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ABSTRACT

Managers identify the ability to produce a broad line of continually changing products
with minimal degradation of performance--- "product mix flexibility"--- as a critical source of
competitive advantage. However, flexibility has received little attention as a component of
manufacturing performance. This apparent inconsistency reflects firms' reliance on traditional,
financial performance measures. Critics argue that financial measures must be augmented by
nonfinancial performance measures to create a "balanced scorecard" (Kaplan & Norton, 1991)
for manufacturing environments that employ advanced technology or modern management
methods. Product mix flexibility is a candidate for inclusion in the "balanced scorecard" of
firms that compete on the ability to produce a wide range of rapidly changing products.

This paper measures product mix flexibility as the impact of actual product mix
complexity on nonfinancial measures of performance. The performance measures considered
are: total factor productivity, operating efficiency, and output quality. Measures of product mix
complexity are developed using a product attribute model derived from the group technology
literature of operations management. These measures are used to investigate the relation
between product mix complexity and operating performance in three weaving plants of a
leading U.S. textile firm during 1986-90.

The paper makes four contributions to the emerging literatures on manufacturing
flexibility and multi-dimensional performance measurements. First, the paper develops a
measure of product mix complexity that incorporates similarities and differences among
products in the demands placed upon manufacturing. Previous research has relied, with
limited success, on proxy variables such as the number of products produced to assess
product mix complexity. The results indicate that a measure of product mix complexity that
distinguishes similarities and differences among products has greater power to describe
manufacturing performance when compared to previous attempts to operationalize product
mix complexity. Second, the paper estimates the longitudinal relation between product mix
complexity and operating performance and compares the flexibility of three plants facing
different levels of product mix complexity. Thus it complements previous studies that use
cross-sectional or longitudinal analysis alone. Third, the paper provides evidence on sources
of increased flexibility. By disaggregating products into underlying characteristics that
influence manufacturing activities, the paper identifies forms of product mix complexity that
degrade performance. The paper also provides weak evidence that experience producing
these forms of product mix complexity mitigates their performance impact --- that "complexity-
based learning" may obtain with sustained experience producing a heterogenous mix of
products. Finally, the results indicate that different forms of product mix complexity adversely
affect the three measures of operating performance. This suggests that the "balanced
scorecard" must balance different measures of nonfinancial performance as well as financial
and nonfinancial performance measures.

(Keywords: Performance Measurement, Flexibility, Product Mix, Complexity)



INTRODUCTION

In recent surveys, U.S. and Japanese manufacturing managers assert that product mix
flexibility is the most critical manufacturing capability for future success (Stewart, 1992; De
Meyer, et. al. 1989; Slack, 1987). From the perspective of manufacturing, product mix
flexibility implies an ability to produce a wide range of products, to accommodate modifications
to existing products, and to assimilate new products, all with minimal degradation of
performance (Slack, 1984; Upton, 1991). These capabilities correspond to what Sethi and
Sethi (1990), in their comprehensive literature review, call: 1) process flexibility, the ability to
produce a wide range of products without setups; 2) product flexibility, the ability to add new
products at low cost; 3) volume flexibility, the ability to operate profitably at different volumes;
and 4) market flexibility, the ability to adapt to changing market conditions.

The practical difficulty of becoming flexible hinges on assessing the flexibility of
existing manufacturing operations as well as identifying avenues for improvement. Despite its
importance, product mix flexibility is rarely included among firms' internal performance..
measures and applied research has been "neglected" (Gerwin, 1993). This apparent
conundrum reflects the empirical challenge of measuring flexibility as well as the myopic,

financial focus of traditional performance measurement systems (Drucker, 1990; Kaplan &
| Norton, 1991; Eccles, 1991; Eccles & Pyburn, 1992; Nanni, Dixon & Vollman, 1992). Critics
claim that a "balanced scorecard" (Kaplan & Norton, 1991) that reports financial as well as
nonfinancial measures is needed to assess organizational performance in the new
manufacturing environment and that accountants must broaden the scope of their activities to.
include these new measures if they are to play a strategic role in management. Product mix
flexibility is a strong candidate for representation on the balanced scorecard of firms that face
rapidly changing, fragmented product markets.

