), Z{.} z-transform, and U;(2~!) = Z{u;[k]}. Indeed,

from this mapping relationship it is evident that for an appropriately selected sampling
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period the k-th mode natural frequency and damping factor may be uniquely determined

as (Pandit and Wu, 1983) :

In A A%
Wny, = %\/[ = ; k12 4 [arccos A+ Ap — ] (46.a)

m

£ n A A5 (46.b)
k= : '
[ln AgAz]% + 4farccos ﬂ“—P

24/ AL

whereas for the determination of the corresponding mode shape vector :

Bp=l S Ak (47)

the values of B(\g), B(A}), and hence the intersample behavior of the excitation signals
{u;(t)}f_, needs to be precisely known. This information also determines the structure
of the required discrete-time model, since it indicates its time-delay and the order of the
exogeneous polynomial (the degree of the numerator polynomial of the transfer func-
tion). As a consequence appropriate mode shape estimation requires careful excitation
signal selection and the utilization of the an appropriate model structure and discrete-
to-continuous transformation. In this work two such approaches, the first based on the
impulse, and the second on the step invariance transformations, will be considered.

(a) The Impulse Invariance (I.I.) Transformation Approach

In this a,ﬁproa,ch the excitation signals consist of trains of “impulsive” functions occur-
ing at the sampling instants. The quantity B(Ax) may be then shown to be equal to unity,
and the required discrete-time models of the form ARX(2p,2p-1) or ARMAX(2p,2p-1,1)
(I > 0) with no time-delay. The continuous-time models thus obtained have impulse

response functions coinciding with those of the corresponding discrete-time models at
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the sampling instants. The mode shapes may be calculated from (47) after the residues
{Aijr} have been determined from (44). This method is simple, and despite the fact that
it is exact only for impulsive excitation signals (ideally the excitation should consist of
a train of mathematical impulses) it is often used in Modal Analysis (Eman and Kim,
1983; Davies and Hammond, 1984; Fassois et al, 1989a).

(b) The Step Invariance (S.I.) Transformation Approach

In this approach the excitation signals are allowed to vary only at the sampling
instants; an effect that may be realized through a zero-order holding device. The inter-

sample behavior of {u;(¢)} is thus modeled as :
u;(t) = u;[(k — 1)T) (k-1DT <t<kT (48)

and B(\g) may be evaluated as :

Ap—1
k Z...l

Bw) =T3 5

(49)

The required discrete-time models are of the form ARX(2p,2p) or ARMAX(2p,2p,l)
(I > 0) with unit time-delay. The continuous-time model obtained through this procedure
has a step response that coincides with the step response of the corresponding discrete-
time model at the sampling instants, and the mode shapes are calculated similarly to
the previous case, by using eqs. (44), (47), and (49).

Examples of mode shape vectors evaluated through each one of the aforementioned

approaches are presented in Section 5.

21



5 MODAL ANALYSIS RESULTS BASED ON SIMU-
LATED AND EXPERIMENTAL DATA

In this section the performance characteristics of the recursive modal analysis meth-
ods based on the RPLR, RELS, RML estimation schemes and the Impulse-Invariance
(LL.) and Step-Invariance (S.I.) transformation approaches for modal parameter extrac-

tion, are examined with simulated as well as experimental vibration data.

5.1 Simulation Results

In the simulations two two degree-of-freedom systems, one with well-separated and the
other with closely-spaced modes are considered, and issues such as estimation accuracy,
speed of convergence, noise rejection, and computational complexity, discussed.

The exact design of each simulation experiment depends upon the particular modal
parameter extraction method used. Impulsive-type force excitation, with values forming
a zero-mean, uncorrelated stochastic process, and ARX(4,3) or ARMAX(4,3,2) models
with no time-delay are thus used in conjunction with the impulse-invariance transfor-
mation approach, whereas excitation signals consisting of uncorrelated random steps
occuring at the sampling instants and ARX(4,4) or ARMAX(4,4,2) models with unit
time-delay are used in conjunction with the step-invariance transformation approach. In
all cases data sets consisting of 2000 points each are employed for identification, and
the estimation algorithms are initialized by using p[0] = 0, a = 10!2, and the following
forgetting factors :

RPLR : A[0] =0.97 X\, =0.80 ; A[t]=1 (t > 600)

RELS, RML : A[0] = 0.97 A, = 0.80 ; Alf)=0.999 (¢ > 600)
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Identification results obtained by using both noise-free and noise-corrupted data are
presented. In the latter case the noise signals used are zero-mean uncorrelated stochas-
tic processes that are uncross-correlated with the force signals, and the N/S ratio is
defined as the ratio of the standard deviation of the noise over that of the corresponding
uncorrupted response :

N/S = Var[[ni[k

1]
Varford] ¥ 100% (50)

where Var|.] denotes variance.

