Division of Research December 1991
School of Business Administration
The University of Michigan

PART TYPE SELECTION AND BATCH
SEQUENCING IN A FLEXIBLE FLOW SYSTEM

Alessandro Agnetis
Universita degli Studi di Roma "La Sapienza”

Claudio Arbib
[l Universita degli Studi di Roma "Tor Vergata"

Kathryn E. Stecke*
The University of Michigan

Working Paper # 670

*This research was begun while the third author was at the Fraunhofer Institute fur
Arbeitswirtschaft und Organisation, Stuttgart, Germany.

PART TYPE SELECTION AND BATCH SEQUENCING
IN A FLEXIBLE FLOW SYSTEM

Alessandro Agnetis
Universita degli Studi di Roma "La Sapienza"
Dipartimento di Informatica e Sistemistica
Roma, Italy

Claudio Arbib
II Universita degli Studi di Roma "Tor Vergata"
Dipartimento di Ingegneria Elettronica
Roma, Italy

Kathryn E. Stecke™
The University of Michigan
Graduate School of Business Administration
Ann Arbor, Michigan

December 1991

*This research was begun while the third author was at the Fraunhofer Institute fiir
Arbeitswirtschaft und Organisation, Stuttgart, Germany. :

ABSTRACT

A new approach to part type selection and the scheduling of batches over time in a flexible
flow system is presented. The system consists of two machines, and all parts visit the two
machines in the same order. The approach consists of first selecting a small number of part types
for simultaneous production, in suitable ratios, in order to balance the workloads among the
machines while not violating interstage buffer limitations. Production is organized in batches
consisting of two part types each. Batches are then sequenced with the aim of minimizing the total
number of tool changing operations. Detailed scheduling of each batch can be accomplished with
no machine idle time and with minimum work-in-process requirements. Some advantages of the
approach as presented here include management effectiveness and simplicity, in addition to other
operational benefits inherent in a dynamic and flexible approach to part type selection (such as a

higher utilization of the machines, a smoother tool changing activity, etcetera).

1. INTRODUCTION

This research addresses some particular planning problems in flexible flow systems. In
particular, the focus of the research is concerned with determining how to produce over time parts
of many types, each with different production requirements, on two different machines. All parts
are processed first on machine M 1 and then on machine M2. The proposed approach accounts for
optimal machine utilization, storage limitations, and tooling issues such as tool magazine capacity
and change-over time minimization.

In particular, approaches are specified to first partition all of the part types into overlapping
batches, each batch to be produced consecutively over time. This is called part type selection
(PTS). Each operation of each part type requires certain cutting tools that need to be placed in the
corresponding machine's tool magazine. The PTS approach selects tool-compatible part types,
i.e., part types that can be machined together subject to tool magazine capacity.

Then, we also address the problem of batch sequencing (BS), i.e., finding the best
sequence in which the overlapping batches should be processed. It usually takes some time to
change tools in between finished and new batches of part types. We suggest a batch sequencing
policy that minimizes the total change-over time, when different part types require different tool
sets. More generally, our policy minimizes the total number of times parts types are reprocessed.
Since changing more part types means in general changing more tools, a good bound to the overall
change-over time is achieved in this way. The approach here can accommodate any tool-changing
mechanism, either manual or automatic. Depending on each specific situation, different objectives
for BS can however be considered.

The problem of specifying how the parts of each type in each batch should be scheduled
optimally is called input sequencing (IS). Two major objectives of IS are to maximize system
utilization (minimize idle time) and to minimize the size of the buffer required to hold the waiting
parts. The problem of minimizing the makespan without violating the buffer constraint is NP-hard
in its general form (Papadimitriou and Kanellakis [1980]). However, we focus on the problem of

finding, among the sequences minimizing the makespan, one that also minimizes the maximum

level of in-process inventory. This problem can be solved in polynomial time if the batch consists
of two part types only (Agnetis et al. [1991]). Panwalkar [1991] provides an algorithm to
determine an input sequence into a two-machine flow system that minimizes makespan. Travel
time between the two machines by a single transporter is considered. We do not address IS further
in this paper.

There is a related literature on FMS part type selection. One general approach to select part
types for concurrent production over time is called batching (Whitney and Gaul [1985], Hwang
[1986], Rajagopalan [1986]). All part types are partitioned into disjoint batches and all parts in a
particular batch are machined continuously until all requirements of all part types are finished.
Another PTS approach is the flexible approach (Stecke and Kim [1988, 1989, 1991]). All part
types in a particular batch are machined in certain relative ratios that balance machine workloads
until the requirements of some part type are finished. Then the tools required for the finished part
type may be taken out of the magazines and the tools requirled for the next part type(s) to be
produced are loaded into the magazines, if new part types are selected to join the remaining part
types.

In general, following a flexible approach to system operation is better with respect to
system operation performance than batching (Stecke and Kim [1988]). However, there are
situations in which a batching approach is better (Stecke [1989]).

The approach to optimal PTS and BS here is based on the flexible approach. Many
compatible part types are selected subject to tool magazine capacity. Then, a subset of two of these
part types are selected at a time for immediate processing. As previously mentioned, these two can
be machined in suitable ratios that balance machine workloads, and sequenced so that both idle
time and buffer requirements are minimized (see Agnetis et al. [1991]), until the requirements of
one part type in the batch are finished. Then a new part type is selected to be processed with the
remaining part type in new optimal ratios that balance machine workloads. Furthermore, by
machining only two part types at a time, usually most or all pairs are feasible with respect to tool

magazine capacity. This helps to simplify the PTS.

The advantages of our PTS algorithm include both optimal system operation as well as ease
of operation. Our suggested approach is of course appropriate for some, but not all, FMS
situations. In particular, either the processing time per operation (defined by several cutting tools)
and/or the production requirements per part type need to be large enough to ensure that a system
setup (changing the tools for a new part type) does not occur very often. This will usually not be a
problem.

Our global approach is especially useful in a dynamic environment, with orders arriving
over time. Periodically, PTS and BS can be solved to optimally order the production of all part
types. Near the end of a production period, there will be only a few part types remaining, all
largely requiring the current bottleneck machine. At this point, the recently arrived orders can
supplement the remaining orders and global PTS and BS are performed again.

The plan of the paper is as follows. The global solution approach is described in Section 2.
In Section 3, we detail the global approach, and provide efficient solution algorithms for both PTS
and BS. In Section 4, we provide a detailed example. In Section 5, numerical evidence of the

proposed approach is reported. Finally, we conclude in Section 6 with future research needs.