The theoretical operations literature suggests measuring product mix flexibility as the

impact of realized product demands on the performance of existing operations (Son & Park,

! Sethi and Sethi (1990) identify 11 fundamental forms of flexibility from the over 50 types of flexibility
described in the operations literature. This study addresses four of the 11 fundamental forms of variety.
As Slack (1987) argues, all flexibilities are not equally important to all production environments. The nature
of the textile weaving process, the longitudinal research design, and the time frame of this study are
incompatible with studying the remaining seven forms of flexibility.

1



1987, Gupta & Goyal, 1989; Sethi & Sethi, 1990; Roll, Karni & Arzi, 1992). Theories
developed in the economics, operations management and management accounting disciplines
relate manufacturing cost and nonfinancial measures of operating performance to product mix
complexity (Skinner, 1974; Panzar & Willig, 1977; Willig, 1979; Panzar & Willig, 1981; Porter,
1980; Hayes & Wheelwright, 1984; Hill, 1985; Miller & Vollman, 1985; Johnson & Kaplan,
1987; Cooper & Kaplan, 1987; Karmarkar & Kekre, 1987; Kekre, 1987; Banker, Datar &
Kekre, 1988; Cooper, 1990). The general conclusion of these models is that producing a
changing mix of heterogeneous products reduces operating performance and increases
manufacturing costs--- that plants typically are not flexible. The root cause of performance
degradation is posited to be heterogeneity in the production activities required to produce a
mix of products. Heterogeneous production activities disrupt experience-based learning,
create complex material and information flows that require coordination, and cause congestion
of shared resources that requires complex scheduling and balancing routines (Skinner, 1974;
Hill, 1985; Miller & Vollman, 1985).

Although theoretical models and widespread anecdotal evidence supports the claim
that product mix heterogeneity impairs operating performance, empirical evidence to
substantiate the impact of product variety is mixed (Hayes & Clark, 1985; Foster & Gupta,
1990; Kekre & Srinivasan, 1990; Datar, Kekre, Mukhopadhyay & Srinivasan, 1990; Banker,
Datar, Kekre & Mukhopadhyay, 1990; Banker & Johnston, 1991; Banker, Potter & Schroeder,
1992; Cooper, Sinha & Sullivan, 1992). One explanation offered by many authors for
ambiguous results is that the constructs used to measure product mix complexity are "
inadequate. Variables commonly used to measure product mix breadth (e.g. number of
products produced) and the degree of product mix change (e.g. number of engineering
changes or new product introductions) fail to assess similarities and differences among
products that precipitate heterogeneous production activities and consequently affect operating
performance. This failure suggests that previous tests of the impact of product mix -complexity
on operating performance are mispecified. By ignoring similarities and differences among
products these studies lack the power to distinguish between the strategy implemented
successfully by some Japanese firms, careful product proliferation around core commonalities

to create product breadth that is transparent to manufacturing, and the experience of U.S.



manufacturers, that product variety wrecks havoc on manufacturing.

This paper uses an approach developed in the group technology field of operations
management to create measures of product mix complexity that distinguish products on the
basis of similarities and differences of demands that they place on manufacturing. These
measures are used to test the hypothesis that operating performance--- defined as total factor
productivity, weaving efficiency, and percent off-quality output--- is negatively related to
product mix heterogeneity using monthly data from 1986-90 for three weaving plants of a
leading U.S. textile firm. The paper makes four contributions to the emerging literature on
manufacturing flexibility and multi-dimensional performance measurement. First, the paper
develops a measure of product heterogeneity that incorporates product similarities and
differences that are related to manufacturing activities and documents its superiority to
previous approaches. Second, the paper estimates the longitudinal relation between product
mix complexity and operating performance and compares the flexibility of three plants that
face different levels of product mix complexity. Thus.it complements previous papers that use
cross-sectional analysis or longitudinal analysis alone (Foster and Gupta, 1990; Banker, Potter
and Schroeder, 1992; Cooper, Sinha & Sullivan, 1992). Third, the paper is the first to provide
evidence on sources of increased flexibility. In particular, it is the first to address whether
flexibility is correlated with experience producing a broad range of continually changing
products. Finally, the results indicate that different forms of product mix complexity affect
different measures of nonfinancial performance. Thus accountants’ "balanced scorecard"
must balance different nonfinancial performance measures as well as financial and
nonfinancial performance measures.