5.1.1 Vibratory System with Well-Separated Modes

In this case identification of the vibratory system of Figure 1 with modal parameters
presented in Table 2 is considered based on force and displacement data sampled with a
sampling period T = 0.5325 secs.

Modal analysis results obtained through the RPLR scheme and both the impulse-
invariance and step-invariance transformations approaches are presented in Table 3 for
three (0, 2, and 10%) N/S ratios. As is clearly observed, the natural frequency and
damping factor estimates are very accurate in all cases, whereas the accuracy of the
mode shape estimates starts to deteriorate at the 10% N/S ratio case. It is nevertheless
apparent that no consistency problem (such as that associated with the RLS scheme) is
encountered, and the results are considered to be quite accurate. Regarding the impulse
and step invariance transformation approaches, they both appear to offer comparable
accuracy, with the first one being probably slightly better at the higher N/S cases.
The results obtained through the RELS and RML schemes and the impulse invariance

transformation are presented in Table 4 for the same three N/S ratios. Both schemes
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seem to perform similarly, with the RML results being slightly more accurate. When
compared to the RPLR, both the RELS and RML offer comparable or slightly inferior
accuracy. This is especially true for the damping factor estimates which deteriorate
rather significantly at the 10% N/S case. The results of both schemes coupled with
the step invariance approach are analogous to those of the RPLR and are therefore not
presented here (Ben Mrad, 1988).

The frequency response curves, as estimated by the RPLR, RELS, and RML schemes
in conjunction with the impulse invariance transformation approach, are presented in
Figures 2, 3, and 4, respectively, for both the 0 and 10% N/S ratio cases, and very
good overall agreement with the theoretical curves is observed. Figures 5 and 6 show the
convergence patterns of the estimated transfer function parameters for the RPLR and the
RELS schemes coupled with the impulse invariance transformation for the 10% N /S ratio
case (the RML convergence patterns are not presented since they are almost identical to
those of RELS (Ben Mrad, 1988)). From these plots it is observed that the autoregressive
(A) parameters tend to converge faster than the exogeneous (B) parameters, and also
that the parameters estimated by the RPLR, converge faster than those estimated by
the RELS (and RML) schemes. In certain cases convergence problems were encountered
with all methods, and covariance resetting had to be used. This technique was found to
be more often required, but also more effective, with the RPLR-based methods.

It is finally mentioned that among the methods requiring data prefiltering (RPLR
and RML), the RML-based methods are the ones that have most stability problems
since the estimated moving-average (C) polynomial appears to be often unstable. Such

problems are rather rare with the RPLR methods since the estimated autoregressive (A)
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polynomial remains stable for most of the time.

5.1.2 Vibratory System with Closely-Spaced Modes

In this case identification of the vibratory system of Figure 7 with modal parame-
ters presented in Table 5 is considered based on force and displacement data sampled
with a sampling period T = 0.0244 secs. The modal analysis results obtained through
the RPLR scheme and both the impulse-invariance and step-invariance transformation
approaches are presented in Table 6 for three (0, 2, and 10%) N/S ratios. The estimates
obtained through the impulse-invariance transformation are accurate in the 0 and 2%
N/S ratio cases, but problems are encountered in the 10% case, where no complete mode
shape information is obtained (a pair of eigenvalues are estimated as real), and the error
associated with the damping factor estimates increases. The estimates obtained through
the step-invariance transformation are comparable to those of the impulse-invariance
transformation in the 0% and 2% N/S ratio cases, and better in the 10% N/S ratio case.
The results obtained through the RELS and RML schemes and the impulse-invariance
transformation are presented in Table 7, and are comparable to the corresponding results
of the RPLR scheme, with the RML being, once again, somewhat more accurate than
the RELS. Similar remarks may be made about the versions of the methods using the
step-invariance transformation approach. Regarding the estimated frequency response
curves and the parameter convergence patterns, the remarks of the previous subsection
are applicable here as well (Ben Mrad, 1988).