2. PROBLEM STATEMENT AND SOLUTION APPROACH

Consider the following NP-hard scheduling problem (Papadimitriou and Kanellakis
[1980]):

Given a two-machine flow shop and a set J of part types to be processed, find a

schedule of parts over time such that the completion time is minimum and the

maximum level reached by the interstage buffer never exceeds a fixed capacity

q>0.
A solution to the above problem in real-world situations requires the consideration of some
practical aspects. When s different part types are to be processed in the same mix, each machine
must be equipped with a tool set which is the union of the tool sets needed by all selected part

types: the larger the s, the higher the chance is that such tool set exceeds the capacity of the tool

magazine of some machine. It follows that it can be convenient to process only a few part types at
a time, when this is sufficient to attain a good system performance. In the following, we say that
two or more part types are tool-compatible if the tool set required for executing the corresponding
operations can coexist in the appropriate tool magazines.

We suggest a solution approach to the above problem that accounts also for these tooling
issues. With this approach, production occurs as follows: a batch of only two part types with
certain workload balancing mix ratios is in process at any time; when the requirements of one part
type are finished, another part type is selected to be processed with the type remaining in new mix
ratios, and together they form a new batch.

Let the set P of all part types having production requirements be partitioned into two
subsets, P1 and P2, so that if part type i € Pl’ (respectively, if k € P2) then a part of type i (of
type k) requires a higher processing time on M 1 than on M2 (on M2 than on M 1). Since we look
for a workload-balanced schedule of parts in each batch, one of the selected part types (say i) must
belong to P1 and the other (say k) to PZ' The detailed sequencing of the parts in the batch is

performed according to the following rule:

Rule 1. Ifa part of type i € P1 can be scheduled on M 1 without creating idle time on M2, then

schedule a part of type i.
The following theorem holds:

Theorem 1. If the part types in a particular batch are in workload-balancing mix ratios, then a
schedule obtained by applying Rule 1 minimizes the maximum buffer level while keeping both

machines always busy.
Proof: See Agnetis et al. [1991].

In the following, let pi; (p kj) denote the processing time of a type i (k) part on Mj’ j=lor

2. The workload-balancing mix ratios can easily be computed a priori. Let Pir. denote the number

of parts of type k that must be processed in the batch per one part of type i in order to balance the
workloads of M 1 and MZ‘ In general, Pit is not integer, may attain any rational value greater than
zero, and depends only on the processing times of a part of each type i and & on the two machines.
These values are computed in Agnetis et al. (1991), where it is shown that

Pig =Py ~Piy) 0y - Pp) M

The value of the maximum buffer level, 9 reached by scheduling parts of type i and k
according to Rule 1 is also a function of the processing times. A table providing formulas for the
computation of 9 is given in Agnetis et al. [1991]. Alternatively, q;, can be obtained by a simple
simulation of the application of Rule 1.

The following example demonstrates the application of Rule 1.

Example 1. Consider two parts types 1 and 2, with processing times of Pi1= 7, Py = 4, Py =
5, and Pyy = 12 minutes. Therefore, part type 1 (part type 2) belongs to P1 (P2). The ratio P1y is
given by (p22 - Py / Py1-P 12) =7/3 = 2.33. Figure 1 provides the schedule obtained by
applying Rule 1 to a batch consisting of these two part types. Here we have sufficiently high
requirements for both part types, and these are in the relative ratio Py The first part of the
schedule is a part of type 2; after that, two parts of type 1 can be scheduled without creating idle
time on M2. Thereafter, the residual time on M2 is 6 minutes: there is no room for another part of
type 1, since P11 = 7> 6. Therefore, a part of type 2 must be scheduled, followed by two parts of
type 1. At this point, the residual time on M2 is 7. Initially, it seems that there is room for another
part of type 1, but notice that if a part of type 1 is scheduled, then the residual time on M2 becomes
4, and this would create idle time on M2, whichever the following part is. For this reason, a part
of type 2 is scheduled, followed by three parts of type 1. At this point (Y in Figure 1), notice that
the situation is exactly the same as that at the beginning (point X). In fact the total workload of
both machines to point Y is 64 = 3p21 + 7p11 = 3p22 + 7p12. After point Y, the schedule
obtained by following Rule 1 repeats identically over time. The cyclic input sequence of the two

part types is: 211211 2111.

By observing the schedule in Figure 1, we see that the buffer level never exceeds 1, i.e., in

this example, 419 = 1.

Py Py 64
buffer level: 1 00010 1 010 10 1 0 10

FIGURE 1. Schedule of Parts of Types 1 and 2 Following Rule 1.

It is not necessary to consider part types having the same processing times on the two
machines. In this case, these parts can be scheduled consecutively, indeed, in any manner (up to
the fulfilling of the requirements), realizing a perfect workload balance with no occupation of the
buffer.

Clearly, the problem data may not always guarantee the existence of a solution such that
M2 is always busy. Thus, we actually analyze the problem of maximizing the length of the interval
during which both machines are busy and the buffer capacity is not exceeded.

We say that two part types i and k are workload-compatible if and only if i € P1 and
ke P2. A pair (i,k) of tool- and workload-compatible part types such that 4t < q is called
feasible.

The general approach to the problems of PTS and BS may be summarized as follows.

PTS AND BS ALGORITHM

Step 1. Determine all of the tool- and workload-compatible pairs of part types (i,k),
i€ P1 and k € P2.

Step 2. For each such pair, compute the mix ratio Py, and the buffer capacity required
9 Eliminate those pairs requiring a buffer that exceeds the actual system

capacity q.

Step 3. Part Type Selection: Select a set of pairs of part types (batches), and for each
pair, specify the number of parts to be produced (batch size), in order to
maximize the interval in which both machines are busy.

Step 4. Batch Sequencing: Determine the order in which batches have to be
processed.

Step 5. Input Sequencing: Sequence the parts of each batch according to the mix

ratios computed at Step 2.

The remainder of the paper is concerned with the problems addressed in Steps 3 and 4,
namely, Part Type Selection and Batch Sequencing. For the solutions of the problems defined in

Steps 2 and 5, see Agnetis et al. [1991].

3. THE PART TYPE SELECTION APPROACH

The Part Type Selection (PTS) Problem can be defined as follows:

Given the requirements of each part type, determine which overlapping pairs of
part types must be selected to form a batch, as well as how many parts, out of
the requirements, must be produced for each part type in the batch, so as to
maximize the interval in which both machines are busy without exceeding the

buffer capacity.

Let g denote the actual buffer capacity of the system. As before, 9 denotes the minimum
buffer capacity required to process parts of types i and k in the same batch with no idle time on
either machine. Also, Pix denotes the number of parts of type k that must be processed in the
batch per one part of type i in order to balance the workloads of M 1 and M2. From Theorem 1,
recall that as long as parts are processed in the relative ratio Pir: the buffer never exceeds 9 and
both machines are always busy.

