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Abstract: Low-frequency oscillations (<0.08 Hz) have been detected in functional MRI studies, and
appear to be synchronized between functionally related areas. A current challenge is to detect these
patterns without using an external reference. Self-organizing maps (SOMs) offer a way to automatically
group data without requiring a user-biased reference function or region of interest. Resting state func-
tional MRI data was classified using a self-organizing map (SOM). Functional connectivity between the
left and right motor cortices was detected in five subjects, and was comparable to results from a
reference-based approach. SOMs are shown to be an attractive option in detecting functional connectivity

using a model-free approach. Hum. Brain Mapp. 20:220-226, 2003.
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INTRODUCTION

Recent studies in functional MRI have shown slowly vary-
ing fluctuations that are temporally correlated between
functionally related areas. These low-frequency oscillations
(<0.08 Hz) seem to be a general property of symmetric
cortices, and have been shown to exist in the motor, audi-
tory, visual, and sensorimotor systems, among others
[Biswal et al., 1995; Cordes et al., 2000; Lowe et al., 1998].
Thus, these fluctuations agree with the concept of functional
connectivity: a descriptive measure of spatio-temporal cor-
relations between spatially distinct regions of cerebral cortex
[Friston et al., 1993]. Several recent studies have shown
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decreased low-frequency correlations for patients in patho-
logical states (such as multiple sclerosis [Lowe et al., 2002] or
cocaine use [Li et al., 2000]). Accordingly, low-frequency
functional connectivity may be important as a potential in-
dicator of regular neuronal activity within the brain.

However, it is a challenge to detect and quantify low-
frequency spatio-temporal patterns in functional imaging
data. The cross-correlation method in common use is sensi-
tive to drifts in the data [Lowe and Russell, 1999], which are
still present in low-frequency filtered data. There is also the
obvious question of what reference waveform to use in a
correlation analysis of resting-state data, where there is no
external paradigm being presented. The use of investigator-
defined regions of interest (ROIs) or “seed clusters” has been
the primary method used in functional connectivity studies
[Biswal et al., 1995; Hampson et al., 2002; Lowe et al., 1998;
Peltier and Noll, 2002], in which the pixel time courses in a
particular slice are correlated with the ROI reference wave-
form to form functional connectivity maps. This use of “seed
clusters” is not an optimal way of detecting functional con-
nectivity, in that it is (1) user-biased, and (2) not applicable
in cases where pre-supposed ROIs are not known or for
which a task activating the ROI is unknown.
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Several model-free approaches to fMRI analysis have been
used recently, including principal component analysis
(PCA) [Weaver et al., 1994] and fuzzy clustering [Golay et
al., 1998]. However, each of these approaches has drawbacks
that limit their application to investigating functional con-
nectivity. PCA finds principal components that are orthog-
onal, and that contribute a large amount of variance to the
data, but fMRI data can violate orthogonality assumptions
[Le and Hu, 1995], and in functional connectivity, the signals
of interest may be weak relative to other sources of noise
(e.g., physiological noise). Fuzzy clustering groups data into
clusters of related time courses, based on the membership of
each time course in each cluster; but recently it has been
shown that fuzziness is not necessary in fMRI clustering
[Fischer and Hennig, 1999a], which allows implementation
of computationally faster algorithms (such as k-means clus-
tering or self-organizing maps).

Recently, model-free analysis using self-organizing maps
(SOMs) has been applied to functional MRI [Fischer and
Hennig, 1999b; Ngan and Hu, 1999], and has shown promise
in detecting activation patterns related to performing a cog-
nitive task. We sought to assess whether the use of self-
organizing maps (SOMs) can be extended to the detection of
resting state functional connectivity. This work looks at de-
tecting functional connectivity patterns in resting state fMRI
data using self-organizing maps, and compares the results to
those found using seed clusters, a standard reference-based
approach. We demonstrate that the use of self-organizing
maps offers an attractive alternative as a model-free analysis
method for detecting functional connectivity.