The paper is organized in five sections. The first section reviews previous efforts to
assess the impact of product mix complexity on performance and suggests an alternative
approach for measuring product mix complexity that is derived from the group technology
literature. The second section describes the research sites and provides summary statistics
about product mix complexity and performance during the period, 1986-30. Section 3 outlines
the research methods and develops measures of product mix complexity. Tests of the
relation between product mix complexity and performance are provided in the fourth section.

Section 5 summarizes the paper’s contributions to the literature and to management practice.



1. PRODUCT MIX COMPLEXITY AND OPERATING PERFORMANCE

The literature addressing the impact of product mix complexity on manufacturing is
spread across three fields: economics, management accounting, and operations management.
Each discipline has contributed different theoretical and empirical approaches. The theoretical
literatures have coalesced; economists have derived conditions that promote (dis)economies
of scope in multi-‘product production (Panzar &Willig, 1977; Willig, 1979; Teece, 1980; Panzar
& Willig, 1981; Gorman, 1985) while researchers in accounting and operations have gone
within the "black box" of the production function to provide rich descriptions of multi-product
production environments and analytic models to explain the micro-structure of diseconomies of
scope (Skinner, 1974; Hayes & Wheelwright, 1984; Hill, 1985; Miller & Vollman, 1985;
Johnson & Kaplan, 1987; Cooper & Kaplan, 1987; Karmarkar & Kekre, 1987; Kekre, 1987;
Banker, Datar & Kekre, 1988; Cooper, 1990). The empirical literatures have not coalesced, in
large part because measures of product mix complexity have eluded researchers.

Empirical efforts in economics (Baumol and Braunstein, 1977; Pulley.and Braunstein, .-
1992) center on determining economies of scope by econometric estimation of the joint
production cost function. This approach is fruitful when a limited number of products or
product families are produced with few inputs for a lengthy period. However, in the more
common production environment of several hundred products produced in varying
combinations, data limitations typically cause the joint cost function to be under-identified.
Accounting researchers circumvent this problem by adopting the more modest goal of
estimating total costs of all product interactions, rather than specific interactions between
individual products. They identify probable interaction costs from firms' accounting records---
manufacturing overhead costs--- and relate these costs to variables that proxy for product mix
complexity (Foster and Gupta, 1990; Banker, Potter and Schroeder, 1992; and Cooper,
Sinha, and Sullivan, 1991).2 The approach has provided mixed evidence to support our
intuition that product mix complexity is positively correlated with overhead cost.

Operations management researchers take a similar approach of indirectly measuring

2 Banker, Datar, Kekre & Mukhopadhyay (1990) and Datar, Kekre, Mukhopadhyay & Srinivasan (1990)
take a different approach of first assigning overhead costs to products and then estimating the relation of
the revised product cost to product characteristics. Thus they estimate the costs of product complexity
rather than the joint costs of product mix complexity.
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the effects of product mix complexity on nonfinancial measures of operating performance.
Rearranging the production function, Hayes and Clark (1985) create a total factor productivity
(TFP) index to assess plants' effectiveness of transforming inputs into outputs. In theory TFP
equals one if production occurs according to the linear, separable production function
hypothesized. However, if product interactions reduce a plant's ability to transform inputs to
outputs, TFP falls short of one. This shortfall is hypothesized to be well-explained by product
mix complexity. Regressing TFP on proxies for product mix complexity such as the number of
products produced, Hayes and Clark find weak evidence of a negative relation.

Although they circumvent the problem of estimating individual product interactions,
methods used by accounting and operations researchers to estimate the net effect of product
interactions create the new empirical challenge of measuring product mix complexity.
Typically two types of variables are used: those that are the result of product mix complexity
(i.e. the number of engineering changes, product shipments, and vendors); and, variables
that are crude proxies for product mix complexity (i.e. the number of products, component
parts, and production batches). None of these variables measure differences among products
that generate heterogeneous demands on manufacturing--- the hypothesized source of
diseconomies of scope and burgeoning overhead (Miller & Vollman, 1985) and the proposed
object of "factory focus” (Skinner, 1974; Hill, 1985).

The group technology literature of operations management offers an alternative method
for directly assessing product mix heterogeneity. Developed as a means for classifying
products on the basis bf production and design similarities, group technology assumes that
products are uniquely described by a well-defined but limited set of N attributes (Hyer &
Wemmerlov, 1984). Wilson and Henry (1977) identify two categories of attributes used to
assess similarity for purposes of group formation: "graphical" data describe the product in
engineering terms, and "manufacturing" data describe process specifications for production.
The difficulty of implementing group technology is determining the relative importance of
different attributes, and establishing the optimal number and composition of groups
(Miltenburg & Zhang, 1991). However, the objective of this study is to empirically link the
product attribute space occupied by plants’ product mixes to changes in plant performance.