Let ﬁs now introduce a bipartite graph G = (U,V,E), where the vertex set U (V) is in a one-

to-one correspondence with P1 (P2), and the edge set E is defined as follows:

E = {(i.,k) | pair (i,k) is feasible}.

Clearly, only pairs of part types belonging to E may be processed in the same batch.
In the remainder, we use the following notation:

- Xy indicates the number of parts of type 1 that will be produced with parts of type k in
the same batch. According to the previous definitions, the corresponding number of
parts of type k is given by Pit Xik

- n (nk) denotes the requirements of part type i (part type k).

A formulation of the PTS Problem is the following, Problem (P1):

Problem (P1) max 3 (gt Py Pr¥i
(i,k)e E
s.t. n'= > X Sn. i€ P1
k:(i,k)e E
nI’C: ' .Z pikxiksni ke P2
i:(i,k)e E

The first (second) set of constraints ensures that the number of parts i (parts k) to be
produced does not exceed the requirements for that part type. The objective is to maximize the
length of the interval during which both M 1 and M2 are busy, i.e., the total parallelized workload.
Since workload balance is achieved by sequencing the parts in the given mix ratios, it is sufficient
to maximize the workload of M I

Obviously, the batch size (xik’ pikxik) obtained from the solution of the linear Problem
(P1) is generally not integer, even if X is constrained to integrality, since in general Pt is in turn
noninteger. Therefore, a suitable rounding procedure is required. It turns out that a batch size
obtained by rounding the solution of Problem (P1) is usually comparable, in terms of optimality, to
a batch size obtained by rounding an integer solution of the same problem (see Section 5). This is
especially true in the case of medium- or high-volume production, where, in our experience and for

our purposes, rounding errors are usually negligible (see Arbib et al. [1991] and Stecke and Kim

[1989]).

In general, a solution of Problem (P1) does not complete the production requirements n;
and s forie P1 and k € P2: only nl.' < n, (n]’c < nk) parts of type i € P1 (k e P2) are
scheduled. Therefore, in general one has to decide how to process the remaining parts. However,
this is not a problem in a dynamic environment, in which new orders arrive to join the remaining
ones to provide new problem input. In a static environment, the solution of Problem (P1) does not
cover the production of some parts, and hence we must specify how to schedule such parts. The
problem consists of assigning the residual leftover parts to batches, where the cost of an
assignment is related to the machine idle time introduced. An assignment of residual parts of class
P1 (of class P2) may be realized by appending the residual parts at the end (at the beginning) of the
batch. It can be proved that be doing so, irregardless of the assignment, the completion time of
each batch is still optimal, and the buffer required is not greater than that required when parts i and
k are processed in the ratio Pit (see Agnetis et al. [1991]).

An intermediate approach may be useful when the arrival rate of new orders is not large
enough to allow the dynamic generation of a meaningful sequence of PTS problems. In this case,
we can extend the set of feasible pairs by considering pairs (i,k) of part types such that 9> 9
Sequencing the parts of such batches without exceeding the buffer capacity clearly implies that
there will be a certain amount of idle time on one machine. This idle time can however be easily
taken into account by slightly modifying the problem formulation. In particular, we may require
that the sum of the idle times accumulated inside each batch does not exceed a given percentage W
of the total parallelized workload, i.e., of the value of the objective function. Thus, we can add the

following constraint to Problem (P1):

(_g ik i W(,g)l . Py + Py P ik)
i.k)e ik)e

where Cit denotes the amount of idle time introduced in a batch (i,k) of size (1’pik)'
In the following subsection, we analyze a structural property of basic feasible solutions of

Problem (P1) and show how to exploit it for solving the Batch Sequencing problem.

-10-

3.1 A Property of the Basic Solutions to Problem (P1)

In this section, a structural property of the solutions to Problem (P1) that allows the
minimization of the total number of tool changes is proved. This property results in more effective
strategies for what concerns batch sequencing, as explained in Section 3.2.

In a feasible solution to Problem (P1), the values X specify the numbers of parts of type i
that must be produced paired with Pik ik parts of type k. Given a feasible solution {x}, let
G(x) = (U,V,E(x)) be an undirected graph, where the edge set E(x) is defined as follows:

E={(Gk)lie Pl,ke P andxik>0}.

27
Notice that Problem (P1) consists of n constraints, and therefore no more than n variables can be

greater than zero in a basic feasible solution (bfs).
Theorem 2. If {x} is a basic feasible solution to Problem (P1), then the graph G(x) is acyclic.

Proof: Suppose that {x} is a bfs, and that in G(x) there is a cycle consisting of 2r edges. (Since

G(x) is bipartite, this cycle must be even). Starting from a part type belonging to Pl’ let the part

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
O pr+1 2-pr+1 1 0 0 Pr+1 2—pr+1 1 0 0 0
Pa"n) 1P)
0 0 Praa’ra) 0 0 Proa’man 0 0
TR PuPn »
0 0 0 0 0 0 432 ridl 0
3175
Pyr12%2r11
0 0 0 - e 0 0 0 o 0
Para Para 0 0 0 0 0 0 PargPar
"1 PPy

FIGURE 2. The Matrix AC.

11-

types encountered on the cycle be: 1, r+1, 2, r+2, ..., r, 2r, where part types 1, 2, ..., r belong to
Py and types r+1, r+2, ..., 2r belong to P, Let C be the set of columns corresponding to the
edges in the cycle, and let A C be the 2r x 2r submatrix obtained by selecting the rows and columns
corresponding to the nodes in the cycle. Each column of A C has 1 in the i-th row and Pix in the
k-th row, and the other elements are zero (see Figure 2). According to the definition of Pips if we
divide the i-th row by (pil - pi2)’ and the k-th row by (pr +k2 Prs k,l)’ and add these two rows,
we obtain a null row. This shows that A C is not of full rank, and since the only nonzero elements

of C lie in AC’ {x} is not a bfs. Q.E.D.

3.2 Part Type Selection Over Time (Batch Sequencing)

In this section, we consider the problem of finding a good way to sequence the batches
selected according to the method proposed using Problem (P1) for PTS. This problem is called the
Batch Sequencing (BS) Problem. The objectives of BS may vary depending on the specific
situation. In particular, different part types may require different tool sets, and hence one wants to
minimize the total number of unnecessary re-tooling operations. We therefore require that,
whenever possible, once a part type is input, it is processed until all the parts of that type that have
been decided to be produced in the current planning period are finished. In the following, the
notation (i,k) is employed to indicate the batch consisting of part types i € P 1 and k € P2. Let
{x*} indicate an optimal basic solution to Problem (P1).

