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ABSTRACT

The concept of a differential file has previously been
proposed as an efficient means of collecting database
updates for online systems. This paper studies the problem
of database backup and reéovery for such systems. An
analytic model of the operations 1is presented. Five key
design decisions are identified and an optimization
procedure for each 1s developed. A design procedure is
presented which quickyy provides parameters for a
near-optimal differential architecture on the basis of a

series of table look-ups.
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1. INTRODUCTION

Corpofations have increasingly come to depend upon the
continuous availability of online databases 1in support of
such critical business functions as order entry, inventory
control, credit verification, and customer service. Loss of
such systems for even short periods of time can create havoc
within the business and may result in significant financial
loss. As a result, rapid database recovery is an important

issue in the design of these systems.

It has been argued that the database recovery might be
speeded considerably by holding updates in a separate file
of changes called a differential file [8,14]. A practitioner
considering this idea, however, has available 1little
specific guidance for designing such an architecture as an
alternative to a conventional update inplace strategy. This
paper analyzes the backup and recovery operations required
for an online database which employs a differential file and
providés useful guidelines for selecting an efficient set of
operating parameters. The potential for a dramatic
improvement in recovery speed at a slight increase in

operating cost is illustrated.

There are two basic causes of data loss in online
systems: (1) partial completion of update operations caused

by the program or system failures which render parts of the



database inaccurate or inaccessible, and (2) physical
destruction of storage media which renders all or part of a
database unreadable. Canning [6] provides insights into the
nature and impact of such data losses and an overview of
techniques used in commefcial database systems to recover

from them.

A simple and widely used database recovery procedure
involves a periodic dumping of the database to a backup
file. Once the dump is taken, all processed transactions are
then dated and recorded on a transaction log so that in the
event of a data loss the latest dump may be recopied and all
transactions reapplied. Recopying of the latest‘ dump 1is
generally quite fast, requiring as little as a few minutes
for an entire disk pack. The reprocessing of transactions,
however, may require séveral hours if the time since the
dump has been long. Sayani [11] and Lohman and Muckstadt [8]
study the trade-offs between dumping cost and recovery speed
by means of an analytic model which provides guidance in

selecting an efficient dumping frequency.

The database recovery can be speeded considérably with
the use of an after-image log, in which a seqqential file is
used to store an identified and dated copy of each new or
changed database page, record, or record segment at the time

that it is modified. With this file, ¢transaction



reprocessing is not required once the dump 1is restored.
Rather, the 1log 1is sorted by identifier and date, and the
latest version of each modified record 1is selected and

written directly into the database.

For large databases with moderate or naturally
concentrated update activity, differential files offer an
alternative strategy for rapid backup and recovery. A
differential file isolates a database from the physical
change by directing all new and modified records onto a
separate and relatively small file of changes. Since the
main file 1is never changed, it can always be recovered
quickly from its dump in the event of a loss. Transaction
reprocessing 1is required only in the event of damage to the
differential file. Since this file 1is small, it <can be
backed up quickly and frequently to minimize the
repfocessing time. It can also be duplexed at reasonable
cost as insurance against physical damage to one of the

copies.

While differential files offer a number of other
operational advantages [14], this paper focuses exclusively
upon their value in speeding backup and recovery operations
for online databases. Specifically, we will analyze these
~operations to establish the frequency with which a main data

file and 1its differential file should be subjected to



backup, as well as the frequency with which they should be
reorganized into a new main database. An analytic cost model
for this purpose is developed in Section 2. Its solution 1in
Section 3 leads naturally to a series of tables which enable
a designer to quickly determine a near-optimal differential
file architecture for a typical operating environment. For
environments which differ substantially, a FORTRAN program
is provided in the Appendix as an alternative means of

developing an efficient design.

2. A QUANTITATIVE MODEL OF DIFFERENTIAL FILE OPERATION

2.1 Previous Analysis of Operational Characteristics

Consider a database of N records. Assume that updates
are independent and uniformly distributed over all records.
Severance . and Lohman [14] showed that the expected
proportion of distinct main file records, Rn, which are

updated after n updates have been received is given by

R, =1 - (1 -1/ =1 - e“n/N, for large N . (1)

For n ranging from 0 to N , Figure 1 depicts the growth over
time of n/N and Rn. Respectively, these curves characterize
the size of a differential file which maintains every record
change and one which maintains only the most recent image of

each changed record.
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Figure 1 - General Shape of n/N and Rn

To assure access to the most current image of a record,
ohe should search the differential file for every record
iretrieval. If the required record is not found there, then
the original copy is accessed from the main database. 1In
general, both the main database and the differential file
utilize some form of index to speed these searches [12,13].
Unsuccessful searches of the differential file can be

largely eliminated by use of a presearch filtering



mechanism. The filtering scheme, devised originally by Bloom
[5], associates the differential file with a main memory bit
vector of 1length M, and some number X of hashing functions
which map record identifiers into bit addresses. When the
differential file is initially empty, all bits in the filter
are set to 0. Thereafter, whenever a record is stored in the
differential file, each hashing transformation is applied to

its identifier and each of the selected bits is set to 1.

Retrieval of the database records now proceeds as
follows. The identifier of the record to be retrieved is
mapped through each transformation. If any bit is 0, it is
certain that the most recent version of the record still
resides in the main data file; the differential file search
is skipped and the main data file is accessed immediately.
If all bits have value 1, then an updated copy of the record
is 1likely to be found in the differential file, which is
therefore searched. There is a possibility that this search
will prove fruitless, since the bits associated with a given
identifier might be set to 1 coincidentally by mappings from
other updated records. Only in the event of such a filtering

error are both files searched during a record retrieval.

Severance and Lohman [14] show that the probability,
Pn, of a filtering error after the accumulation of n updates

in the differential file is the product of the probability



that the required record 1is yet unchanged and the
probability that all bits addressed have been previously set

to 1, that is,

-nX/M)X.