In summary, the recursive modal analysis methods are found to be effective in dis-

tinguishing the two closely-spaced vibrational modes and providing accurate modal pa-
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rameter estimates. When their performance is compared to that associated with systems
characterized by well-separated modes, somewhat higher damping factor estimation er-
rors in the noisy cases, and failure to determine complete mode shape information in the
10% N/S ratio (when the impulse-invariance transformation approach was used), were
observed. Attempts to overcome these difﬁculties through model order overdetermina-

tion did not prove fruitful (Ben Mrad, 1988).

5.1.3 Discussion

Based on the simulation results presented, the recursive modal analysis methods
based on the RPLR, RELS, ;aJnd RML estimation schemes and the impulse and step-
invariance transformation approaches are considered to be quite effective for the iden-
tification of systems with well-separated and closely-spaced modes. The inconsistency
problem of the deterministic RLS algorithm is overcome, and accurate estimates are
obtained in the noise-corrupted data case as well. The accuracy of the methods is
comparable, with the RML-based methods being consistently slightly better than the
RELS-based ones. On the other hand, the RPLR-based methods appear to give the best
convergence characteristics, and, in contrast to the RML methods, instabilities in the re-
quired filtering operations are rarely encountered. Regarding computational complexity,

the RELS methods offer the lowest load, with the RPLR and RML methods following.

5.2 Experimental Results: Modal Analysis of A Free-Free Beam

The recursive modal analysis methods are now employed for the structural dynamics

identification of a free-free beam from laboratory data. The beam used for this purpose is
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made of steel, has a rectangular cross section, and only the parameters of its first three
modes, having natural frequencies that may be approximately (by neglecting added
mass effects of measuring devices, etc, and using linear theory) calculated as w, =
482.06, 1328.84, and 2605.07 (r/s), are to be estimated. The damping factors cannot
be analytically determined but are expected to be small. The complete experimental
configuration is depicted in Figure 8. The beam was excited by a zero-mean band-limited
(0—2827 r/s) white Gaussian force signal applied through an electromagnetic exciter and
measured through a load cell, and the resulting vibration signals were measured through
accelerometers. Both excitation and response signals were low-pass filtered with a cut-off
frequency of 2827 (r/s) and subsequently sampled with a sampling frequency of 10053
(r/s). In this analysis two sets of data, refered to as Sets 1 and 2 (Figure 9), are utilized.

The determination of the necessary model orders was achieved through the Akaike
Information Criterion (AIC) (Akaike, 1981), according to which the model that yields

the minimum value of the index :

RSS
L

AIC = L.In(=2) + 2d (51)

with L representing the number of data used, d the number of estimated parameters, and
RSS the sum of squares of the prediction errors, is selected as adequate. Furthermore,
the relative importance of each vibrational mode is quantified in terms of dispersion

percentages, defined as (Fassois et al, 1989a):

dy
p .
=1 d’

Dk = x 100% (52)
with dy representing the part of the energy due to the k-th mode and p the total number
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of degrees of freedom. The estimation algorithms were initialized exactly as in the
simulations.

Identification results obtained through the RPLR, RELS, and RML techniques com-
bined with the impulse-invariance transformation are presented in Tables 8 and 9 for
the Data Sets 1 and 2, respectively. In these two tables the adequate model orders,
along with natural frequency, damping factor, residue magnitude and phase, as well as
dispersion percentage estimates, are shown. As is immediately observed order overdeter-
mination is often necessary with all methods, and four or five degree-of-freedom models
are typically required. Such models are indicated as adequate by the AIC criterion, as
exemplified in Table 10 for the case of the method based on the RPLR and the im-
pulse invariance transformation approach applied to Data Set 2. Although, model order
overdetermination produces extra (false) eigenvalues, those are either real or character-
ized by frequencies lying outside the frequency range of interest and small dispersion
percentages, and are therefore easy to detect. The results of Tables 8 and 9 are in good
overall agreement, and the damping factor estimates are considered to be reasonable.
The only exception relates to the RML-based estimation for Data Set 2, and this is due
to the rather slow convergence of the recursive estimator. The convergence patterns of
the transfer function parameters estimated by the RPLR, RELS, and RML-based meth-
ods for Data Set 1 are depicted in Figure 10. The convergence of the RPLR method is
quite good, but that of both the RELS and RML techniques appears to b.e very sluggish;
a result which is consistent with those of Section 3. Figure 11 finally depicts the magni-
tude curves of the frequency response characteristics as estimated by all three methods

from Data Set 1.
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6 CONCLUDING REMARKS