Theorem 2 indicates that G(x*) is a forest. From the viewpoint of minimizing the total
number of re-tooling operations, a very favorable situation occurs when each connected component
of G(x*) is a path. In this case, batches can be sequenced so that each part type and the
corresponding tool set are loaded only once. Namely, if one of such paths is {1, 2, 3, ..., m-1,
m}, we can process the overlapping batches as follows: we start with the batch (1,2); after n‘1
parts of type 1 are finished, we replace such part type by part type 3, and therefore process the

batch (3,2), and so on, up to the last batch (m-1, m).

-12-

Observe that this property holds for more general graphs than paths. The above discussion
applies also if, for each connected component T of G(x*), there exists a path © (called a
dominating path) such that each node of T either belongs to m, or is a leaf of T. In De Simone et
al. [1990], components with such a structure are called caterpillars. For example, if G(x*) is the
graph of part types in Figure 3, a batch sequence with the desired characteristics is: (1,4), (2,4),
(3,4), (5:4), (7,6), (8,6), (9,6), (9,10), (9,11).

In general, some part types may have to be loaded more than once. However, the leaves of
the forest G(x*) still correspond to part types (and tools) that need to be loaded only once. Let us

therefore consider the forest F(x*) obtained from G(x*) by dropping all of its leaves. Let 7 denote

FIGURE 3. Graph G(x*) Having the Structure of a Caterpillar.

a path of part types on F(x*). From the above discussion, the general BS problem can be defined
as follows:

Given an optimal solution x* to Problem (P1), find a partition I1 = { s oo nm}

of the forest F(x*) into a minimum number of edge-disjoint paths.
The number of paths in partition T minus the number of connected components of F(x*) is equal
to the total number of times that some part types are loaded more than once. To find an optimal

partition IT, one can proceed as follows.

ALGORITHM TO OPTIMALLY PARTITION I1

Step 0. SetII=@.

Step 1. Find a path 7 linking two leaves of the forest F(x*).

-13-

Step 2. Add path = to partition I1 and remove from F(x*) all edges of .

Step 3. If F(x*) contains no edges, then stop; otherwise, go to Step 1.

It is easy to see that if ® denotes the number of odd-degree nodes of F(x*), then IT1l = w/2.
The following Example 2 illustrates the BS approach.
Example 2. Consider the graph of part types, G(x*) of Figure 4a, obtained by solving Problem
(P1). After removing its leaves, we obtain the graph F(x*) of Figure 4b. A partition IT =
{{1,2,3,4}, {5,3,6}, {7,8,9}} of F(x*) into a minimum number of edge-disjoint paths is also
shown. An optimal batch sequence of part types is (1',1), (1",1), (1",1), (1,2), (3,2), (3,4),
4',4), 4"4), (5.5), (5".5), 3,5), 3,6), (6',6), (1,7, (7,8), (8,8", (8,9), (9,9). In this
sequence, only part type 3 needs to be processed at two different times. In fact, we have [Tl = 3,

and F(x*) has two connected components.

FIGURE 4b. The Forest F(x*) and a Partition of its Edges into a Minimum
Number of Paths.

-14-

Finally, note that different objectives for the batch sequencing problem can be considered
for different situations. Consider for example a situation in which, for any given batch, changing
the tool set of one part type is as expensive or time-consuming as changing the tool sets of both.
Clearly, a sequencing strategy such as the one described above may not be of interest. On the
other hand, a possible objective is that of preventing buffer overflow during the transient period
between any two consecutive batches, while also minimizing the total idle time. In this case, a
feasible strategy is that of scheduling the first operation of the new batch on M 1 50 that it ends
exactly when the last operation of the previous batch is completed. The problem of computing a
batch sequence that does not violate this constraint and minimizes the total idle time is a 2-machine
No-Wait Flow Shop problem and can be solved in time O(B log B), where B denotes the number
of batches (Gilmore and Gomory, 1963). Observe that this strategy can also accommodate re-
tooling times, even if these depend on the particular pair of batches considered, as demonstrated in

Figure 5.

re-tooling
first operitlion of batch 1 of My first operation of batch 2
| |

e

AR |

re-tooling
of My

FIGURE 5. Transient Period Between Two Batches.

4. EXAMPLE
Now a detailed example is provided to show the application of the methodology described
in Sections 2 and 3. Consider the production of 671 parts of ten different types, for a total
workload amounting to 678 hours (about 28 days). The production of each part type requires a
two-stage process. Production requirements, together with operation times (in seconds), and tool

codes for each stage are indicated in Table 1 for each part type. In particular, part types 1, 3, 4, 5,

-15-

6,7, 8, and 10 belong to P1 whereas part types 2, 6, and 9 belong to P2. Tools require either one

slot in a tool magazine, or 3 slots if preceded by *. Table 2 summarizes total workload (hours)

required per part type, as computed from the processing times of Table 1.

TABLE 1. Input Data for the Example Problem.

Part
Type

|

10

Production
Requirements

51
97
64
59
53
71
64
54

98

60

Operation
Time

3013
1356

1502
2044

2111
1647

1370
1286

2524
1884

1456
1740

1817
1502

2147
1588

1781
1866

2391
1673

Tool Codes

017 043 046 067 *072 076 077 079 083 087 101
106 *120 021 026 047 063 094 125 131

035 039 049 059 068 086 *096 113 *132 014 *036
037 050 051 *054 062 065 *078 *090 *108 124

008 010 013 016 022 029 *030 031 068 *084 109
002 008 033 051 082 095 104 117

*072 078 097 106 117 123 124 039 041 073 074
099 112 115

002 005 007 009 014 015 038 050 051 *054 *066
097 *132 *030 050 051 052 071 091 *120 *126 127

005 017 035 *048 086 093 103 118 009 017 051
063 069 079 081 112 116

011 047 057 074 076 082 *090 107 123 001 002
*006 040 *048 *054 055 056 081 098 112

005 010 014 *042 050 055 089 097 117 118 127
007 032 *042 051 098 101 103 121

001 013 *018 021 052 057 067 089 097 109 115
118 004 *006 011 033 045 069 070 116 121 129
131

001 016 040 050 063 067 080 087 088 092 101 116
008 011 015 *060 094 100 110

* Tools that require 3 slots.

The production system is a two-machine flexible flow line {M T M2} with a very limited

intermediate buffer that can hold only one part at a time. Each machine is equipped with its own

tool magazine. There are 132 different types of tools. From Table 1, each tool takes either 1 or 3

slots in a tool magazine. The larger-sized tools are about 15% of the total. The tool magazine

capacity is 30 slots per machine.

-16-

TABLE 2. Total Workload (Hours) per Part Type and Operations.