P (x,1) = e”N(1e (2)
Figure 2 1illustrates the general shape of Pn(X,M) for
different values of X. This function appears as one
component of the analytic cost model for the differential

file operations developed in the next section.
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2.2 Backup, Recovery, and Reorganization Procedures

We analyze a .differential file operating environment
which cycles through a series of backup and reorganization
processes. Initially, the main database 1is dumped to a
backup copy, the differential file is empty, and the Bloom
filter 1is set to 0. As update transactions arrive over time
they are recorded %n a (sequential) transaction file.
Resulting wupdates are posted both in a (direct access)
differential file and on a (sequential) after-image 1log.
Appropriate filter bits are set and, finally, the successful
completion of the transaction processing is noted in the
transaction log. A detailed description of processes which
utilize this daté to recover from a variety of data losses

and system failures is provided by Lohman [7].

As the after-image log grows, the time required for
differential file recovery increases. Periodically,
therefore, the cumulative effect of reposting these changes
is preserved by dumping the current differential file to a
backup copy. If the differential file grows sequentially,
maintaining a history of alf changes, then only the
incremental portion of the file accumulated since the 1last
dump is copied. The entire file 1is copied if an update

inplace strategy is used.

As updates continue, the search filter becomes 1less



effective and the differential file will grow to the limit
of its space allocation. A periodic reorganization therefore
resets the bit vector to zero ahd empties the differential
file by merging all changes into the main database. After
one or more such reorganizations, the time required to
recover the main database via the after-image processing

justifies another dump and the entire cycle begins again.

Figure 3 illustrates the relationships among the
various files and backup procedures and highlights five
important parameters whose values must be selected during

the differential file syétem design:

: size of the Bloom filter bit vector,

¢ number of hashing transformations,

: number of updates before reorganization,

: number of differential file dumps during
a reorganization interval, and

B : number of reorganizations before the main

database dump.

O E
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2.3 Accounting for Costs

Selection of efficient values for the five design
parameters is affected -by the 21 problem variables defined
in Table 1. Typical values for each are given and will be

used for calculations in subsequent sections.

There are nine major components of the system cost to
consider. An equation defining the expected cost per
processed update for each of these is given below:

The expected main database recovery cost is the sum of

the costs to recopy the latest dump and to repost from

the after-image log all updates made prior to the 1last
reorganization, and is given by

Cl = (A1) [rN + u'R(B-1)/27 . (3)

The expected differential file dump and recovery cost
1s the sum of all differential file dumps taken during
a reorganization interval plus, in the event of 1loss,
the expected cost to recopy the latest differential
file dump and to repost all updates accumulated in the
after-image log since that dump. ‘A general analysis for
this cost is provided in Section 3.2. In the case where
no differential file dump is taken during
reorganizations, the cost is given by

C2 = (M/W)u"(R-1)/2 . (4)

The expected differential file storage cost is, in
general, given by

R-1
C3 = (s"/u) I El[differential file size | j updates].
j=0

11



Parameter Description

Typical Value

Q.

: number of records in the database

: record updates per unit of time

: read-only requests per unit of time

: rate of main database failures

: rate of the differential file failures
: set-up cost associated with dump and

reorganization operations

: cost of dumping one record from the

main data file

: cost of dumping one record from the

differential file

: cost of posting an update to the main

data file during reorganization

: cost of a record access from the main

data file

: cost of a record access from the

differential file

: cost of an unsuccessful search of the

differential file

: main storage cost per bit per unit of

time

: cost of storing a record of the main

data file per unit of time

: cost of storing a record of the

differential file per unit of time

: cost of executing a hashing function

in Bloom filter

: weighting factor reflecting relative

importance of recovery costs vis-a-vis
other cost components

: cost of restoring a record of main

data file from its dump

: cost of restoring a differential

file record from its dump

: cost of posting an update to the main

data file during recovery

: cost of posting an wupdate to the

differential file during recovery

10" - 107

1-100 per minute
1-100 per minute
1-360 per year
1-360 per year
$2.00

$0.0005

$0.0005

$0.01

$0.01

$0.01

$0.01

$1.7x10"6

bit/minute
$3x10'7record/minute
$3x10'7recqrd minute
s$107"

10.

($0.0005)w
($0.0005)w
($0.01)w
($0.002)w

e e e e e e e e e e e e e e e - e e e e e e e e e e e e - e e . e e = =

Table 1- Problem Parameters
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When the history of all database updates is stored .
sequentially in the differential file, this expression
reduces to

C3 = (s"/u)(R-1)/2 ; (5)

when only the latest versions of each changed record is
recorded, then

€3 = (s"/W)N[1-(1-e" R/

Y/ (R/N)] . (5-1)

The latter strategy of update inplace precludes
incremental dumping of the differential file. Moreover
in our environment of independent, uniformly
distributed updates, the space savings that it offers
is not significant. (Specifically, differential files
are found to lose much of their attractiveness at sizes
above 10 to 20 percent of the main data file; and below
this limit the storage costs of equations (5) and (5-1)
are nearly equivalent.) We shall assume in this paper
that the differential file 1is- relatively small
(R/N<0.20), that it grows sequentially, and that C3 1is
given by equation (5). The reader interested in an
analysis of the wupdate inplace strategy for an
environment in which updates cluster on a high activity
subset of records, e.g., airline reservation systems,
is directed to Aghili and Severance [2]. “

The expected main database backup cost is given by the
cost of a dump divided by the number of updates between
the dumps, : '

C4 = (Nd)/(BR) . (6)

The expected reorganization cost is the ratio of the
cost of posting the latest version of each updated
record to the total number of updates made:

-R/N

C5 = [uN(1-e )+CO]/R . (7)

13



The cost of unsuccessful differential file accesses for
updates and read-only requests is given by

| R-1
C6 = (140/1) (a"/R) L  Pn(X,M)
j=0
= (1+0/W)[a" £ C(X,3) (~1)Y (cmmomccomaees )1, (8)
, =0 R(iX/M+1/N)

where C(i,k) denotes the number of k combinations from
i objects (C(i,k) = it / (k! (i-k)!).