In this paper recursive, stochastic, modal analysis methods that overcome the incon-
sistency problem of the deterministic RLS approach, were presented. These methods
are based on multiple-input multiple-output (MIMO) versions of a recently introduced
Recursive Pseudo-Linear Regression (RPLR), the Recursive Extended Least Squares
(RELS), and the Recursive Maximum Likelihood (RML) estimation algorithms combined
with the Impulse and Step-Invariance discrete-to-continuous transformation approaches
for modal parameter extraction. The performance of the methods was evaluated with
both simulated and experimental vibration data.

The RPLR-based methods were shown to offer very good accuracy coupled with
fast convergence and excellent noise rejection properties. Covariance resetting was often
necessary, but also very effective in accelerating convergence. Instability problems in the
required data prefiltering were rarely encountered, and model order overdetermination
was necessary in certain cases, but certainly not as often as with the other approaches.
The computational load of these methods is modest, higher than that of RELS but lower
than that of RML-based approaches.

The RELS-based methods were shown to be the least accurate, especially at the
higher N/S ratios and in conjunction with systems characterized by closely-spaced modes.
Their convergence is significantly slower than that of the RPLR methods, but very
comparable to that of RML. Covariance resetting did not seem to accelerate convergence,
and model order overdetermination was often necessary for accurate modal parameter

identification. The main advantage of these methods is that no data prefiltering is
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required and the computational load is therefore lowest.

The RML-based methods were shown to offer good accuracy, which is in general
comparable to that of the RPLR methods, and also good noise rejection properties.
Their convergence was, however, significantly slower than that of the RPLR methods,
and, similarly to RELS, sometimes quite slow, with covariance resetting not providing
any essential benefit. Instability problems in the data prefiltering operation was relatively
often encountered, so that the stability checking procedure appears to be absolutely
necessary. Model order overdetermination was (similarly to RELS) often needed, and
the computational load of the methods is highest.

The modal parameter extraction approaches based on the Impulse and Step-Invariance
transformations were shown to perform equally well. This was clearly expected since the
experimental conditions (the model structure and excitation form) were selected to match
the exact requirements of each transformation; a fact that was shown to be important
for accurate mode shape estimation.

In summary, the performance of the recursive modal analysis methods of this pa-
per is considered to be quite good at all N/S ratios considered, the discrimination of
closely-spaced frequencies excellent, and the improvements over deterministic techniques

tremendous.
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Appendix A : The Asymptotic Bias Error Associated with
the RLS Method

For simplicity the single-input case will be considered; generalization to the multiple-
input case is straightforward. The linear least squares (LLS) estimator of the parameter

vector p[t] of the model (13) may be expressed as (Séderstrom et al, 1978) :

- _i._z:: T[] —%—Z J.o[k]) (A1)

k=0
By rewritting the system equation (9) as :

z[k] = rT[k].p + a[k] (A.2)

and substituting into (A.1) the expression :

t

t

. 1 .

Bl = p + (= Z 3 x{kl-k)) (A.3)

t+1 k=0 1 k=0
is obtained. The asymptotic bias error is then equal to :
1 & r t
— - -1 .
bp = plim(;— I;J rlkl.r’ [k)) (t 3 Z r{k).Alk])
= (p th T g k‘]) (p hm -t—+—1' Pard r[k]n[k]) (A4)

where plim denotes limit in probability and Frechet’s theorem (Cramer, 1946) was used.

