Podocyte-Specific Expression of Cre Recombinase in Transgenic Mice

Marcus J. Moeller, Silja K. Sanden, Abdulsalam Soofi, Roger C. Wiggins, and Lawrence B. Holzman

Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
Department of Veterans Affairs, Ann Arbor, Michigan

Received 25 June 2002; Accepted 8 August 2002

Summary: We report a transgenic mouse line that expresses Cre recombinase exclusively in podocytes. Twenty-four transgenic founders were generated in which Cre recombinase was placed under the regulation of a 2.5-kb fragment of the human NPHS2 promoter. Previously, this fragment was shown to drive beta-galactosidase (β-gal) expression exclusively in podocytes of transgenic mice. For analysis, founder mice were bred with ROSA26 mice, a reporter line that expresses β-gal in cells that undergo Cre recombination. Eight of 24 founder lines were found to express β-gal exclusively in the kidney. Histological analysis of the kidneys showed that β-gal expression was confined to podocytes. Cre recombination occurred during the capillary loop stage in glomerular development. No evidence for Cre recombination was detected in any of 14 other tissues examined. genesis 35:39–42, 2003.

Key words: kidney, podocin, glomerulus

INTRODUCTION

Glomerular visceral epithelial cells of the kidney, termed podocytes, are necessary for the formation and integrity of the glomerular filtration barrier. Podocytes are increasingly recognized to play a central role in a variety of glomerular diseases such as diabetic nephropathy and focal and segmental glomerulosclerosis. Identification of mutated genes encoding podocyte-specific protein products that cause nephrotic syndrome and subsequent glomerulosclerosis has strengthened the hypothesis that the podocyte plays a central role in maintaining the filtration barrier of the glomerulus (Kestila et al., 1998; Boute et al., 2000). In addition to providing convincing evidence of the importance of the podocyte in maintaining filter integrity, the work by molecular geneticists has suggested that podocyte injury or loss is directly associated with the pathological process of glomerulosclerosis. Identification of mutated genes encoding podocyte-specific protein products that cause nephrotic syndrome and subsequent glomerulosclerosis has strengthened the hypothesis that the podocyte plays a central role in maintaining the filtration barrier of the glomerulus (Kestila et al., 1998; Boute et al., 2000). In addition to providing convincing evidence of the importance of the podocyte in maintaining filter integrity, the work by molecular geneticists has suggested that podocyte injury or loss is directly associated with the pathological process of glomerulosclerosis.

Behavior plays a central role in determining outcome in glomerular disease.

The study of podocyte biology has been hampered by limitations in available experimental models that both recapitulate the complex in vivo phenotypes of this cell and that can be readily and specifically manipulated at the molecular level. Recent work has provided conditionally immortalized mouse cell lines that express molecular markers consistent with the in situ podocyte phenotype (Mundel et al., 1997; Saleem et al., 2002; Yaoita et al., 2001). However, these cell lines do not reproduce the complex three-dimensional cytoarchitecture and protein expression profile of the podocyte in situ. These shortcomings limit the utility of these cell lines for studying the functional role of specific molecules in governing podocyte morphology and the maintenance of glomerular filter integrity.

Genetic deletion of genes important in podocyte function may also result in an embryonic lethal phenotype that would preclude functional analysis in the mature podocyte. Eremina et al. (2002) used a 4.125-kb Nphs1 promoter to obtain a mouse line that expresses Cre recombinase in podocytes. However, in this mouse Cre recombinase is also expressed in brain. To circumvent this problem, we sought to develop and characterize a mouse line expressing Cre recombinase in a truly podocyte-specific fashion.

We have recently identified and characterized a promoter fragment from the human NPHS2 gene that drives truly podocyte-specific transgene expression in mice (Moeller et al., 2002). In this work, the identified NPHS2 promoter fragment was successfully used to create a...
A transgenic mouse line that expresses Cre recombinase specifically in podocytes and not in other tissues.

A cassette encoding Cre recombinase was placed under the regulation of the 2.5-kb human NPHS2 promoter fragment that includes the entire 5′ untranslated region of the NPHS2 (podocin) gene (Fig. 1) (GenBank accession AF487463). Twenty-four founder 2.5P-Cre mice were generated by pronuclear injection. For analysis, 2.5P-Cre founder mice were mated to homozygous ROSA26 mice, a well-characterized reporter line that expresses β-galactosidase (β-gal) after Cre recombination (Soriano, 1999). Kidney homogenates of two doubly transgenic 2.5P-Cre/ROSA26 offspring age 4–8 weeks of each founder were screened for β-gal expression using a chemiluminescent assay. When crossed with ROSA26 mice, 8 of 24 (33%) founder lines expressed β-gal in kidney. Additional analysis of the homogenates of 14 other tissues derived from eight identified 2.5P-Cre mouse lines revealed no β-gal expression in other tissues (data not shown).

Subsequent characterization focused on one 2.5P-Cre founder line (#295). Figure 2 shows expression of β-galactosidase (β-gal) after Cre recombination (Soriano, 1999). Kidney homogenates of two doubly transgenic 2.5P-Cre/ROSA26 offspring age 4–8 weeks of each founder were screened for β-gal expression using a chemiluminescent assay. When crossed with ROSA26 mice, 8 of 24 (33%) founder lines expressed β-gal in kidney. Additional analysis of the homogenates of 14 other tissues derived from eight identified 2.5P-Cre mouse lines revealed no β-gal expression in other tissues (data not shown).