Consequently, it is possible to use the strengths of group technology--- description of the



product attribute space--- without inheriting its implementation problems.

Skinner (1974) proposed several objects of "factory focus” to reduce the variety of
manufacturing activities within one facility, including: product focus, process focus and .
customer focus. This suggests that the relevant set of product attributes for assessing the
impact of product mix complexity on manufacturing are those that describe the product
("graphical" parameters), the process ( "manufacturing” parameters), and the demands of
customers for a particular product. If a product is described by its N-attribute vector of
product, process and customer parameters, then product heterogeneity is defined by
differences in the attribute vectors of two products. Product mix complexity arises when
heterogeneous products are produced simultaneously or in sequence.

In a single-process (weaving) production facility, such as those examined in this study,
product mix complexity arises in two ways. If the facility is equipped with many identical,
parallel machines, product mix complexity may arise with simultaneous production of
heterogeneous products. Whether a plant has one or many machines, product mix complexity
may arise with sequential production of heterogeneous products. Relating simultaneous and
sequential product mix heterogeneity to plant performance yields a measure of flexibility:
uniformity of performance.® A flexible manufacturing facility produces a wide range of
continually changing products with consistent, strong performance.

Simultaneous and sequential product mix heterogeneity create different demands for
manufacturing activities and thus can be expected to affect performance measures differently.
Skinner (1974) argues that simultaneous production of heterogeneous products engenders
confusion and goal incongruence among production workers and creates demands on
management to resolve the ensuing conflicts. Proponents of cell manufacturing argue that co-
locating similar products improves performance by reducing the need for coordination and by

concentrating responsibility and authority at the point of production (Burbidge, 1983). Thus,

® This definition of flexibility is Upton's (1991) multi-product analog to Stigler's (1939) definition of
flexible technologies. Stigler defines a flexible technology as one with a relatively flatter average cost curve
over a wide range of output quantities. Though a less flexible technology might offer lower average costs
at some particular output, X, in the presence of demand uncertainty that is resolved after the technology
choice is made (Marschak & Nelson, 1962) the more flexible technology offers lower expected costs for
the distribution of expected demand.



performance measures that comprehend coordination and production efficacy are expected to
be influenced by simultaneous product mix heterogeneity.

The impact of sequential product heterogeneity on operating performance is twofold:
fixed effects and sequence dependent effects of setup. The downtime associated with
machine setups reduces production capacity and consequently, productivity. Although a
“fixed" level of downtime is typically associated with all setups, an additional variable
cofnponent of setup time may depend on characteristics of the products produced before and
after the setup. Sequence dependent setups are common in process-flow industries such as
chemical (Bitran & Gilbert, 1990) and paper manufacture (Upton, 1991). The minimum cost
path of producing several products on a machine is a sequence that maximizes similarity of
adjacent products according to one or several critical attributes (i.e. weight, color).
Performance measures that include setup performance are expected to be influenced by

sequential product mix heterogeneity.

In sum, performance is hypothesized to be best when products are tightly. clustered.in .

attribute space with little change from period to period--- products reflect a consistent set of
manufacturing priorities, fixed and sequence dependent setup costs are minimized and cross-

product learning is maximized.

2. RESEARCH SITES

The research sites are three weaving plants of a leading U.S. textile manufacturer,
"Weaving Industries". During the period of this study, 1986-1990, the firm was recognized in
the trade and business press as being well managed. Even so, like its U.S. competitors,
Weaving Industries experienced declining demand for its high volume products. The erosion of
commodity markets in combination with demands for greater customization accelerated
product proliferation in Weaving Industries’ product lines. The three plants were selected by
management for three reasons: first, they employ an advanced weaving technology and
represent substantial capital assets, second they experienced little additional investment
during the period of study, and finally, management wanted to verify and quantify their intuition
that product mix complexity impairs performance.