METHODS
Data Acquisition

A series of fMRI experiments were performed ona 1.5 T
Signa-LX scanner (GE Medical Systems, Milwaukee, WI)
using a spiral pulse sequence. The sequence implemented a
spectrospatial excitation pulse, and acquired 400 images.
Pulse sequence parameters were TR/TE/FA/FOV of 520
msec/48.66 msec/45°/20 cm. Five 5-mm-thick axial slices
were acquired in each TR, with an in-plane resolution of 3.57
X 3.57 mm.

Six subjects were studied under conditions of activation
and rest. Four distinct sets of data, two task activation sets
and two resting state sets, were acquired for each subject. To
minimize the effect of possible attentional and/or physio-
logical changes on the data, one set of resting data was
acquired before and one set after the two sets of activation
data for each subject, with minimal delay between each set.
A sequential finger-tapping motor paradigm (20.8-sec fixa-
tion, 20.8-sec task, 5 repeats) was implemented for the acti-
vation data. The paradigm cues were visually presented to
the subjects using IFIS (Integrated Functional Imaging Sys-
tem, Psychology Software Tools, Pittsburgh, PA). Resting
state data was acquired while the subjects were inactive
(lying still, with fixation cross being presented), and
matched to the duration of the activation data (208 sec total).

The cardiac rhythm of the subjects was recorded during all
runs using a pulse oximeter.

Post-Processing

Motion detection was performed on all data in order to
detect gross head movement. This analysis was performed
using 3-D rigid-body registration in AIR (Automated Image
Registration) [Woods et al., 1998]. Following prior work
[Cordes et al., 2000; Lowe et al., 1998], a cutoff of 0.4 mm was
used for displacement in x, y, or z. One subject exceeded this
motion threshold and was excluded from the study. The
data of the remaining five subjects was then analyzed using
the non motion corrected data, to avoid the introduction of
artifactual spatio-temporal correlation through the motion
correction process [Lowe et al., 1998].

A method of systematic noise removal was employed on
all data following acquisition, as follows. Linear trends were
removed from the data, to eliminate the effect of gross signal
drifts, which could be due to scanner instabilities and/or
gross physiological changes in the subject. Physiological
noise variations in the data due to the cardiac rhythms were
then removed using the regression analysis method pro-
posed by Hu et al. [1995]. This approach removes the effects
of the first and second order harmonics of the externally
collected physiological waveforms. (Furthermore, the pri-
mary cardiac harmonic is removed when the low-pass filter
is applied.) In addition, the time course of the highest vary-
ing voxel in the sagittal sinus was used as a regressor [Lund
and Hanson, 2001], in order to remove any cardiac effects
that were not in synchrony with the external cardiac mea-
surement. The noise-corrected data was used for all subse-
quent analyses.

For the resting state data, the functional data was first
low-pass filtered, by convolving the time courses with a rect
filter with a cutoff frequency of 0.08 Hz. This cutoff avoids
aliasing of the unwanted respiration and primary cardiac
harmonic into the region of interest, while keeping the fre-
quencies shown to contribute to functional connectivity
[Biswal et al., 1995; Cordes et al., 2000; Lowe et al., 1998].
Each time course was then normalized, by subtracting its
mean and dividing by its standard deviation, to give time
courses with zero mean and unit variance. This was done to
avoid convergence of the SOM algorithm based on the mean
value of the time courses.

SOM Algorithm

The data were analyzed using the self-organizing map
(SOM) algorithm developed by Kohonen [1995]. This algo-
rithm produces a predetermined number of exemplar time
courses that represent the probability density function of the
underlying data. This process is done iteratively. First, the
exemplar matrix is initialized to random noise. Then, in one
iteration, every voxel time course is compared to all the
exemplar time courses, and the minimum distance is calcu-
lated, using a least squares metric:
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where x is the time course of the data voxel under consid-
eration, m; denotes the time course of exemplar i, and m_ is
the time course of the closest exemplar c. The exemplars are
then updated at each iteration using;:

m,(t + 1) = my(t) + ho()*[x — m(H)] (2)
where t is the current iteration number, and h(t) is a (time-
dependent) neighborhood function that controls how many
neighboring exemplars in addition to the closest exemplar
are also updated, and to what degree. As the iterations
progress, the neighborhood function shrinks the neighbor-
hood; so while initially, the exemplar map receives global
ordering, at the end, only individual nodes are updated. The
above steps are repeated for all voxels until convergence is
reached, and further iterations produce no change in node
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Figure I.
A: Normalized mean square er-
ror (NMSQE) vs. iteration num-
ber for a typical subject. Results
are normalized by the MSQE of
the last iteration. B: Voxel pat-
terns found in one supercluster
at the first (top) and last (bot-
tom) iteration, overlaid on the
corresponding structural image.

Last iteration

assignments. The final exemplar map will have a topologi-
cally ordered feature map that represents the underlying
probability density function of the data with minimal error
[Kohonen, 1995].

Implementation

For this study, SOM’s consisting of 100 exemplars ar-
ranged in a 10 X 10 2-D grid were implemented. This gives
a hundred exemplar time courses, and in general seems
ample enough size for classifying four to five possible fMRI
cluster types (activation, cardiac/respiratory rhythms, head
motion, noise, functional connectivity, among the possibili-
ties). The SOM algorithm defined by equations (1) and (2)
was employed, with the neighborhood contraction rate im-
plemented as a shrinking Gaussian neighborhood function,
dependent on the iteration number (t):

he(t) = a*exp(=[ri—r?/(2*a(t)%) 3)

Figure 2.
A: Resultant exemplar time course ma-
trix after applying the SOM algorithm to
a typical low-frequency filtered fMRI
data set. The colored time courses cor-
respond to one supercluster. B: Voxel
patterns corresponding to the super-
cluster in A, overlaid on the corre-
sponding anatomic image.
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Resting state
seed cluster correlation

Resting state
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Figure 3.

Comparison of the significant patterns found in the motor areas of
five subjects in a task activation study (top) with the correspond-
ing resting state functional connectivity studies using (middle)
seed correlation analysis and (bottom) self-organizing map (SOM)

where « is a learning rate that controls how fast the exem-
plars change, set to be 0.1; r; and r_ are the coordinates (in the
two-dimensional exemplar matrix) of exemplars i and ¢; and
o(t) is the FWHM of the Gaussian function, initially set at
seven nodes to give global topographical ordering, but then
decreasing by 5% at each iteration to switch to local order-
ing. At each iteration step, all time courses of interest (the
time courses of all voxels that occur within the brain in each
slice) were compared to the exemplar map as described
above. The number of total iterations was set at 100 in order
to establish convergence of the algorithm.

Analysis

For each data set, the SOM algorithm was used to generate
a set of exemplars. In order to reduce the amount of resultant
data, the 100 exemplars in the final exemplar matrix were then
grouped into superclusters, to examine the principal groupings
of the exemplars. Superclusters were formed by finding the
minimum least-squares distance between each exemplar time
course and those of its immediate neighbors, placing the closest
time courses into the same cluster, and repeating the proce-
dure, until the entire exemplar matrix was grouped into 24
superclusters. (There is no neighborhood function as when
using the SOM algorithm, as the exemplars are already topo-
logically ordered.) These superclusters were then examined for
significant spatial patterns in the motor-related areas.

The exemplar map was examined after each iteration to
verify convergence of the algorithm. The mean squared

analysis. The activation study is thresholded at (r > 0.4) for task,
and the seed correlation study at (r > 0.35) for low-frequency
reference waveform. All resting state maps were contiguity
thresholded at >3 voxels, for viewing purposes.

error (MSQE) between the data time courses and the repre-
sentative exemplar time courses was calculated. Normalized
mean square error (NMSQE) was calculated by dividing the
MSQE at each iteration by the MSQE at the final iteration.
The behavior of the NMSQE with iteration number was used
to gauge the rate of convergence and reduction in error as
the SOM analysis progressed.