Part Type Operation 1 Operation 2 Operations 1 and 2
1 42.68 19.21 61.89
2 40.47 55.07 95.54
3 37.53 29.28 66.81
4 22.45 21.08 43.53
5 37.16 27.74 64.90
6 28.72 34.32 63.04
7 32.30 26.70 59.00
8 32.21 23.82 56.03
9 48.48 50.80 99.28

10 39.85 27.88 67.73
Total 361.85 315.90 677.75

The concurrent production of a pair (i and k) of part types (i, k = 1,...,10, i #k) is feasible

(i) Part types i and k are workload-compatible, i€., i € P1 andk e P2;

(i) Part types i and k are tool-compatible, i.e., the tool sets required for both i and k on
M 1 and on M2 take no more than 30 slots in each tool magazine;

(iii) Itis possible to find a relative part mix ratio Pix between i and k such that there exists
a production sequence which does not create idle time on M2 and never requires more
than one part waiting in the intermediate buffer (g=1).

For all compatible pairs, the mix ratios Py can be obtained by equation (1) in Section 2

from the values of Table 1 and are listed in Table 3.

TABLE 3. Relative Production Ratios for Compatible Pairs of Part Types.

P1p= 3.057 P16= 5.835 Pro= 19.494 P39 = 0.856
P36= 1.634 P39 = 5.459 Py = 0.155 Py6= 0.296
Pyo= 0.988 Ps 6= 2.254 P76 = 1.109 Prg= 3.706
P36 = 1.968 P39 = 6.576 P10,6 = 2.528 P10,9 = 8.447

-17-

From the values of Tables 1 and 3, one can compute the maximum buffer requirement qik
of each compatible pair, either from Table 1 in Agnetis et al. [1991], or by observation of the
schedule, as done in Example 1 in Section 2.

The values of Table 1 also provide the tool magazine requirements of each compatible pair.
For example, the concurrent production of part types 5 and 6 would require 20 tools (3 of which
are of the large size) on M D for a global requirement of (3x3 + 17) = 26 slots, and 17 tools (3 of
which are of the large size) on M2, for (3x3 + 14) = 23 slots. Notice that tools 005 and 051 are
required by both part types 5 and 6, on M 1 and M.,, respectively. Therefore, the pair (5,6) is
feasible. On the other hand, the pair (2,5) is not tool-compatible, as the tools needed for the
second operation require (3x7 + 12) = 33 slots, which exceeds the tool magazine capacity of M2.

To define the feasible pairs of part types in this example, we use the bipartite graph G =
(U, V, E) of Figure 6. The white (black) nodes U (V) denote part types in Pl(in P2), respectively.

The edges of E denote the feasible pairs.

10
FIGURE 6. The Graph G of Feasible Pairs of Part Types.

The part type selection problem can be formulated as the integer linear program Problem

(P1) of Section 3, as follows:

-18-

Example Problem (P1)

maximize 2.112x1 5t 3.197x1 6 T 10.481.761,9 + 0.944)63,2 + 1.247)63,6 +3.287x3,9 +

2 ?

+ 0.445x4,2 + 0.500x4,5 + 0.869)64,9 + 1.612x5,6 + 0.953x7,6 +
+ 2.388x7,9 + 1'392x8,6 + 3.850x8,9 + 1.687x10’6 + 4.843x10,9
subject to:

X +x1,6)9 <51

X3 + X3 6 + X3 9 <64

Xpotxy 6ty g <59

X5 6 <53

16 + X719 <64

X8 6 + Xg 9 <54

*10,6 T *10,9 =4

3.057x1,2 + 0.856x3,2 + 0.155x4,2 <97

5.835x1,6 + 1.634x3,6 + 0.296x4’6 + 2.254x5’6 + 1.109)57,6 + 1.968)68,6 + 2.528x10,6 <71
19.494x1,9 + 5.459x3,9 + 0.988x 497t 3.706x7’9 + 6.576)c8,9 + 8.447x10’9 <98

xij > 0 and integer, V(i,j) € E.

An optimum integer solution {xl.;:} to this integer program is given in Table 4, together
with solutions {ﬁi k} of the corresponding linear relaxation. The objective function values express
the time interval (in hours) during which both M] and M o are busy. These values are very close,
and can be compared to the bound given by the workload w of the least busy machine. (In this
case, w = 315.9 hours. See Table 2.) This comparison clearly yields almost the same ratios for
the two solutions, and allows us to conclude that more than 70% of the total workload can be

assigned to the system with the described approach, for this example.

-19-

TABLE 4. Optimal Solutions to the Part Type Selection Problem.

x1,2* =11 x1,6* =0 51,2 = 10.8 51,6 = 0.0
x1,6* =0 x3,2* = 64 51,9 = 0.0 53,2 = 64.0
x3’6* =0 x3,9* =0 53,6 = 0.0 53,9 = 0.0
x4,2* =55 x4,6* =0 54,2 = 59.0 64,6 = 0.0
x4’9* =4 x5,6* =17 54,9 = 0.0 §5,6 = 13.0
x7,6* = 48 x7,9* = 16 57,6 = 375 57,9 = 264
x8,6* =1 x8,9* =4 €8,6 = 0.0 58,9 = 0.0
*10,6 = Y *10,9" = 1 Slog = 00 &9 = 00
Objective Function Value = 227.682 Objective Function Value = 228.135
Objective Function Value/ Objective Function Value/
Total Workload = .721 Total Workload = .722

The actual part type selection, of course, requires integer values not only for the number
X of parts of type i that must be processed in the same cycle with parts of type k, but also for the
number Pirik of parts of type k that vice-versa must be processed in the same cycle with parts of
type i. A rounding procedure has therefore to be defined, not only for the solution {ijl.k} of the
linear relaxation, but also for the integer optimum {xi;:} .

Figure 7 shows two square matrices which we shall refer to as PTS matrices, the entries of
which correspond to pairs of part types. Entry (i,k) is equal to the actual number of parts of type i
that must be processed in the same cycle with parts of type k. Such a number is defined for
compatible pairs only, and the matrix is generally not symmetric.

A PTS matrix can be computed by applying a suitable rounding procedure to a feasible
solution of Problem (P1). This rounding procedure should in general ensure that the result still
represents a feasible solution of Problem (P1). Suppose that each component is rounded to the
closest integer. Rounding down will never be a problem. On the other hand, among the candidate
components, we may round up only those with the greatest fractional parts.

If we apply such a rounding procedure to the relaxed solution {‘sik} of Example Problem
(P1), we obtain the PTS matrix of Figure 7a. In particular, for each component §i > 0, entry (i,k)

is obtained by rounding §i 1 and entry (k,i) is obtained by multiplying the rounded component by

20-

the corresponding P and again rounding the result. Therefore, for example, in order to apply

the suggested approach, 13 parts of type 5 have to be processed in the same cycle with 29 parts of

type 6.