The expected record access cost includes filtering
costs plus the cost of either a differential file or a
main data file access,

-R/N

C7T = (1+o/w)[h'X+a'+(a-a')N(1-e Y/R]. (9)

The cost of storing the bit vector is equal to

C8 = (s/H)M. (10)

The main data file storage cost is a fixed cost and
given by

C9 = (s'/WN. (11)

Combining all of these cost components, the total expected

cost per processed update transaction is given by

C(X,M,R,B,D) = C14+C2+C3+CH+C5+C6+CT7+C8+C9. (12)

14



3. MINIMIZING TOTAL OPERATING COSTS

To design a differential file architecture for a given
database, we select the combination of design parameter
values which minimizes the total expected operating cost per
processed update transactions over the operating cycle; that
is,

Minimize C(X,M,R,D,B)
Subject to:
R < Maximum allowable differential file growth,
RyB> 1,
X,M,D > 0,
R,B,X,M,D integers . .

No exact optimization method exists to solve this
nonlinear objective function in integer decision variables.
In general, such problems require techniques such as Branch
and Bound [2] to structure and search their large solution
space, and numerical methods such as Pattern-Search [4],
Newthon-Raphson [H4], or Powell [9,10] to determine optimal
parameter values. A precise methodology for the solution of

the differential file design problem is presented in [1].

Experience with this precise analysis has yielded a
number of wuseful insights into the nature of the
optimization problem and characteristics of its solution.

These insights have led to the development of a much simpler

15



heuristic procedure which can quickly generate a
near-optimal differential file architecture via a series of
table look-ups. The latter design procedure 1is presented

here.

The solution procedure accurately decomposes our design
‘problem into three independent parts, as follows. First, a
near-optimal number of hashing functions (X¥) and bit vector
size (M¥) is computed as a function of reorgaﬁization
interval, R. Values for this function are presented in
tabular form. Next, the optimal number of differential file
dumps (D¥) and the optimal number of reorganizations during
main data file operations (B¥) are computed as a closed form
function of the reorganization interval, R. Finally, the
functional expressions  for X%, M¥, D¥*, and B¥ are
substituted into the total expected cost ‘expression
(equation 12), defining it entirely as a function of R. The
optimal reorganization interval R¥ is then obtained by
minimizing the total cost expression, using numerical
methods. Having computed a specific value for R¥,
corresponding values for X¥ and M¥ can be extracted from
their table, while values of D¥ and B¥ are obtained by

substituting R*¥ into their corresponding expressions.

16



3.1 Designing the Search Filter

Selection of an efficient combination of X (number of
hashing functions) and M (bit vector size) 1is affected by
the sum of costs: C6 for unsuccessful differential file
accesses; C7 for main data file record access; and C8 for
bit vector maintenance. Given a reorganization interval R,
thg optimal (X*,M¥*) combination is obtained by solving:

Minimize C6 + C7 + C8 (13)
X,M
Subject to:
L\M >0,
X and M integers.
Analyzing this problem precisely, Aghili [1] has obtained
several wuseful results. He shows (1) that the optimal value
of M is never greater than [a"(p+H)]/s; (2) that for
reasonable ratios of h'/a" (£0.0001), the'optimal value of X
is never greater than 8; (3) that for R > [a"(p+U)]/s,
filtering mechanisms are ineffective and should not be used
at all; and (4) that the total cost function (12) is
insensitive to cpanges in X and M in a relatively wide range
of values surrounding X¥ and M¥, The latter result implies
that a precise determination of (X¥,M*) is not of practical
concern, and therefore approximations which permit us to

locate a near-optimal combination quickly are reasonable.

17



Assuming that the size of the main data file is much
larger than the reorganization interval, e.g., (R/N) < 0.2,
problem (13) may be reformulated as

R-1

Minimize a"(P+MW)[h'X+ v (1-e
X,M n=0

X

“0X/My T R1esM L (13-1)

Subject to:
L\M >0,
X and M integers.

This problem is solved by iterating on the values of X
from 1 to 8, approximating the optimal M¥ for each X, and
selecting as "optimal" the combination with minimum cost in
equation (13-1). Specifically, the approximation to M¥ for a

given X is obtained by solving1

-XR/M

Minimize a"(P+U)[1-(1-e )/ (RX/M)T + sM , (13-2)
M
Subject to:

0 < ML [a(p+m)1/s
M integer ;

which is easily accomplished using a Fibonacci search [4].

The above procedure has been wused to approximate
(X¥,M¥) for a variety of reorganization intervals and access

intensities (p+M), using the typical values of a", h', and s

1 For reasonable parameter values, s/[a"(p+H)]<<1, and any
given value of X, the solution of (13-2) provides a
tight upper bound for M¥ (Aghili [1]).

18



given by Table 1. The results are presented in Table 2.
Realize that this table is in fact a tabular representation

of the function
CXM(R) : R ~=> (X¥*,6M¥) | (13-3)

which 'maps values of R into corresponding near-optimal
values of X and M. It will be used as such by the procedure
in Section 3.4 which determines an optimal reorganization

interval R¥,

19



Table.

1 1 1
1 | |
| Reorganization | Access Intensity (p +u ) i
| Interval (R) |ececmommm e H
i i 1 i 10 | 100 !
i 100 i 2 7T 1 2 23 1 2 TH
i 200 i 2 9 1 2 33 | 2 103 |
! 300 ' 2 11} 2 W | 2 122 |
' 400 | 212 | 2 46 | 2 151 |
i 500 | 315 1 2 51 | 2 161 |
| 600 i 214 | 2 55 | 2 180 |
i 700 | 215 | 2 59 | 2 190 |
| 800 i 2 16 | 2 63 | 2 209 |
i 900 i 216 | 2 66 | 2 218 |
| 1000 i 2 17 + 2 69 | 2 228 |
| 2000 | 117 + 2 94 | 2 324 |
f 3000 ! 118 1 2 111 | 2 392 |
| 4000 | 117 1 2124 | 2 U450 |
i 5000 | 115 | 2 135 | 2 508 |
| 6000 i 0 | 2 143 | 2 546 |
i 7000 i 0 P2 151 | 2 585 |
I 8000 f 0 I 2 157 | 2 623 |
| 9000 | 0 2 162 | 2 662 |
i 10000 | 0 i 2 166 | 2 691 |
i 20000 | 0 i1 166 | 2 942 |
i 30000 i 0 P11 175 | 2 1114 |
! 40000 i 0 i1 170 2 1240 |
| 50000 f 0 {1 148 | 2 1346 |
' 60000 | 0 i 0 i 2 1433 |
| 70000 | 0 i 0 f 2 1501 |
i 80000 i 0 i 0 | 2 1559 |
i 90000 | 0 10 i 2 1615 |
{ 100000 i 0 i 0 i 2 1655 |
i 200000 i 0 G | 1 1655 |
t 300000 ! 0 i 0 | 1 1751 |
| 400000 i 0 i 0 i 1 1703 |
| 500000 | 0 i 0 | 1 1481 |
! 600000 f 0 i 0 i 0 |
! 700000 | 0 i 0 i 0 i
! 800000 i 0 i 0 | 0 |
i 900000 f 0 i 0 | 0 |
! 1000000 | 0 i 0 t 0 !
i 2000000 i 0 i 0 i 0 i
2 - Near-Optimal (X¥*,M*¥) Combination for Different