The challenge of field-based research is finding research sites that differ in the variable



being studied but are similar along other dimensions. This section demonstrates that Plants
A, B, and C are similar along dimensions previously shown to impact operating performance.
At the same time the plants have experienced different levels and rates of growth of product
variety. Similarities among the plants minimize confounding effects of variables that fall
outside the research domain while differences provide the basis for measuring the impact of
product variety on measures of operating performance. The following section uses qualitative
and quantitative data obtained during field visits to describe the plants and provide a context

for interpreting subsequent results.

2.1 Plant Profiles

Plants A, B and C are cost centers of the firm’s Woven Fabric manufacturing division.
The firm operates many plants with similar technical capabilities and further limits each plant’s
product range through a facilities focus strategy. The focus strategy for the Woven Fabrics
Division assigns each plant a raw material specialty.. Plants A, B, and C specialize.in .
products made of inputs 1, 2 and 3, respectively. In addition to its specialty, Plant C is a
"swing" plant, used to balance capacity utilization across all three plants.

_A plant's facilities focus strategy and scheduling practices determine whether observed
product mix variation is adequate to reveal a relation between product mix heterogeneity and
operating performance. Weaving Industries’ broad product offering does not limit the plants’
product range; however, its facilities focus strategy and production scheduling practices do.
Plants A and B, specialize in weaving products of inputs 1 and 2, respectively. Plant C, which
specializes in input 3 but frequently weaves products of inputs 1 and 2, promises the greatest
range of observed variety. The plants produce fabrics that are engineered for specific
customers and production is to order rather than to reple‘nish inventory stock. Production
planning permits intervention in the composition and timing of demand; however, the scope of
these interventions is limited. Fabric demand is heavily influenced by "fashion”; it is fleeting
and if not quickly satisfied, evaporates. Thus, if demand is badly forecasted schedulers

modify the schedule to meet market demands. Consequently, the plants experience

4 Technical terms that are used in subsequent discussions are capitalized in their first use.
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significant product mix change even within the bounds of their assigned facilities focus.

Located in small towns in the textile intensive southeastern United States, the plants
employ nonunion workers and pay identical wages for comparable job classifications. Self-
sufficient production teams of four to five employees are responsible for approximately 100
looms each and with few exceptions the plants operated 24 hours a day seven days per week
throughout the period. Absenteeism was less than one percent annually during 1986-90.
Consistent with industry averages, turnover among hourly employees was 20-25 percent
annually for all three plants. As a result of normal promotions, the plants have been marked
by high management turnover; Plants A and B had four and Plant C three plant managers
from 1986 to 1990. In contrast, the engineering and administrative staffs were stable.

The plants were built within a decade of each other and there is little to distinguish the
physical facilities or infrastructure. The production equipment is the same make and vintage,
reflecting the firm's decision in the early 1980’s to upgrade to an advanced weaving
technology. The plants acquired the majority of their looms at the same time (mid-1984) from
the same vendor. Employees of all three plants were trained in the same courses offered at
the firm’s central training facility and at the equipment vendor’s training facility. The scale of
the plants is similar; Plant B has the largest number of looms, L, followed by Plant C with .91L
and Plant A with .83L.

The plants use the same advanced weaving technology. Weaving is the process of
interlacing lengthwise WARP yarns and cross-wise FILL yarns at right angles. Warp yarns are
wound onto a metal core, called a WARP BEAM, in an upstream process. During machine
setup, the warp beam is mounted in the loom in an operation known as a DRAW setup.
Alternatively, if a second batch of a product is produced on a machine, the threads of the new
warp beam are tied to those of the exhausted beam and pulled through the loom. This minor
form of setup is called a TIE. The loom raises and lowers alternate warp yarns and inserts the
fill thread to form a panel of fabric. Next the woven fabric is inspected, packed and shipped.

In sum, the plants are virtually indistinguishable along dimensions known to affect
operating performance and cost; specifically, employee skills and work practices, equipment
age and type, and plant facilities and infrastructure. In contrast, as the following section

demonstrates, the plants have experienced different levels of product mix variety caused in



part by their focus on different inputs.

2.2 Product Mix Complexity

From 1986 to 1990, the number of products that Plants A, B, and C produced each 4-
week period increased and the stability of the product mix from period to period decreased.®
Growth in the number of products produced over the five years provides a crude
approximation of increasing product mix complexity. The different ways that product
heterogeneity emerged are evident in a comparison of the number of products produced that
considers three definitions of "product”: 1) a warp beam; 2) a unique combination of a warp
beam and a fill thread; and, 3) warp beam and fill thread combinations that exclude different
generations of a product. .