FIG. 1. Transgene construct. A 2.5-kb fragment of the human NPHS2 5′ flanking region containing the entire 5′ untranslated region was placed in front of a Cre recombinase cassette. The transgene was released for microinjection from prokaryotic vector sequence using KpnI and HindIII. Restriction sites are indicated with their position relative to the ATG, translation initiation codon; pA, murine protamine polyadenylation signal.

FIG. 2. Tissue screen for β-gal activity. Tissues from three doubly transgenic 2.5P-Cre/ROSA26 mice of founder line #295 and from three singly transgenic ROSA26 littermates were homogenized and β-gal activity was measured using a chemiluminescence assay (first bar in black 2.5P-Cre/ROSA26 mice; second bar in gray ROSA26 littermates). Data are shown as means of volts (V) of three independent experiments with the range indicated by a vertical line. β-Gal activity above background could be detected only in kidney lysates of doubly transgenic p2.5-Cre/ROSA26 mice. Of note, light emission measurements (in volts) cannot be compared to measurements reported in our previous studies (Moeller et al., 2002) since a different luminometer was used in this study.

In all podocytes of all 2.5P-Cre/ROSA26 mice examined with no evidence for mosaicism as determined by GLEPP1 double-label immunohistochemistry (data not shown). However, ROSA26 mice express cytoplasmic β-gal after Cre excision, so that mosaicism or incomplete Cre excision in all podocytes cannot be entirely ruled out. Newborn 2.5P-Cre/ROSA26 kidneys were stained with X-gal to determine when Cre excision occurs during glomerular development. Nephrogenesis occurs in a telescoped manner in newborn kidney that allows the evaluation of all developmental stages in a single section. In newborn 2.5P-Cre/ROSA26 kidneys, β-gal expression arose in podocytes during late capillary loop stage of glomerular development and persisted in podocytes of mature glomeruli (Fig. 3B). Expression of Cre recombinase was also examined in doubly transgenic podocin-Cre/ROSA26 embryos as early as 8.5 dpc by staining whole embryos with X-gal and by assaying whole embryo lysates for β-gal activity using the chemiluminescence assay. β-Gal activity was not observed. These findings are also supported by our previous characterization of the 2.5-kb NPHS2 promoter fragment (Moeller et al., 2002).

Of note, 2 out of 17 analyzed 2.5P-Cre/ROSA26 mice of founder line #295 did not express significant amounts of β-gal in the kidneys. Thus, penetrance of Cre expres-
sion is only 80–90%. A correlation with the animal’s sex, generation, or age was not obvious. Genetic background heterogeneity might account for this observation. Currently, 2.5P-Cre mice are being backcrossed into a C57BL/6J background.

It should be noted that F1 2.5P-Cre mice of founder line #295 were interbred to produce homozygous 2.5P-Cre offspring. At 10 weeks of age 2.5P-Cre (#295) homozygous mice displayed no overt pathology and were fertile, indicating that the integration of the transgene did not disrupt a critical endogenous gene.

The development of a mouse line expressing Cre recombinase in a truly podocyte-specific fashion should provide a valuable tool for examining gene function in the podocyte.

MATERIALS AND METHODS

Creation of 2.5P-Cre Mice

The lacZ cassette was removed from the vector p2.5P-nlacF used for the initial characterization of the 2.5-kb NPHS2 promoter fragment (Moeller et al., 2002). The Cre ORF was PCR-amplified using the primers CreNcoI.fwd 5’aac cat ggg caa ttt act gac cgt aca cca3’ and CreNcoI.rev 5’gtc cat ggc taa tcg cca tct tcc ag3’ and inserted into the unique NcoI-site at the translation initiation codon of p2.5P-(nlacF). The entire 2.5P-Cre transgene was sequenced, liberated from prokaryotic vector sequence by HindIII and KpnI, and used for the generation of transgenic mice as described previously (Moeller et al., 2000). 2.5P-Cre transgenic mice were detected by PCR as described previously (Cushman et al., 2000).

β-Gal Assays

Assays of β-gal activity in tissue homogenates, X-gal stainings, and alkaline phosphatase histochemistry (rabbit polyclonal anti-vWF; Dako, Carpinteria, CA, 1:500 dilution) of cryosections of kidneys and brain were done as previously described (Moeller et al., 2000) with the following modifications: an EG&G Berthold Autolumat LB953 luminometer was used to measure β-gal activity in tissues (acquisition time: 10 sec).

ACKNOWLEDGMENTS

We thank Dr. Thomas Saunders and co-workers who generated transgenic mice in the University of Michigan Transgenic Animal Core, and Lisa Riggs, who cut cryosections.

LITERATURE CITED


gene fragments that direct podocyte-specific expression in trans-
Mundel P, Reiser J, Zuniga Mejia Borja A, Pavenstadt H, Davidson GR, Kriz W,
Zeller R. 1997. Rearrangements of the cytoskeleton and cell contacts
induce process formation during differentiation of conditionally immor-
Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD,
Saleem MA, O’Hare MJ, Reiser J, Coward RJ, Inward CD, Farren T, Xing
CY, Ni L, Mathieson PW, Mundel P. 2002. A conditionally immor-
talized human podocyte cell line demonstrating nephrin and
Soriano P. 1999. Generalized lacZ expression with the ROSA26 Cre
typic modulation of parietal epithelial cells of Bowman’s capsule