Reorganization Intervals and Access Intensities
(M is given in hundreds of bits)

20



3.2 Selecting an Optimal Differential File Dumping Policy

The differential file is dumped periodically to speed
its récovery in the event of loss. The combined cost of
dumping and recovery of the differential file was referred
to simply as C2 in Section 2.3. A detailed analysis of this

cost is now presented.

Consider the general situation in which D dumps are
taken during a reorganization interval with Yi updates
accumulated into the differential file between the (i-1)-th
and i-th dumps. Three cost components affect the selection
Of Dand Y:{Yi l i=1,.¢o,D}:

i- the cost of differential file dump,

ii- the expected cost of recopying the latest
differential file dump, and

iii- the expected cost of reprocessing all transactions
since the last dump.

Specifically, for given integer values of R, D, and Y, the

combined cost of these components is given by

C2 = R CD(R,D) , (14)
where
CD(R,D) = CoD+d'Y14...4d'Y, (14-1)

$OU /T LYY 14Y3(Y14Y2) 40 o oY (Y T a¥ )]
+(A'/u)r'(R—Y1~...-YD)(Y1+...+YD)
SN/ WU YT 1=1) 4004 (Y =1)1/2

+(A'/u)u"(R-Y1—...—YD)(Y1+...+YD-1)/2 .

21



Relaxing the integer constraint on values of Yi for our
environment of sequential differential file growth, Aghili
[1] has shown the vector Y¥ which minimizes CD(R,D) has

components

Yi* = R/(D+1) , i ..,D ; | (15)

"
-
-

that is, differential file dumps should be equally spaced
over the reorganization interval. The optimal solution to
the original integer problem is guaranteed to be one of the
integer points surrounding Y; (i.e., a. vertex of a
hyper-cube in D dimensional space); for reasonable problems
these values are identical for all practical purposes.

Substituting Y* into (14-1) yields

CD(R,D) = C,D + d'(RD)/(D+1) (16)

0
+(A/W)r' (RD)/[2(D+1)]
+( A /u)ur(R/2)LR/(D+1)=-1] ,

which may be rewritten as

CD(R,D) = CyD + d1/(D+1) + d2 , (17)
where

d1 = {( N/u)[(uﬁ/2)R-(r'/2)]-d'}R , (17-1)
and

d2 = [(N/u)(r'-u")/2+d']R . (17-2)

The optimal number of differential‘ file dumps with this

22



restatement of the problem 1is determined by solving

dCD(R,D)/dD=0 to obtain

0, if d1/Cy < 1,

1/2_, (18)

(d1/CO) , otherwise.

The optimal integer value D¥ of the original problem (16) is
guaranteed to be one of the two integers nearest D¥. It can

be quickly determined and substituted for D in (17) to yield

d1+d2 if (d1/Cy) < 1,
CD(R,D¥) = { (19)

COD*+d1/(D*+1)+d2 , otherwise.

Observe that if d1/CO < 1, then D¥=0 and C2=(A'/p)u"(R-1)/2

in agreement with equation (14) of Section 2.3.

Tables 3(a) and 3(b) respectively present optimal
values of dumps D¥ and time between dumps (R/uU)/(D¥*+1) for
the values of CO’ u", r', and d' given in Table 1. A 10-hour
day, a 5-day week, a 4-week month, and a 12-month year are

assumed in our tables.

Table 3(b) shows that the time between differential
file dumps is rather insensitive to reorganization interval

R. This 1is reasonable, since for large values of R, D¥ is

23



approximately

__ 0, if d1/Cy < 1,
{ - .

R[()\’u")/(2pC0)]1/2 , otherwise ;

(20)

<
*
1]

and hence the time between dumps is apprcximated by

undefined , if dO/CO <1,

[(2c0)/(ux'u")]”2 . otherwise

(R/u)/D¥ = { (20-1)

24
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1,

at Update Intensities

a Reorganization Interval
10, and 100 per Minute
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ays) Between Differential File Dumps
10, and 100 per Minute

at Update intensities 1,

Table 3(b) - Optimal Time (in D
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3.3 Selecting the Frequency of Main File Backup

The main data file is dumped periodically to speed
recovery in the event of loss. The expected main database
" recovery cost, C1, and the main data file backup cost, Cl,
combine to affect the selection of the dptimal main data

’

file dump frequency, B¥,

To determine B¥ in terms of reorganization interval R,

we define

CB(R,B) = C1+Cl (21)

1]

(A/W)[rN+u'R(B=-1)/21+(Nd)/(BR)

Relaxing the integer constraint on B and solving

dCB(R,B)/dB=0, we obtain

— d3/R , if R < d3 ,
B¥ = { ' (22)
1, otherwise ;

where
d3 1/2

[(2NdW)/(Au')] (22-1)

Tables providing optimal values of B* for a wide variety of
problems have been produced. Rather +than including them
here, we present a single table for a normalized problem
from which entries of the other tables can be generated.
Assuming the typical values for r, d, u', and w given in

Table 1, Table 4 displays optimal values B1* for a number of

reorganization intervals R1, assuming N=107 records,
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U1=100/minute, and Al=1/year. This table and equation 22
permit us to closely approximate an optimal B2¥  for

arbitrary values of R2, N2, u2, and A2. Specifically,

. 1, if oB1¥ < 1,
B2¥ = { (23)

aB1¥ , otherwise,
where 0 is given by

o= 0.9x10"2(R1/R2)[N2(w2/A2)1/2 |

and M2 and A2 are, respectively, the average number of
updates per minute and the average number of main data file

failures per month.