For comparison, task activation correlation maps and
functional connectivity correlation maps generated using
the seed cluster method were formed, as follows. First, every
time course of the task activation data set was correlated
with the motor task reference waveform (square wave with

TABLE I. Similarity measure for the seed cluster and
SOM analysis methods*

Similarity measure

Subject no. Seed cluster SOM
1 0.5530 (0.0134) 0.6231 (0.0496)
2 0.5483 (0.0301) 0.5808 (0.0641)
3 0.5238 (0.0183) 0.5428 (0.0413)
4 0.5659 (0.0256) 0.5959 (0.0783)
5 0.5300 (0.0271) 0.5021 (0.0864)

*Values are mean (SD) of the average correlation value between all
voxel timecourses in the motor-related cluster and the mean time-
course of that cluster. The seed cluster connectivity maps were
thresholded at (r > 0.35).
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Figure 4.
The largest six supercluster patterns found for a typical subject. The patterns were contiguity
thresholded at >3 voxels, and arranged in descending number of voxels, from A-F.

5.2 sec of hemodynamic offset) to form activation correlation
maps. Seed clusters were then selected for each slice by
identifying the block of four voxels containing the highest
average correlation coefficient. This method of using seed
clusters has been implemented in other functional connec-
tivity studies [Cordes et al., 2000; Hampson et al., 2002;
Lowe et al., 1998]. The corresponding seed cluster time
courses in the filtered resting state data were averaged to-
gether to create a single low-frequency reference waveform.
This low-frequency reference waveform was cross-corre-
lated with all other low-pass filtered voxels to form func-
tional connectivity correlation maps. This process was per-
formed for all slices in all sets of resting state data.

The spatial patterns generated by the seed cluster and SOM
methods were compared for significant functional connectivity
patterns in the motor-related areas. The reference waveform
for each method (seed cluster reference waveform, SOM node
exemplar) was used to investigate the correlation strength be-
tween each reference waveform and the time courses of the
voxels belonging to its associated pattern.

RESULTS

Convergence in the SOM algorithm was evidenced in the
MSQE analysis of individual data sets. Figure 1A shows the
MSQE vs. iteration number for a typical data set. The MSQE
decreases until after ~60 iterations it reaches a stable level. It
can be seen that the initial node assignment at iteration one
results in approximately 1.75X the relative error as compared
to the final configuration at iteration 100. The associated spatial
pattern of one of the superclusters is shown in Figure 1B, after
the initial and final iteration. The normalized MSQE at iteration
one is high, and the supercluster’s voxels are widespread,
corresponding to no discernable pattern. At the final iteration,
however, it is seen that the exemplar map has self-organized,
so that the supercluster pattern is seen to be localized in the
motor-related areas.

The SOM algorithm was effective in classifying the resting
state data. Figure 2 displays the results for a typical data set.
The exemplar matrix in Figure 2A represents the data with 100
exemplar time courses. It can be seen that the exemplar time
courses are topologically ordered across the matrix, with sim-

ilar time courses being grouped together. From this exemplar
matrix, superclusters of exemplar time courses are examined
for functional connectivity patterns. Figure 2B shows the pat-
tern identified by the colored supercluster in Figure 2A. The
pattern clearly has spatial groupings in the left and right motor
cortex, as well as the supplementary motor area.

Figure 3 shows typical results of the SOM algorithm in
detecting functional connectivity in the motor cortex across all
subjects, compared to the results found by the seed correlation
method. It is seen that the SOM algorithm identifies similar
connectivity patterns as compared to the correlation method,
but with no use of external reference, with patterns being
found in the motor-related areas in all subjects.

To further quantify the motor-related clusters found by the seed
cluster and SOM analysis methods, a similarity measure was
formed. The average time course of each cluster was correlated
with the time course of each voxel contained within the cluster.
The average correlation coefficient over all voxels within the clus-
ter was then used as the similarity measure. The results, shown in
Table I, show that the seed cluster method and the SOM analysis
are both strongly correlated with their average waveforms. It is
also seen that the amount of correlation is not significantly differ-
ent between the methods, indicating the SOM analysis finds clus-
ters that are as self-correlated as the seed cluster method. The
standard deviation is higher in the SOM case, which may be due
to the inclusion of a wider range of voxel time courses, since the
SOM algorithm to iteratively cluster all the data, as opposed to the
seed cluster method. The results for the seed cluster method
depend on the correlation threshold used, which also changes the
size of the resultant connectivity patterns; but no significant dif-
ferences in the similarity measure were found when the pattern
size within the motor cortex was matched between the two
methods.