By invoking standard ergodicity results (Soderstrom , 1975), (A.4) may be written as :

= (E{r[k].rT [k]}) L. E{r[k].A[k]} (A.5)
where E{.} denotes expectation. Furthermore, by decomposing r[k] as (see (5) and (14)):

~vik -nlk
rlk] = (K] + ] (A.6)
ulk] 0
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where :

vik] = [v[k — 1]...0[k — n])T (A.7)
uk] = [u[k]....ulk — m]]T (A.8)
nk] = [n[k = 1]...n[k — n])T (A.9)

substituting into (A.5), and using the fact that the sequence {n[k]}, as well as its filtered
version {7i[k]}, are orthogonal (uncorrelated and zero-mean) to {u[k]}, and therefore

{v[k]}, the following expression is obtained :

-Fv'u + an _Fuu Yan
-7, Tuu 0

where Ty, = E{v[k].vT[k]}, Tuy = E{u[k].uT[k]}, Ty, = E{v[k].uT[k]} and :
Yin = E{[n[k — 1].2[k]......... nlk — n].a[k])])T} (A.11)
By using (10), the vector ys, may be expressed as :

Yin = [zn: A Ynn[k — 1] Zn: aEYnnlk = 2]........ i arYnnlk — n])T (A.12)
k=0 k=0 k=0

where {v,[k]} represents the autocovariance of {n[k]}, and a, = 1. Since the matrix to
be inverted in (A.10) is positive definite hermitian (because it is a covariance matrix and
the input signal {z[k]} is persistently exciting of sufficient order), the “inside-out rule”

of matrix algebra (Lewis and Odell, 1971) may be applied to give :

da (Fvv + Lnn — I‘uuF;} I‘gu)_l-%’m
ép = = — (Al3)
ob FZJ F?;u(I‘m, + T'nn — I‘vurzjq}rgu)—l-’)’ﬁn

where éa, 6b represent the asymptotic bias errors associated with the estimates of the

coefficients of the A and B polynomials, respectively.
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Appendix B : The General Form of the Discrete-To-Continuous
Transformation

Consider the continuous-time transfer function G(s) = ﬂ}(% in the modal decompo-

sition form :

G(s) = i A (B.1)
k=1 $ = Hk

where ug, Ag represent the k-th eigenvalue and residue, respectively. The part of the

model response due to the k-th eigenvalue will then be :

() = Ax -expl) [ exp(~pur)us(r)dr (B.2)

Discretization (with ¢ = T, T representing the sampling period ) and further manipu-

lating of (B.2) yields :

[1 - exp(usT)> " 1Va(=) = A, Z{exp(uilT) /U':)Texp<—ukr>.uj<r)dr} (B.3)

where Z{.} denotes z-transform, Vi(27!) = Z{v;[IT]}, and z the z-transform variable.

From this expression it is evident that the discrete eigenvalue corresponding to uy is :

Mt = exp(uiT) (B.4)

and (B.3) may be equivalently rewritten as :

Vk(z‘l) _ Ak.B()\k)
Uj(271) T 1= gzt

(B.5)
with :

IT -
B(\) = Z{A\L /l R (B.6)
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and Uj(z7!) = Z{w;[IT]}. The discrete-time transfer function model G(z"l) = Ul((z;_lll)-
3 z

corresponding to (B.1) then is :

2
G(z"1) = Zp Ae-BAr) (B.7)

— -1
k=1 1 ,\kz

and for the structural systems with complex conjugate eigenvalues this correspondence

may be expressed as :

_ (Ax+ A%)s — (Ag.In Af + AL In \g).T7!
G(S) - 1; 32 + 2§kwnk3 + w2
p * - * * -1
N G(Z_l) _ Z /\k)-{-A B(/\ ) [Ak B(/\k) /\ +A B(/\ )/\k]z (BS)

1- (/\k + X )2’"1 + )‘k/\* -2

where wy,, , { denote the k-th mode natural frequency and damping factor, respectively,

the star complex conjugate, and (B.4) was used.
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Table 1 : RLS-based modal analysis for a two degree-of-freedom system.

Theoretical | RLS Estimates

Parameters | 0 % 10 %

N/S N/S

Wn, 62.444 62.439 | 62.601
(rad/sec) | 64.377 | 64.385 | 80.008
£ 0.0482 0.0482 | 0.0275
0.1776 0.1776 | 0.5515

Table 2 : Theoretical modal parameters for the system with well-separated modes.

Wy, 13 Mode Shapes
( rad/sec )
1.516 0.0758 | (11,2351 +j0.0)

2.950 0.1475 | (1,-0.851 + j 0.0 )
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Table 3 : Modal parameters of the system with well-separated modes estimated via the
RPLR scheme and the I.I. and S.I. transformation approaches.