Given an optimal value B¥, B¥ is guaranteed to be one
of the two integer values nearest B¥. Substituting B¥ for B -
in (21), the expected main data file backup and recovery
cost per processed update transaction is given by:

(A u)[rN-u'R/(B¥-1)/2]+(Nd)/(B¥R), R<d3 ,
CB(R,B¥*) = { (24)
(A u)(rN)+(Nd)/R , otherwise
This is the final cost component needed by the procedure to

locate R¥, as described in the next section.

28



T Reorganization | Number of |
' Interval ! Reorganizations |
i (R) i B¥ i
H 100 i 12000.00 '
i 200 | 6000.00 |
| 300 d 4000.00 |
! 400 | 3000.00 i
| 500 | 2400.00 i
i 600 f 2000.00 d
| 700 | 1714.29 '
| 800 | 1500.00 !
i 900 | 1333.33 i
| 1000 | 1200.00 |
; 2000 | 600.00 |
! 3000 i 400.00 |
| 4000 ! 300.00 |
i 5000 ! 240.00 !
| 6000 | 200.00 |
i 7000 | 171.43 :
i 8000 | 150.00 i
i 9000 | 133.33 i
o ER
| 30000 i 40. 00 %
! 40000 ! 30.00 i
| 50000 : 24.00 :
i 60000 | 20.00 |
| 70000 | 17.14 }
i 80000 f 15.00 !
i 90000 i 13.33 |
| 100000 d 12.00 !
| 200000 ! 6.00 !
i 300000 ! 4.00 i
H 400000 d 3.00 i
H 700000 H 2.40 H
i 600000 i 2.00 i
! 700000 | 1.71 i
i 800000 | 1.50 !
| 900000 | 1.33 d
| 1000000 | 1.20 :
: 2000000 ' 1.00 i

Table 4 - Optimal Number B* of Main Data File
Reorganizations Between Dumps for
N=10,000,000 , u=100/minute, A=1/year
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3.4 Selecting the Reorganization Interval

Section 3.1 describes a table look-up procedure for
selecting a near-optimal (X*,M¥) combination for a given
reorganization interval R. Similarly, Sections 3.2 and 3.4
provide near optimal D¥ and B¥ values as functions of R. As
a result, the total cost equation (12) can be reduced to the
nonlinear function of R given by
C(R) = R CD(R,D¥) , differential file dump and recovery cost;
_ +CB(R,B¥) , main data file dump and recovery cost;

+CXM(R) , sum of unsuccessful differential file

access cost, record access cost, and
cost of maintaining the bit vector;

+C3 , differential file storage cost;
+C5 , reorganization cost; and
+C9 , main data file storage cost; (25)

where CD(R,D¥), CB(R,B*), CXM(R), C3, C5, and C9 are given
by expressions (19), (24), (13-3), (5), (7), and (11),

respectively.

The optimal reorganization interval, R¥, can now be
found by minimizing C(R) over the range of integers
1< R <0.2N. Although the nonlinear nature of C(R) precludes
a closed form solution of this function, a complete
enumeration on R is not necessary. Figure 4 illustrates the
typical shape of C(R). One finds that while C(R) generally
has more than one local minimum, the curve iskrelatively
shallow at all minima. A sihple search ‘procedure (as an

alternative to Pattern-Search [2], Newthon-Raphson [3], or
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Powell [9,10]) can therefore 1locate an efficient
reorganization interVal quickly. Rather'thén enuﬁerating all
values of R, determining (M¥,X* D¥ B¥) for each and
selecting the R¥ with minimal cost, oné can take sample
values of R -- say 100 updates apart -- and confidently
choose the sample value with the minimum cost as effectively
optimal. Using this technique for the parameter values given
in Table 1, R¥ has been computed for a wide variety of
problem situations. Results are presented in Table 5 and
corresponding values for X¥, M¥ 6 D¥ and B¥ can be readily

obtained using Tables 2, 3, and 4,

>

C(R)

+ + — >

Reorganization Interval

Figure U4 - General Shape of Cost Function C(R)
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| Database | Failure rate(?) H
b S12@ (N) e o e |
i in 1000 ! 1/Day | 1/Week | 1/Month ! 1/Year !
i __Records | i i i i
i 10 H 2 2 27 1.8 2 2 | 2 2 21 0.9 2 2 1
H 20 i 3.8 4 41 3.8 4 y | I I 4 1 0.9 2.8 4!
1 30 i 6 6 6 | 6 6 6 | 6 6 6 | 0.9 2.3 6 |
] 40 i 8 8 8 | 8 8 8 | 8 8 8 1 0.9 2.2 8!
| 50 i 10 10 10 1 10 10 10 } 10 10 10 { 0.9 2.1 10 |
| 60 P12 12 12t 12 12 12 1 12 12 12 1 0.9 2.1 12!
| 70 P14 13,3 18 ) 14 13,3 14 P14 1y 7 0.9 2.1 13.8!
i 80 i 16 16 16 1 16 16 16 | 16 16 16 | 0.9 2 15.8!
| 90 i 18 18 18 1 18 18 18 1 18 18 18 1 0.9 2 8.3
! 100 I 20 20 20! 20 20 20 i 20 20 20 ! 1 2 6 |
| 200 i 28 37 40} 28 36 40 ! 28 36 40 | 1 2 51
' 300 i 33 60 60 ! 33 60 60 | 33 60 60 | 33 2 y
| 400 i 38 80 80 | 38 80 80 | 38 80 80 | 38 2 4 |
t 500 i 42 100 100 ! 42 100 100 | 42 100 100 ! 42 2 y i
| 600 i 46 120 120 | 46 120 120 ! 46 120 120 I 46 2 b
] 700 i 49 140 136 ! 49 140 130 ! 49 140 130 § 49 2 4
| 800 I 53 160 160 ! 53 160 160 ! 53 160 160 | 53 2 g
' 900 I 56 180 180 ! 56 180 180 ! 56 180 180 | 56 2 4|
! 1000 i 59 200 200 ! 59 200 200 i 59200 200 ! 59 2 4
d 5000 i 131 424 1000 ! 130 425 1000 | 130 422 1000 i 130 2 4
i 10000 i 184 590 2000 | 184 590 2000 ! 183 588 2000 | 183 588 y

Table 5 - Optimal Reorganization Interval, R¥, in Thousands of Updates
for Different Failure Rates and Database Sizes at Update
Intensities 1, 10, and 100 per Minute
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4, AN EXAMPLE OF HEURISTIC DESIGN

The rather detailed analysis given in the last section
was not intended to suggest that heuristics are
inappropriate when designing a database backup and recovery

strategy. On the contrary, we describe elsewhere [1] a more

complex and time-consuming design procedure which determines

|

optimal differential file parameters more precisely than the

table look-up procedure presented here. We believe, however,

that such precision and effort are rarely justified .