Controlling for minor differences in plant scale (number of looms), Panel A of Table 1
characterizes the growth of product variety, by treating as a single product all products that
share common warp beams. Each plant experienced increased product mix.breadth, .with ...
Plants B and C having the highest level of product variety by the end of the period. Panel B
characterizes product variety by treating unique warp-fill combinations as a different product.
Again, product variety increased for all of the plants, though this increase took different forms.
Comparing Panels A and B, Plant B proliferated products by combining different fill threads
with existing warp beams. The ratio of warp-fill combinations (Panel B) to warps (Panel A)
indicates that on average warps are combined with two fills in Plant B, as compared to 1.5 for
Plants A and C. In the language of manufacturing, Plant B proliferated products using.
common components.

Over time products undergo generational change. In theory the new product
generation replaces the old; in practice some customers are unwilling to adopt the new
product generation. As a result, multiple product generations may coexist. Panel C
characterizes product variety by treating generations of a unique warp-fill combination as one
product. The definition of a multi-generation product family is derived from company records;

product codes for generations of a product differ by one digit. Comparing Panels B and C

® Throughout the paper a production "period” is defined to be four weeks, or approximately 28 days.
Each calendar year includes 13 periods and the study encompasses five years, or 65 periods.
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highlights differences between the plants in how product heterogeneity emerged. In 1986 one
third of the products that Plant B produced were generations of existing products. This
compares to one tenth and one seventh for Plants A and C, respectively. Differences are less
pronounced but still present by 1990. Again, Plant B's product rﬁix is substantially more
homogeneous than either Plants A or C despite producing a large number of products.®

Table 1 indicates growth in the number of products produced in a period. It does not
address product mix change. A crude measure of product turnover, computed by dividing the
number of products produced in five years by the average number produced each period,
indicates the degree to which increasing product mix variety was accompanied by changing
product mix composition (Table 2). Product mix change surfapes in all three plants; however,
Plant C was marked by significantly more change than either A or B. Removing the effect of
generational change, Plant C produced six entirely different product portfolios from 1986 to
1990. In contrast, Plants A and B produced 3.4 and 3.9 product portfolios in the same
period.’

Summarizing, the plants experienced similar growth in the number of products
produced; however, this similarity masks important differences in how product variety
emerged. Plant A produced a small number of heterogeneous products that were rarely
produced from common warps or generations of existing products. Plant B went from having
the fewest to having the most products. However, product heterogeneity was minimized by

proliferating through incremental change to existing products --- combining new fills with

€ One facet of product variety not addressed by Table 1 is the distribution of products over operating
capacity. Examining the share of operating machine hours dedicated to the highest volume product
revealed no difference among the plants. Approximately 20 percent of capacity was devoted to producing
the highest volume product in 1986, falling to 17 percent by 1990. The plants concentrate a substantial
share of machine hours on one product and concentration declined slightly with increased product variety.

’ An empirical question is whether "change" reflects introductions of new products or production
discontinuities that interrupt a product's lifecycle. For example, Panel B of Table 1 indicates that Plant C
produced 404 products in five years, on average producing 53 different products each period. This might
mean that products run for 8.6 periods (65 periods/7.6 turns) before being discontinued. Alternatively
products might run one period every 7.6 months, a total of 8.6 periods over five years. Comparing the
duration of continuous product runs, short product runs are prevalent for all three plants; approximately 10
percent of all production runs were completed in one period and 50 percent were completed in fewer than
four periods. Thus erratic production schedules are as much to blame for product mix instability as new
product introductions.
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existing warps and modifying products through generational change. Plants A and B had
similar low levels of product mix change. In contrast, Plant C experienced the same dramatic
growth in the number of products as Plant B but was unable to contain product mix
heterogeneity. Products produced in a period were dissimilar and changed substantially from
period to period. This volatility is consistent with its role as the "swing" plant in the firm's
focus strategy. Differences in the plants’ levels of simultaneous and sequential product mix
heterogeneity provides a powerful research design for testing the impact of product mix

heterogeneity on nonfinancial measures of operating performance.