Impulse Invariance Step Invariance
N/S Ratio 0 2 10 0 2 10
(%)
Wn, 1.516 1.516 1.516 1.516 1.516 1.516
(rad/sec) 2.948 2.949 2.961 2.950 2.953 2.970
% Errors in 0.0092 0.0125 0.0079 0 0.0026 0.0031
Wn 0.0576 0.0244 0.3850 0 0.0979 0.6936
'3 0.0758 0.0755 0.0743 0.076 0.0761 0.0777
10.1472 0.1475 0.1475 0.147 0.1478 0.1518
% Errors in 0.0699 0.4261 1.9431 0 0.4643 2.5900
13 0.1911 0.0258 0.0325 0 0.2359 2.9341
Mode Shapes | (1,2.351 (1,2.358 (1,2.513 | (1,2.351 | (1,2.347 | (1,2.271
+j0.0) | + j0.0018) | +j0.1549) | +j0.0) -j0.002) | -j0.0078)
(1,-0.851 | (1,-0.852 | (1,-0.443 | (1,-0.851 | (1,-0.872 | (1,-1.928
+j0.0) | -j0.0005) | + j0.161) | +j0.0) | -j0.0065) +3j0.6872)
% Errors in 0.0122 0.3152 9.5312 0.0029 0.0872 3.4213
Mode Shapes | 0.0178 0.1623 51.556 0.0108 2.6310 150.1534
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Table 4 : Modal parameters of the system with well-separated modes estimated via the
RELS and RML schemes with the LI. transformation approach.

RELS RML
N/S Ratio 0 2 10 0 2 10
(%)
Wn, 1.516 1.519 1.531 1.516 1.518 1.522
(rad/sec) 2.948 2.968 2.976 2.948 2.964 2.990
% Errors in 0.0092 0.0211 0.9709 0.0092 0.1451 0.3706
Wn 0.0573 0.6308 0.8959 0.0573 0.4840 1.3661
£ 0.0758 0.0758 0.0794 0.0757 0.0759 0.0795
0.1472 0.1490 0.1749 0.1472 0.1483 0.1674
% Errors in 0.0699 0.0435 4.7188 0.0699 0.1411 4.8903
£ 0.1911 1.0224 19.5623 0.1911 0.5885 13.5519
Mode Shapes | (1,2.351 (1,2.332 (1,2.508 (1,2.351 (1,2.341 (1,2.261
+j0.0) | - j0.0607) | +j0.4372) | +j0.0) | -j0.0447) | +j0.1878)
(1,-0.851 | (1,-0.879 | (1,0.499 | (1,0.851 | (1,-0.852 | (1,-0.916
+j0.0) | -j0.0111) | + j0.562) | +j0.0) +30.0059) | +j0.209)
% Errors in 0.0003 2.6944 19.7611 0.0003 1.9504 8.8474
Mode Shapes 0.0131 3.5750 77.9592 0.0131 0.7132 25.7419

Table 5 : Theoretical modal parameters for the system with closely-spaced modes.

Wn, £ Mode Shapes
( rad/sec)
62.444 0.0482 | (1,1.476 + j0.1541 )
64.377 | 0.1776 | (1, -0.661 + j 0.0704 )
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Table 6 : Modal parameters of the system with closely-spaced modes estimated via the
RPLR scheme and the L.I. and S.I. transformation approaches.

Impulse Invariance Step Invariance
N/S Ratio 0 2 10 0 2 10
(%)
Wr, 62.401 62.411 62.427 62.442 62.442 62.441
(rad /sec) 64.349 64.341 64.553 64.385 64.495 65.271
% Errors in 0.0696 0.0530 0.0275 0.0091 0.0033 0.0057
Wy, 0.0437 0.0569 0.2732 0.0122 0.1832 1.3883
13 0.0481 0.0476 0.0454 0.0482 0.0481 0.0474
0.1773 0.1811 0.2008 0.1776 0.1784 0.1851
% Errors in |- 0.3358 1.2896 5.9545 0.1490 0.2357 1.5775
¢ 0.1418 1.9640 13.0568 0.0567 0.4645 4.2501
Mode Shapes | (1,1.478 (1,1.495 (1,2.170 (1,1.487 (1,1.500 | (1,1.676
+j0.1525) | + j0.1906) | +j0.2219) | +j0.1476) | +j0.1348) | +j0.077)
(1,-0.663 |- (1,-0.677 2 real (1,-0.650 | (1,-0.660 | (1,-0.499
4j0.0717) | + j0.0914) roots +j0.0644) | +j0.0603) | -j0.1236)
% Errors in 0.1449 2.7771 46.9571 0.8219 2.0615 20.5834
Mode Shapes | 0.3676 4.0574 — 1.8116 1.5266 25.6657
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Table 7 : Modal parameters of the system with closely-spaced modes estimated via the
RELS and RML schemes with the LI. transformation approach.