Model optimality is generally not a practical concern.

Seldqm with any model will all assumptions be completely
satiéfied (e.g., independent and uniformly distributed
updates in our casg) or will all problem parameters be
prec{sely known (é.g., update and retrieval intensity,
failure rates, etc.). Moreover, in a changing environment,
optiﬂality is always short-lived. An analyst's primary

respénsibility in database design is to avoid "bad" designs;
|

all ﬁgood" solutions are effectively equivalent, and "exact"
answérs to imprecise problems provide only unwarranted
comf?rt. An exemplary problem serves to clarify the spirit
in wﬁich we offer our results and the means by which we feel

"good" designs can be achieved.

Given a design problem in which updates are reasonably

indeﬁendent and uniformly distributed over an online
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database, an analyst may proceed to design an efficient
differential file architecture in one of two ways. He may
accept the operating parameters of Table 1v as reasonably
descriptive of the problem environment and select design
values (X*,M¥ D¥ B¥ R¥) via interpolation in Tables 2, 3, 4,
and 5. Alternatively, the Appendix provides the FORTRAN
source code for a program which will accept an arbitrary
operating environment and problem description and return
parameters for a near-optimal differential file design

directly.

Consider a real-time inventory system which maintains
125,000 records and receives an average of 40 updates per
minute. Assume that the expected failure rate for any data
file 1is once per month, and that other problem parameters
are suitably described by Table 1. Fo} this problem
N=125,000 , u=U40/minute, A=1/month, and R¥ may be obtained

by interpolating on the relevant entries from Table 5 shown

below:

{ Main Data | A =1/Month i
| File Size |---mmecccmmmmccceceeem !
| N 1 U=10 ! H=100 |
i 100,000 | 20,000 | 20,000 |
i 200,000 | 36,000 | 40,000 |
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Specifically, optimal reorganization intervals R1* and R2¥

for u=40 and N=100,000 and 200,000, respectively, are
|
|
|

approximated by
|
R*f = [(100-40)/(100-10)1(20000~20000) + 20000 = 20000 ,
R*é = [(40-10)/(100-10)]1(40000~36000) + 36000 = 37333 .

An oﬁtimal R¥ for 125,000 records is then computed from

125000-100000)/(200000-100000) ] (R¥2-R*¥1) + R¥*1 ,

§With R* now established, a similar interpolation in
Tablé 4 provides the normalized main data file dumping
freqhency 5;3:51.4. Inserting this value and our problem

parabeters into equation 23, we obtain

B¥ = 0.9x107°[(125000) (40)11/2

(51.4)= 1.034 ,

and hence, B¥-=1, In a similar manner, optimal values X¥=1,

M*=45200 bits, and D¥z=0 are obtained from Tables 2 and 3.

Operationally, this solution translates to a
differential file architecture in which the main data file
is ;reorganized and dumped once a day, while two hashing
fun%tions and a 5,700-character bit vector are used as a
Bloom filter. Calculations show the expected recovery time
for(the differential file to be less than 1 minute, while
10.5 minutes is required to recopy the main data file in the
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! An efficient update inplace strategy [7]

event of 1loss,
would also dump the main data file at the end of each day
and would cost 3.6 percent less to operate each month.
Again, 10.5 minutes is needed to recopy the dump in the

event of 1loss; but now, on average, a much larger 8.2

minutes are required to recover the updates.

With either strategy above, recopying of the main file
could be avoided if a second disk copy were made (and moved
offline if necessary) at the time the main data file was
dumped to tape.2 A differential file architecture would now
look especially attractive, offeriné approximately an 88
percent improvement in recovery speed. Table 6 summarizes
operating statistics for both the conventional and
differential file strategies, with and without a duplexed

main data file.

Table 6 also demonstrates solution sensitivity to w,
the recovery cost weighting facﬁor (see Table 1), by
providing statistics for model solutions obtained with each
strategy when w takes on alternative values 10, 5, and 1. As

w decreases from our assumed value of 10, file dumps are

1 Since the times required to diagnose data loss and to load
and ready appropriate storage devices are affected by
many operational factors, they are not included here.

2 The probability of more than one loss in a day is 1less
than 0.1 percent for this problem.

36



taken 1less frequently, while reorganization occurs more
frequently and filtering errors decrease as a result. As one
would expect, improvement in recovery speed diminishes as
this speed is valued less; when w=1 (recovery operations and
normal operations have equal weight), the improvement is a
modest 7 percent. We clearly observe here that the
differential file architecture offers its greatest recovery
speed when the main data file is dumped with each
reorganization so that transaction reprocessing is not

required for its recovery (i.e. B¥=1, and T2=0).
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| | | Recovery Times i Monthly | Average |
i | Design Variables | (in minutes) i Operating | Filtering |
f i (R* X% M¥ B¥ D¥) | oo ! Cost ! Error !
i |  T1 . T2 {1 T3 | i i
i 10 1 (25000,2,582,1,2) T 10.5 1 0.0 | 1.00 | §73595 i 38% i
v 5 1 (4400,2,289,8,0) | 10.5 | 10.2 | 0.20 | $12854 | 15% |
i 11 (3800,2,269,20,0) | 10.5 | 24.0 |} 0.15 | $11711 | 149 |
Table 6(a) - Differential File Architecture

' i Optimal Dump i Recovery Times | Monthly D

oW Frequency { (in minutes) | Operating |

| i B¥ | mmmmm e e i Cost }

i i T P T2 i

P10 24544 i 10.5 | 8.2 | $13117 |

I 5 1 34710 i 10.5 | 11.6 | $12090 |

o1 77615 i _10.5 | 25.9 | $10885 I

Table 6(b) - Conventional Update Inplace System

i Improvement in Recovery Speed
] .