& 1 23 4 5 6 7 8 9 10 by 2 3 4 5 6 7 8 9 10

1 11 0 0 1] 1 11 0 0 11
2 (34 55] 8 97| 2 [34 55| 8 97
3 64 0 0 64| 3 64 0 0 64
4 59 0 0 59| 4 55 0 4 59
5 13 13| s 7 7
6 |0 0]0]29 420 ol [71] 6 [0 0]0 |16 53] 2 0| |71
7 38 26 64| 7 43 16 64
8 0 0 0] s 1 4 5
9 [0 0|0 960 0] [96] 9 [0 0] 4 59 26 8 | [97
10 0 0 0] 10 0 1 1

FIGURE 7. Actual Part Type Selections Obtained From: (a) The Linear
Relaxation of Problem (P1), and (b) its Integer Optimum Solution.

Figure 7b shows the PTS matrix derived by applying the same rounding procedure to the
optimum solution {xl.;:} of Example Problem (P1). In this case, seven parts of type 5 are to be
processed in the same cycle with 16 parts of type 6. Each matrix is associated with a PTS vector
indicating the total number of parts of each type to be processed with our approach.

Notice that the integer solution obtained by rounding {ijik} has a value of 227.284 hours,
whereas the value of the solution corresponding to the integer optimum is 227.218. Hence the
integer solution is still slightly worse than the rounded linear solution. Notice that in the case
considered here, the optimum value of the objective function of Problem (P1) is 227.682, whereas
the linear relaxation yields an optimum value of 228.135 (see Table 2).

As observed in Section 3 (Theorem 2), the particular structure of the linear program (P1) is
such that the selected feasible pairs (i,k), i.e., those corresponding to é:ik > 0, define a forest on
the bipartite graph G. In our example, such a subgraph has the particular caterpillar topology

shown in Figure 8.

FIGURE 8. The Acyclic Subgraph of G Corresponding to the Feasible Pairs
Selected Through the Linear Relaxation of the Example Problem
(P1).

As discussed in Section 3.2, this topology can be used to determine an effective way of
sequencing the different but overlapping cycles of part types belonging to the same connected
component. For example, from Figure 8 we can begin with the coupled production of part types 5
and 6, then pass to part types 6 and 7, and finally to types 7 and 9. Similarly, one can process the
other connected component, beginning with the production of part types 1 and 2, proceeding with
the production of 3 and 2, and then with production of 4 and 2. By doing so, every part type is
processed only once and totally in the same planning period, and therefore it is not necessary to
load the corresponding tool sets more than once.

Observe that the described property does not hold in general for a nonbasic solution, and in
particular for the integer optimum solution of Problem (P1). In the example presented here, the

subgraph of G defined by those pairs (i,k) such that xi;: > 0 is given in Figure 9, and is exactly one

cycle.
5
1
3o 2
/ 8
9
4 10

FIGURE 9. The Subgraph of G Defined by the Optimum Integer Solution of the
Example Program (P1).

22-

It can be seen from Figure 9 that it can happen that sequencing the various cycles may

require the processing of at least one part type more than once.

5. COMPUTATIONAL RESULTS

In this section, we provide a vast collection of numerical results related to the part type
selection and batch scheduling approaches described in Sections 2 and 3. The following analyses
are the results of more than 600 sample problems of different sizes, generated with different
distributions of operation times and tool requirements. All optimal solutions were found via the
linear programming facility offered by the mixed-integer linear solver IBM MPSX-MIP/370,
running on an IBM 3090 at the Universita di Roma "La Sapienza". In all cases, the computation
required only a few milliseconds of CPU time.

As it occurs in a mid-term planning situation, the problem instances generated are
characterized typically by an average system workload not greater than 1 month. The required
tools used are from 132 different cutter types. The capacity of the tool magazines of both machines

of the system is 30 slots.

5.1 Quality of the Optimal Solutions of (P1) and Batch Sequencing Results

The first set of 80 test problems has been generated to produce 5, 10, 15, and 20 different
part types in a flexible flow system with two machines and an intermediate buffer capacity of 1 or
2. For each part type, the system has to produce from 50 to 100 parts. The production of each
part requires from 7 to 13 different tools, and from 7 to 16 different elementary operations, some
of which may require the same tool. An elementary operation may take from 60 to 240 seconds.
All data have been randomly generated with uniform probability distributions in the respective
ranges.

The aim of this first test was on one hand to quantify the maximum system workload that
can be totally processed in parallel with our approach, and on the other hand, to verify the

possibility of sequencing all of the selected pairs without processing the same part type in more

23-

than two different periods. Recall that this last possibility holds if all of the connected components
of G(x*) have a caterpillar structure.

The results reported in Table 5 allow a comparison between the average optimum values z*
of the objective function of the linear relaxation of Problem (P1), and the average workload w of
the least busy machine. Each value from each Test is obtained from 10 test problems of the same
type. As observed, the value of w gives a trivial upper bound to the maximum period of parallel
production. The last column of the table gives therefore an upper bound to the percentage of
workload that is not parallelized with the proposed approach.

TABLE 5. Test Set I. Average Values of the Optimized Parallel Workload
Compared with the Theoretical Bounds.

Number of Buffer w z* (w - z2%)/w
Test Part Types Capacity (Hours) (Hours) (%)
1 5 1 162.5 133.7 17.7
2 5 2 152.7 130.3 14.7
3 10 1 346.6 2717.8 19.8
4 10 2 330.8 279.3 15.6
5 15 1 499.4 454.1 9.1
6 15 2 510.1 456.2 10.6
7 20 1 687.1 621.8 9.5
8 20 2 706.5 646.1 8.5

With only one exception (Tests 5 and 6), the percentage of non-parallelized workload
decreases as the buffer capacity increases. In general, these percentages have been under 20% of
the upper bound of the theoretical parallelizable workload.

Table 6 gives, for the same Test Set, the average percentage of nodes that induce caterpillar
components in the forest G(x*). From these values one can infer that should any two selected
pairs require different tool sets on both machines (this property held for all of the problem
instances generated in this test), then a high percentage of part types (from 87 to 100%) would

require loading the corresponding tool sets only once. That is, all part types can be finished with

24-

no re-tooling, therefore perfectly realizing the desirable operating mode corresponding to the

flexible approach.

TABLE 6. Test Set 1. Average Number of Part Types that can be
Finished with No Re-tooling.