RELS RML
N/S Ratio 0 ) 10 0 2 10
(%)
Wr 62.401 62.423 62.792 62.401 62.406 62.446
(rad/sec) 64.349 64.217 63.417 64.349 64.312 64.233
% Errors in 0.0696 0.0339 0.5566 0.0696 0.0615 0.0017
Wn 0.0437 0.2480 1.4910 0.0437 0.1009 0.2235
I3 0.0481 0.0484 0.0427 0.0480 0.0481 0.0485
0.1773 0.1758 0.1934 0.1773 0.1769 0.1822
% Errors in 0.3358 0.4519 11.3866 0.3358 0.1285 0.8127
13 0.1418 1.0146 8.9013 0.1418 0.3727 2.6397
Mode Shapes | (1,1.4779 | (1,1.902 | (1,2.164 | (L1478 | (1,1.002 | (1,2.032
+§0.1526) | + j0.1344) | +j0.4650) | +j0.1526) | +j0.1298) | +j0.1596)
(1,-0.663 (1,-0.403 2 real (1,-0.663 | (1,-0.348 2 real
+j0.0717) | + j0.0203) | roots +j0.0717) | +j0.0346) roots
% Errors in 0.1431 28.6835 50.8245 0.1435 28.7439 37.4210
Mode Shapes 0.3582 39.4940 — 0.3582 47.2946 —
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Table 8 : Modal parameters of the beam estimated from Data Set 1

(LI. transformation approach).

Method RPLR RELS RML
Model ARX(6,5) | ARMAX(8,7,3) | ARMAX(10,9,3)
Natural 455.626 443.083 448.0478
Frequency | 1300.648 1299.910 1289.3639
(rad/sec) | 2519.342 2505.942 2535.4385
3624.761 2534.1314
2 real roots
Damping 0.00533 0.06546 0.11691
Factor 0.00093 0.00296 0.00586
0.00074 0.00208 0.00597
0.13969 0.08405
Residue 0.0681 0.0525 0.0368
Magnitude 0.1003 0.0988 0.0887
© 0.3003 0.3241 0.3636
0.2364 0.1647
Residue -1.3741 -1.6427 -0.8898
Phase 1.9773 2.0521 1.8001
(rad) 2.3874 2.4046 2.6259
-0.0378 0.9093
Dispersion 3.2602 0.4395 -3.1087
Percentage | 14.1583 11.1156 -12.4967
(%) 82.5815 87.7805 105.9337
0.6644 2.2918
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Table 9 : Modal parameters of the beam estimated from Data Set 2
(LI transformation approach).

Method RPLR RELS RML
Model ARX(8,7) ARMAX(10,9,3) | ARMAX(8,7,3)
Natural 462.052 461.608 369.228
Frequency 1300.158 1299.174 1287.184
(rad/sec) 2521.719 2522.311 2534.449
2 real roots 3752.775 2 real roots
2 real roots
Damping 0.00411 0.05324 0.09941
Factor 0.00072 0.00123 0.02102
0.00072 0.00047 0.00285
0.17983
Residue 0.0608 0.0593 0.1310
Magnitude 0.0272 0.0275 0.0216
0.0547 0.0556 0.0601
0.0176
Residue -1.3463 -1.4503 -0.9886
Phase 2.1387 2.0653 3.1365
(rad) -1.0675 -1.0644 -1.0235
0.1993
Dispersion 42.0922 -8.4499 358.9265
Percentage 17.2770 -27.5732 14.7624
(%) 35.8130 -151.8973 -352.1869
0.6120

Table 10 : AIC values for different model orders (RPLR and LI transformation
approach, Data Set 2).

Model Order | AIC
ARX(6,5) | 583.02
ARX (8,7) | 478.03
ARX(10,9) | 569.92
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Figure 8 : ?prerimenta.l set-up for the structural dynamics
identification of the free-free beam.
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Figure 9 : The experimental force and acceleration data : (a) Set 1
(b) Set 2.
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