] ] T
| | 1
' | Increase in Monthly |-ceeeemmmmaaao ————————— !
! w | Operating Cost | Single Main | Duplex Main |
i i i Data File | Data File |
i 10 3.6% i 38% i 88% i
P51 6.3% | 6% i 12% |
i 11 7.6% ; 4% i T% i

Table 6(c) - Change in Operating Cost and Recovery Speed
T1 : Time to Recopy Main Data File from Its Dump
T2 : Expected Time to Repost Updates to Main Data File
T3 : Expected Time to Recover Differential File

Table 6 ~ Model Solutions and Performance Statistics
for Different Values of w
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5. SUMMARY

Backup and recovery of online databases using a
~differential file have been discussed and described in terms
of an analytic model. Values for five decision variables
(number of hashing functions, bit vector size, number of
updates before reorganization, number of differential file
dumps between reorganizations, and number of reorganizations
before main data file backup) combine to define an optimal
differential file operating strategy. We describe elsewhere
[1] a complex optimization procedure which determines these
values precisely, but we believe that such precision is
rarely justified. In realistic situations where pérameters
spch as system costs, access intensities, and failure rates
must be approximated, the simple design procedure presgnted
here to 1locate near-optimal solutiohs quickly 1is more

- appropriate.
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APPENDIX

This appendix presents the FORTRAN source code used to
compute values for R¥, X*, 6 M* ~ D¥ —and B¥. The package
consists of a block data, a main program, and <three
subroutines. The block data initializes the values of the
operating environment (which presumably will be modified by
an analyst choosing to implement this program) . The
subroutines CXM, CDR, and CBR respectively return the
optimal values kX*,M*), D¥, and B* for a given value of R.
The main program samples and evaluates R values ‘at
increments of 100 updates. That sample R¥ with minimum cost,
and corresponding values for X%, M¥ D¥* 6 and B¥, are printed
at the end of the run. Exhaustive enumeration or a more
sophisticated search procedure for R¥ may be easily
incorporated through modification of the main program. The

remaining code would remain unchanged.
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BLOCK DATA

COMMOX /PRBPAN/ N, MUE, RHO,LO,L1,C0,D0,D1,R0. k1,
: ub,u1,U2, A0, A1,42,50,51,52,H1,¥

* stze of the main dasta file
L4 : sverage rats of updates to datadbase
i sverage rate of retrievals from datsbase
L0 : rate of main data file fatlures
L
4
b
D

<
™

1 : rate of differential file failures

: systes et up cost for duap and reorgsnization operations
cost of dusping 8 msin dats fils record

cost of dumping 8 differential file record

U0 : cost of posting an update during reorganization
A0 : cost of accessing 8 record from main data file
C A1 : cost of sccessing a record from differential file
€ A2 : cost of unsuccessful differential file search
C SO : cost of maintaining 3 bit {1 aain memory per unit of time
€ S1 : cost of storing a nain data file record per unit of time
¢ S2 : cost of storing s differential file record per unit of tine
€ HY : cost of executing a Bloom filter hashing function
cw : wveighting factor for ROJ R1, UO, [13]
¢ %0 : cost of restoring a main data file record
C R1 : cost of restoring a differential file record
C Ul : cost of reposting an update to main dsta file
€ U2 : cost of reposting an update to differential file

[4

C Assumotions:

c Unit of time: minute
[ Unit of cost: $

c A character: & bits

REAL MUE,LO,L1
Cueetennscnnsnnensannssaanssessssssssnssssossasossasasncasatsasass
BATA N, MUE, RMO,L0,L1,C0 /100000, 100.,0.,0.000083,0.000083,2./
DATA DO, D1.W, RO, ®1 /0.0005,0.000S,10.,0.0005,0.0005/
DATA UO,U1,U2 /0.01,0.01,0.002/
" DATA A2,A1,A2 /340.01/
glra $0.51,52,H1 /1.7£-06,3.E-07,3.E-07, 1.0E-06/
0

c .
C Main line of the FORTRAN peckage to design
C optimal Differential file architectures

COMMON /PRBPAN/ N,MUE,RHO,LO,L1,CO,D0,D1,R0,RY,
L vo,u1,V2,40,A1,42,30,51,82,H41,¥
NANELIST /INPARS/ X,MUE, RHO,LO,L1,C0,D0,D1,RO0,RT,
' vo,U1,U2,A0,A1,42,50,51,52,H1,¥
c REAL R, M, MMIN,MUE,LO,LY,REPLY,YES/'Y'/
WRITE(6,1) ¥,S0,A0,U0,MUE,S1,A1,Ut,RHO,S2,A2,V2,
L0,20,D0,H1,L1,R1,D1,¥,C0

&

50 WRITE(6,2)
READ (5, INPARS,END=900) .
WRITE(S,1) §,S50,A0,U0,MUE,S1,A1,U1,RHO,S2,A2,V2,

[ L0,R0,00,HY,L1,R1,D1,W,CO
WRITE(6,3)
READ(S,4) REPLY
c IF (REPLY .KE. YES) GOTO 50
g Take sampies from R values, and select the one with sinimua cost

CMCSTR » S1/MUE®N
TOTMIN = 1,0E410
MAX = 2°N/10
> DO 100 IR = 100,MAX, 100
R = FLOAT(IR)
CALL CXM(R,IX,M,BFLCST)
CALL CCR(R,D,CCFODMP)
CALL CBR(R,B,CMDCMP)
CREORG s (UOSN®(1-EXP(=R/N))«CO)/R
CCFSTR = S2/MUE®{R-1.}/2.
TOTCST 3 BFLCST+COFDMPeCMDEIMP4CREORCHCDE STRCHDSTR
IF (TCTMIN .LT. TCTCST) GOTO 100
TOTMIN s TOTCST
RMIN = R
IXMIN = IX
MMIN = M
OMIN s D
BMIN = B
c 100 CONTINUE