2.3 Operating Performance: Total Factor Productivity, Efficiency and Off-Quality Output

This study examines the impact of product mix complexity on three nonfinancial
measures of performance: total factor productivity, weaving efficiency, and output quality.
Total factor productivity was used by Hayes and Clark (1985) in their study of determinants of
plant productivity and was constructed specifically for this study. Weaving efficiency and
output quality are measures that Weaving Industries’ top management reviewed in their
monthly plant performénce evaluations throughout the period 1986-90.

As the following sections indicate, all of the performance measures are imperfect either
by construction or as a result of data limitations and together provide different perspectives on
manufacturing effectiveness, as indicated by their low correlation (Table 3). Consequently,
product mix flexibility--- the impact of product mix complexity on operating performance---
must be examined for each aspect of performance. The following sections describe how the
performance measures are constructed and provide summary statistics (Table 3) of plant

performance along each dimension.

2.3.1 Total Factor Productivity

Economic studies of productivity typically start by determining an appropriate
production function. In a recent study of advanced weaving technologies, Pack (1987, pp. 51-
2) argues that textile engineering supports a long run, constant elasticity of substitution (CES)
production function with an elasticity of substitution, o, equal to .5. This

paper uses a special case of the CES in which no short run input substitution
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(o=1) is assumed possible. Thus weaving transforms four inputs: material (M),
labor (L), capital (C), and energy (E), into output (Y) according to a linear,
homogeneous production function.
The total factor productivity (TFP) index, a measure of the
effectiveness with which inputs are transformed to outputs; is the quotient of
output and inputs. In order to combine quantities that are measured on a
variety of scales, the N outputs, Y, are weighted by their 1990 standard cost, S*, and
inputs: C, E, L, and M,, by their 1990 standard price, P%. ®

N
TFP, H (M

M
PeK+PREFPP LAY PEOM,
k=1

TFP data are gathered from archival records. Actual output quantities (excluding
scrap, waste, and off-quality that exceeds contractually negotiated allowances) of each
product are multiplied by the product’s 1990 standard cost. Inputs are measured as follows:

Direct and Indirect Hourly Labor: Actual straight time, overtime and premium shift hours
multiplied by the average hourly wage paid in the last six months of 1990, including benefits
and applicable premia for overtime and shift hours.

Salaried Labor: Salaried headcount multiplied by the average monthly wage paid during the
last six months of 1990, including benefits.

Materials: Actual pounds or yards of raw material, by type, multiplied by the 1990 standard.
cost (internally procured materials) or price (externally procured materials) per unit.

Energy: Kilowatts of electricity and gallons of water consumed multiplied by the average 1990
price.

Capital: The period capital stock (determined from the 1990 replacement value of assets and

® Weighing actual quantities by costs from a distant period causes the period to appear inefficient
relative to the period in which quantities are paired with actual prices. Thus the Paasche index, which
weights quantities by their 1990 costs, is biased toward increasing productivity over time. In light of
increasing product variety, hypothesized to reduce productivity, any finding of a statistically significant
negative impact of product variety will be underestimated, and thus all the more convincing.

Three factors influence the decision to use costs rather than prices in valuing output: differences in
gross margin between different textile markets, lack of reliable market prices for internally transferred
fabrics, and limited availability of historical price data. The 1990 standard cost for discontinued products
is estimated by applying a material specific inflation factor to the last available standard cost.
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the record of asset acquisitions and disposals from 1986-90) multiplied by the sum of the
depreciation rate and the firm's cost of capital (Hall & Jorgenson, 1967). Straight line
depreciation methods are applied to engineering estimates of the useful lives of the
equipment, building and infrastructure.

Materials are typically issued to production in advance of realized output in processes with
lengthy throughput times. The average material throughput rates for each of the three raw
material inputs was used to correct this temporal mismatch between material inputs and
output..

Another source of measurement error in TFP arises with the distinction between input
consumption and input provision during periods of reduced demand. As formulated, the TFP
index requires a restrictive assumption about input markets; namely, that inputs are sold each
period in infinitely divisible quantities. In practice capital investments are long-lived, with no
alternate short run use. Energy and labor are also relatively fixed expenses. Consequently,
C, E, and L are poor measures of input consumption and TFP is depressed in periods of low
plant utilization. To separate this influence from the hypothesized influence of product mix.
heterogeneity, excess capacity is included as an exogenous variable in subsequent tests of
the determinants of TFP. Excess capacity is calculated as one minus the machine hours
(including setup time) needed to produce realized demand divided by the product of the

number of machines and hours in a week.