Number of Buffer Caterpillar Structure
Test Part Types Capacity (% of Number of Part Types)
1 5 1 100
2 5 2 100
3 10 | 99
4 10 2 98
5 15 1 93
6 15 2 96
7 20 | 92
8 20 2 87

In practice, all generated cases required a very low total number of tool-changing
operations. The number of such operations tends to increase with the number of part types: as
more nodes (part types) of G are available, chances decrease that the resulting solution forest only
consists of caterpillars. The worst case observed had 20 nodes and required 4 tool changing
operations over the theoretical bound that corresponded to a caterpillar structure of the solution

forest.

5.2 Behavior of the Model with Unbalanced Workloads

A second Test Set of 458 problems was generated, corresponding to production of 15 or
20 different part types and buffer capacities of 1, 2, and 4. The objective of this test was to
investigate the model behavior in cases of potentially unbalanced workloads or strong buffer
requirements. Such situations may occur when the numbers of part types in the two different

classes, as well as their operation times, differ significantly from each other.

25.

There are three different sets of tests. The first set was intended to examine situations in
which the processing times PipPi| <<PriPro (orp k1Pky << pi2’pi1)’ respectively, and has
been organized as follows:

* Each problem instance has a part types of class P and b part types of class Py (a + b =
15 or 20).

* The operation times of part types of class P (class P1) are chosen randomly with

uniform probability inside the interval [a1, ap] (interval [b1, bp]). The times are in
seconds.

For problems with 15 part types, we chose a =5, 7, 8, and 10 and, respectively, b = 10,
8,7, and 5. For each pair (a, b) such that a + b = 15, two instances were generated with buffer
capacities of 1, 2, and 4. Also, [a 1 a2] = [300, 1800] and [bl’ b2] = [1500, 3000], or vice-
versa, [al, a2] = [1500, 3000] and [bl’ b2] = [300, 1800]. The total number of instances
generated has therefore been (4 x 2 x 3 x 2) =48.

For problems with 20 part types, we chose a =5, 8, 10, 12, and 15 and, respectively, b =
15, 12, 10, 8, and 5. For each pair (a, b) such that a + b = 20, we generated ten instances with
buffer capacities of 1, 2, and 4. Also, [al, a2] = [300, 1800] and [bl’ b2] = [1500, 3000}, or
vice-versa, [al, a2] = [1500, 3000] and [bl’ b2] = [300, 1800]. The total number of instances
generated in this case has been (5 x 10 x 3 x 2) = 300.

The experimental results obtained are provided in Figures 10 and 11. As a general feature
(present in almost all generated cases), we observe a reasonable performance degradation for
extreme (small and large) values of parameter a. This is expected in such unbalanced situations.
As expected, the ratio between the optimized parallel workload and the theoretical bound generally
improves for larger buffer capacities.

The second Test Set was based on the consideration that a critical situation when Py > 1
(respectively, when Py, < 1) is one in which p %) (respectively, pil) is much greater than the other
operation times. In such cases, we have, respectively, (pil - pi2) 4% and p © Pkl <<Pjp
and the application of Rule 1 results in a large buffer requirement. Only a small number of feasible

pairs can then be considered.

-26-

100% - 100% - A O buffer capacity = 1
' O buffer capacity = 2
: A buffer capacity = 4
o
A u] a 7
90% - § A A 90%X 1?3
: E E E : 0
80% - : o) : 80% - ;
. e . ¥
o o a - s
S | . s
60% ' j v 60% . — : . +
5 6 7 8 9 10 a 5 6 7 8 9 10 a
(a) [al, az] = [300, 1800]; [b P b2] = [1500, 3000]. (b) [al s a2] = [1500, 3000]; [b P bz] = [300, 1800].

FIGURE 10. Test Set II. Average Values of the Ratio Between the Optimized Parallel Workload and the
Theoretical Bound, for Problem Instances with 15 Part Types.

100% - 100% - O buffer capacity = 1
O buffer capacity = 2
A buffer capacity = 4
A .\ Q
90% - ﬁ 0 ; 90% - ﬁ A o
S b o 4
0 i E E 1 : E i
. s 'O
80% 2 : ; : : 80% ; : :
N s A
0% A 6 70% - g
60% T T g T E T é T T é 60% T T il T Er T El T l‘if
56 7 8 9 10 11 12 13 14 15 a 5 6 7 8 9 10 11 12 13 14 15 a
(a) [al, a2] = [300, 1800]; [b r b2] = [1500, 3000]. (b) [al,az] = [1500, 3000]; [bl’ b2] = [300, 1800].

FIGURE 11. Test Set II. Average Values of the Ratio Between the Optimized Parallel Workload and the
Theoretical Bound, for Problem Instances with 20 Part Types.

27-

For example, suppose that we have 20 part types and the same values of a and b of the
previous test. Let P;1o Py Py (or, respectively, p k1’ Proy pi2) range between 300 and 900
seconds, and Py (or pil) range between 2,400 and 3,000. One can see that when the buffer
capacity is 1 or 2, the values of q obtained result in no feasible pair. We therefore set up this
Test Set by generating 10 problem instances with the above ranges for the operation times and a
buffer capacity of 4, for a total number of (5 x 10 x 2) = 100 instances. See Figure 12.
Furthermore, when a =5, b = 15 (a = 15, b = 5), and the expected value of Py (pil) is much
greater than the other operation time, we obtain very unbalanced situations in terms of workload.
One can see this from the corresponding poor average values of z*/w (30.8% and 32.5% of total

workload parallelization, respectively) reported in Figure 12.

90%]-

0% 0 py, >> than other operation times
e p;] >> than other operation times

50%

30%

5 8 10 12 15 ¢

FIGURE 12. Test Set II. Average Values of the Ratio Between the Optimized
Parallel Workload and the Theoretical Bound, for Problem
Instances with 20 Part Types and Buffer Capacity = 4.

The next Test Set (on 10 problem instances with buffer capacity of 4 and 20 part types
each) is considered in order to confirm the trend observed in the extreme situations. In this case,
we set a =5 and b = 15. The operation times of each process range as follows: P;q and Py in
[600, 900]; Py in [300, 600]; and Py in [2400, 3000]. On average, of 220.3 total hours of
workload, our approach could be applied for 87.3 hours (= 40%).

Each of the 458 problem instances generated in this set featured very good performance

w.r.t. batch sequencing. About 88% to 100% of the part types can be machined without reloading

28-

the corresponding tools sets. The worst case observed required only 3 re-tooling operations over
the theoretical bound. However, this particularly good behavior stems from the fact that in

unbalanced situations, the solution forest usually contains very few edges.