WRITE(6,5) RMIN,IXMIN, MMIN,BMIN,DNIN, TOTMIN

COTO S50

900 STOP
1 FORMAT(*1 Curreat parameter values are:‘',//,
L ° 0,19, 1, F9.7,'es F9.5, ¢ ,F9.8,'au',/,
&0 0,F9.0, emue *F9.7, ¢, F9.5,0m8" ¢, F9.5,'su'"",/,
&' *,F9.0,'srno ¢, F9.7,%28% ' ,F9.5,'sa" * F9.5,'u"",/,
40 0,F9.7, elands *,F9.5, 'F9.5.1ed  *,F9.7,%0n" 0,7,
&' *,F9.7,'slamda’t *,F9.5,%sr' ' F9.5,'2d"" ', F9.1,aw!/,
& * *,F9.2,'sC0*)

2 FORMAT('OEnter any modificstion to parsmeter vslues.')
3 FORMAT( *0°,*All OK2(Y/N)*)

& FORMAT(AY)

5 FORMAT('0  ne Xe nme B¢ L

Totsl Cost',/,
L]

ceeneccse we csoves

©VFB.0,0 Ti02.0 1, F5.00" *.F8.0,0 *oF6.0," *,F10.7)

41

cacsvessscsreeesccnceseerenetesesseertentesstrOOcenl

SUBROUTINE CXM(R,IX,N,BFLCST)
c -
€ Find an efficient X-M combinstion at a givea R (The solution
C of 13=1). M is returned in bdlocks of 100 dits.

COMMON /PRBPAR/ N,MUE,RHO,LO,L3,CO,00,D1,R0,R1,
& . u0,U1,U2,A0,A1,A2,50,51,32,H1,¥

REAL R,M,MUE,LO,L1,FSER(15)/1.,1.,2.,3.,5.48.413.,21.,38,,
855.,89., 188.,233.,377.,610./ ,CNK(85)/1,,2., 12,034,300 10, 8. 160y
AL, 1.,5.010.,70.,5.,10,6.,15.,200, 15,6041,
821.,7.01.,8.028.,56.,70.,56.,28.,8.,14,9¢43604
188.,36.,9.,1./

COSTH(R, IX, M) a (RHOSMUE) 9429( 1=( 1-EXP(=R/K2IX))/{R/HO IX) ) 030K

Coeevecsassasnasncasssovsssesasssnsssssessassssscssscssastascosses

C Begin with X-M of 0-0, iterate on X, select an efficient M for
C esch case{using Fibbonacei search), and ravise X-M {f nscessary
<

IX s 0.

¥ = 0.
BFLCST = A29(1.+RHO/MUE)
DO 200 IXX = 1,9

n

s 1,

XR = A2/100.%KUE/SO

00 100 Kz21,13
X1 s IL o SSER(18<K)/FSER{16-K)®(XR-XL)
X2 s KL o FSER(15-K)/FSER(16=K)*(XR-XL)
Y1 s COSTM(R,IXX,100.°X1)
Y2 = COSTM(R, IXX,100.°X2)
IF (Y1 .LE. Y2) XX = X2
IF (Y1 .GT. Y2) XL » X1

100 CONTINUE

™ 2 IFIX((XL+XR)/2.)%100.

TC = COSTM(R,IXX,T™)

TC1 = COSTM(R, IXX, Me100.)

IF (TC .GI. TC1) TM « TH « 100.

[4
tc: Compute cost of this XM, and revise optimsl X®-M¢ 1f necessary

=R
D0 150 J = 1,IXX
150 TC s TC « CNKCIXX®(IXX-1)/24J)8(-1)00]8
& (1.-EXP(-ARJ/THOIXX))/(IXX/TH®J)
S 2 (1eRHO/MUEY®(A2°TC/ReH1?IXX) « SO/MUE®TM
IF (TC .CE. BFLCST) GOTO 200
IX « IXX
M x IFIX(TM/100.40.5)
BFLEST & TC
200 CONTINUE

BFLCST = BFLCSTe(14RHO/MUEY®(A1e(A0=A1) (1. EXP(-R/N))/RON)
RETURN
11 1]

c SUBROUTINE CCR(R,3,CDFCMP}
¢ Compute the optimal number of differential file duaps

COMMON /PRBPAR/ ¥,MUE,RHO,LC,L1,C0,D0,D1,R0,R1,
1) U0, Uy, U2,40,41,A2,50,51,52,H1,¥
REAL NMUE,LO,L}

Cevecosovcaasnsasscossasssssasascsnsssassssssasssrnsssecnoatosvoce
T1 = ((L1/MUEYOWO(U2OR-A1)/2.-D1) R
T2 s ((L1/7MUE)OWO(R1U2)/2.4D1)0%

D 0.
IF (T1/C0 .GT. 1.) DaSGRT(T1/C0)-1.

D s IFIX(D)

CDFOMP = (CO®DeT1/(Del.)eT2)/R
TC = (CO%(De1.)eT1/(De2.)eT2)/R
IF (COFTMP (LE. TC) RETURN

D s Del.

COFOMP s TC

RETURN .

ENC

SUBROUTINE CBR(R,S,CNDONP)
c
€ Computs optimal aain data (ile backup period

COMMON /PRBPAR/ X,NUE,1HO,LO,L1,C0,D0,D1,8¢C,RY,
uo,y1,U2,40,41,A2,50,51,52,H1,%
REAL MUE, LO,L?

Cevecossecsonsscsosnsassasscassssasstssaascassessansscssarasscnccs
3 = SORT(Z.*N*00*NUE/LO/UI/W)
8« T/ .
IF (R .GT. TY) Bsi.

8 » IFIX(B)

CMDOMP » {LO/MUE)®(WORQONLUPY1/2,9R(8-1.)) « N®DO/3/3
TC s (LS/MUE)®(WOR0ONLWOU1/2, 9Re8) o N®DO/R/(Be1L)

IF (CMDOMP .LE., TC) RETURX

Bsd .
cxooM? & TC
RETURN

£XD
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