Figure 4 displays the largest superclusters for the SOM ex-
emplar matrix from Figure 2. The previously identified motor
functional connectivity pattern is seen to be supercluster B.
Supercluster A seems to be vascular in origin, with the cluster
located around the lower sagittal sinus. Supercluster C may be
head motion, as the cluster is located along the edge of the
head. Clusters D, E, and F are possible connectivity clusters,
with separate clusters found in spatially distinct regions.
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Figure 5.
Total squared error between a typical data set and the exemplar  ters (marked by an asterisk), which were implemented on the data,
matrix found by the SOM algorithm at each iteration, for different  were 100 exemplar nodes, a learning rate of 0.1, and a neighbor-
sets of parameters (number of exemplar nodes, learning rate [LR], hood contraction rate of 0.05.
or neighborhood contraction rate [NCR]). The default parame-
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DISCUSSION

A self-organizing map (SOM) algorithm was applied to
resting-state functional MRI data. The algorithm was able to
successfully cluster the underlying data and capture signif-
icant spatio-temporal features. In particular, low-frequency
functional connectivity associated with the motor cortex was
detected, with no use of external reference or bias. By using
a model-free approach to analyze fMRI data based on the
signal alone, SOM algorithms offer an attractive analysis
alternative for detecting resting state low-frequency func-
tional connectivity without user bias.

The SOM algorithm operates by using the data to form
exemplars that represent the data set, which offers advantages
over the commonly used seed cluster method of examining
functional connectivity. First, there is no need to collect an
activation data set, so scan time is reduced. Secondly, the entire
data set is classified in the SOM analysis, so that all voxels are
grouped to similar voxels. This is in contrast to the seed cluster
approach, which yields a correlation map that is only relative
to the chosen seed cluster. Thus, the SOM analysis permits
investigation of all interesting clusters in the data, as shown in
Figure 4, so that even when pre-supposed ROIs are not known,
the SOM analysis may be implemented.

Further optimization of the implemented SOM analysis can be
performed. The convergence results (Fig. 1) show that a running
analysis of MSQE can be implemented to automatically stop the
algorithm when no further appreciable changes in MSQE or time
course classification occur (i.e., all data time courses continue to
map to the same winning exemplar time course). Also, by incor-
porating anatomically defined landmarks, automatic selection of
superclusters can be employed instead of user selection, further
removing user bias and/or error.

It may also be possible to further optimize the SOM param-
eters. Figure 5 shows the effect of changing the learning rate,
number of nodes, or neighborhood contraction rate. It is seen
that the parameters implemented in this study (marked by an
asterisk in Fig. 5) generally attain the lowest total squared error,
given practical considerations. In Figure 5A, the use of 100
nodes results in lower error than that found using a smaller
matrix, while not sacrificing the extra processing time that
using a larger matrix would entail. Larger matrix sizes would
also entail a greater need for superclustering. The learning rate
of 0.1 has a slightly higher final error than when using a
learning rate of 0.05 (Fig. 5B). However, it can be seen that the
learning rate of 0.025 results in an even higher final error,
probably because the learning rate is so slow that even when
the neighborhood has contracted to give local ordering, the
exemplars have not been globally optimized. Thus, using a
slightly higher learning rate could be beneficial, as different
underlying data may require a slightly higher learning rate to
order the data to the same degree. Finally, the different values
of the neighborhood contraction rate result in almost the same
error (Fig. 5C), so that minimal error can be sacrificed for a
reduction in convergence time. Since there is likely an interac-
tion between the learning rate and neighborhood contraction
rate, a multi-dimensional parameter optimization is probably
warranted.
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