5.3 Bimodal Distributions of Times and Requirements

A third and last Test Set was set up in order to simulate a situation in which part types may
be further partitioned according to short versus long operation times, and to small versus large
production requirements. In particular, the total operation times of each part type range between
300 and 3,000 seconds, with a probability distribution having two maxima centered at 500-700
and 2,300-2,500 seconds. Similarly, the number of parts of each type required ranges between 30
and 120, with a probability distribution having maxima at 35-55 and 85-105 parts. (See Figure
13.) When generating each problem instance, we assume that operation times and production
requirements are statistically independent variables. This means that to produce ten different part
types, about two of them will on average have a total operation time less 12 minutes (= 700

seconds) and production requirements of at least 85 parts.

130%
2’7% p—t s s e s e e s s e s e . 0
20%
10% I 10%
6%| - - - -
30bl rrrrrrrrrrrrrrrrrrrirrita l3l060 3'01 1 T L L L L LI DL) LI 1 l120

Operation Time Production Requirements

FIGURE 13. Test Set III. Probability Distributions (Percentage of Part Types)
of Operation Times and Production Requirements.

With the above data, an appropriate range for the number of tools needed by each part type

is 8 to 16. We generated 10 random problem instances with 5, 10, 15, and 20 part types each,

with buffer capacities of 1 or 2, for a total number of 80 individual tests. The results are collected

29-

in Tables 7 and 8. With respect to the results obtained with uniform probability distributions, the
ratio (w - z*)/w shows a slight degradation. On the other hand, for each solution forest found, the
average size of the caterpillar-structured subgraph appears slightly larger. However, as in the
second Test Set, this behavior depends mainly on the low edge-density of the solution forests
obtained.

TABLE 7. Test Set III. Average Values of the Optimized Parallel Workload
Compared with the Theoretical Bounds.

Number of Buffer w 7* (w - 2¥)w
Test Part Types Capacity (Hours) (Hours) (%)
1 5 1 69.7 50.2 32.4
2 5 2 71.1 56.1 21.1
3 10 1 191.1 142.6 254
4 10 2 255.5 194.2 24.0
5 15 1 339.9 266.9 21.6
6 15 2 432.4 380.0 12.1
T . 20 1 531.3 424.6 20.2
8 20 2 550.2 515.9 6.2

TABLE 8. Test Set III. Average Number of Part Types That Can Be Finished

with No Re-tooling.

Number of Buffer Caterpillar Structure
Test Part Types Capacity (% of Number of Part Types)

1 5 1 100
2 5 2 100
3 10 1 100
4 10 2 99

5 15 1 100
6 15 2 100
7 20 | 96

8 20 2 88

30-

We conclude by noting that for a few problems of small size (no more than ten part types),
the integer optimum was found by means of an IBM MPSX-MIP/370 spending a considerable
amount of computational effort. However, as noted in Section 3, no remarkable improvement in

the quality of the solutions with respect to the linear relaxation has ever been noticed.

6. FUTURE RESEARCH NEEDS
This paper presents a new approach to part type selection in flexible flow lines, as well as
to batch sequencing over time. To date, the analyses have concerned the two-machine with finite

buffer situation. Among future problems that need to be addressed are the following:

1. Two-pools systems. Instead of two machines only, the system consists of two pools
of my and "y identical machines in each pool, respectively. The structure of the input
sequencing problem is different. The solution will also depend on the number of buffer
spaces and the location of the in-process inventories.

2. An m-machine flexible flow shop (with m > 2). For these larger types of systems, the

number of part types to be selected for simultaneous production in order to guarantee
workload balance will in general be greater than two. The input sequencing problem is
likely to be much more complicated. The allowable numbers of buffers that can be

between machines will also complicate the problem.

ACKNOWLEDGEMENTS
Kathy Stecke would like to acknowledge support from the Alexander von Humboldt
Foundation in Bonn, the Universita di Roma, and a summer research grant from the Business
School of The University of Michigan. We also thank Marco Tassitano for providing the

computational results.

31-

REFERENCES

Agnetis, A., C. Arbib and K. E. Stecke, "Scheduling Two Part Types in a Two-machine Flexible
Flow System", Working Paper, Universita di Roma "La Sapienza", Dipartimento di
Informatica e Sistemistica, Rome, 1991.

Arbib, C., M. Lucertini and F. Nicolo, "Optimal Workload Balance and Part Transfer in Flexible
Manufacturing Systems", International Journal of Flexible Manufacturing Systems, Vol. 3,
No. 1, pp. 5-25, February 1991.

Hwang, S., "Part Selection Problems in Flexible Manufacturing Systems Planning Stage", in: K.
E. Stecke and R. Suri (eds.) Proceedings of the Second ORSA/TIMS Conference on
Flexible Manufacturing Systems: Operations Research Models and Applications, Elsevier
Science Publishers, B. V., Amsterdam, pp. 297-309, August 1986.

Panwalkar, S. S., "Scheduling for a Two-machine Flowshop with Travel Time Between
Machines", Journal of the Operational Research Society, Vol. 42, No. 7, pp. 609-613,
July 1991.

Papadimitriou, C. H. and P. C. Kanellakis, "Flow-shop Scheduling with Limited Temporary
Storage", Journal of the Association of Computing Machinery, Vol. 27, pp. 533-549,
1980.

Rajagopalan, S., "Formulations and Heuristic Solutions for Parts Grouping and Tool Loading in
Flexible Manufacturing Systems", in K. E. Stecke and R. Suri (eds.) Proceedings of the
Second ORSA/TIMS Conference on Flexible Manufacturing Systems: Operations
Research Models and Applications, Elsevier Science Publishers, B. V., Amsterdam, pp.
311-320, August 1986.

Stecke, K. E., "Procedures to Determine Part Mix Ratios in Flexible Manufacturing Systems",
Working paper No. 587, The University of Michigan, School of Business Administration,
Ann Arbor MI, October 1989.

Stecke, K. E. and I. Kim, "A Study of FMS Part Type Selection Approaches for Short-term

Production Planning", International Journal of Flexible Manufacturing Systems, Vol. 1,
No. 1, pp. 7-29, September 1988.

Stecke, K. E. and 1. Kim, "Performance Evaluation for Systems of Pooled Machines of Unequal
Sizes: Unbalancing Versus Balancing", European Journal of Operational Research, Vol.
42, pp. 22-38, 1989.

Stecke, K. E. and I. Kim, "A Flexible Approach to Part Type Selection in Flexible Flow Systems
Using Part Mix Ratios", International Journal of Production Research, Vol. 29, No. 1,
pp. 53-75, January-February, 1991.

Whitney, C. K. and T. S. Gaul, "Sequencial Decision Procedures for Batching and Balancing in
FMSs", Annals of Operations Research, Vol. 3, pp. 301-316, 1985.