2.3.2 Weaving Efficiency

Weaving efficiency measures the degree to which the plant operates according to
expectations, or "standards". Plant engineers calculate the expected output per machine hour,
or "rated efficiency”, for each product based on its specifications. Period weaving efficiency is
calculated as the actual machine hours divided by the standard allowable machine hours for
the actual product mix. Thus weaving efficiency measures unexpected production difficulty.
As its name suggests, weaving efficiency excludes setup time focusing instead on downtime
caused by machine failures, thread breakage, and machine cleaning. Also, because it is
calculated for operating machines, weaving efficiency excludes excess capacity. Product
standards are independent of product mix; consequently, it is reasonable to suspect product

mix complexity as a contributing factor to weaving inefficiency.
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The informativeness of weaving efficiency as a measure of performance depends
critically on timely, accurate updates of engineering standards. As the plant becomes more
proficient at weaving a product, consistently exceeding 100 percent efficiency, the standard
must be changed to reflect higher performance expectations. The policy at Weaving
Industries is to revise product standards every six months if production experience suggests
that the standard is outdated. To the extent that standards drift during the six month period in
which no revisions are permitted, weaving efficiency measures unexpected production

problems with error.

2.3.3 Output Quality

Percent off-quality, calculated as the standard cost of off-quality output divided by the
standard cost of all output, measures the share of output unfit for sale at full price. Off-quality
output does not include engineered scrap or waste, but does include a pre-negotiated level of
off-quality (defects per unit length) that the customer agrees to accept, as well as off-quality.
output that exceeds the customer's allowance. Customer returns of off-quality fabric are
included in the off-quality measure and are credited to the most recent period in which the
product was produced prior to receipt of the returned shipment.

Unlike weaving efficiency, percent off-quality is not a measure of deviation from
expectation, it is a measure of deviation from zero defects. Thus, it includes off-quality fabric
that is statistically "expected" from a stochastic production process as well as unexpected off-
quality. The majority of expected off-quality fabric is produced at the beginning of a warp -
beam, immediately after the setup technicians return the machine to production. This "setup
effect” includes the effect of loom operators’ making small adjustments even after the setup is
technically complete, as well as the abrasion that outer threads on the warp beam sustain
during material handling. The number of major (DRAWS) and minor (TIES) machine setups
are included in subsequent regressions to control for this "fixed" effect of sequential product
mix complexity. Off-quality is also common at the end of a warp beam. The percent of off-
quality represented by losses at the beginning and end of a beam is greater for plants that
consistently produce fabric from shorter beams than for plants that produce long, continuous

lengths of fabric. Consequently, a measure of average warp beam length for the product mix
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is included in the estimated models to control for setup frequency.

Like weaving efficiency, the definition of "first quality" may change over time as
customers become more demanding. If production skills don’t keep pace with customer
demands, off-quality output increases over time. A measure of the average customer
tolerance for off-quality for each period is included in subsequent regressions to control for
"quality inflation". Of course this is an imperfect measure of changing quality standards
because it only comprehends decreases in the acceptable number of defects per unit length
and assumes consistency in what constitutes a defect.

Another contributing factor to the statistically predictable component of off-quality is
machine downtime (Appendix A). The primary cause of fabric defects in the body of a bolt of
fabric is loom stoppage. Process interruptions leave a perceptible line across the fabric. A
measure of the average expected uptime of machines for the given product mix is included as
a further control for expected off-quality output.

Having established controls for sources of expected off-quality output, the question that
. remains is whether the unexpected component of off-quality is related to product mix

complexity.

3. RESEARCH METHOD

Three preparatory steps are necessary to test the relation between operating
performance and product mix heterogeneity: 1) Identifying product attributes; 2) Constructing
measures of simultaneous and sequential product mix heterogeneity; and 3) Conducting:
univariate time series analysis of the performance and the product mix heterogeneity -
measures to remove predictable seasonality and persistence from the series. The following

sections describe the methods and results of each step.

3.1 Identifying Product Attributes

Skinner (1974) argues that product, process and customer variety are likely to reduce
manufacturing performance. A natural starting point for identifying product attributes that
describe the product, its process and its customer demands is engineering specification

records (See Appendix). Interviews with engineers and production workers revealed that
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product specifications for woven fabrics fall into five categories: those which describe 1) warp
and fill threads, 2) warp beam construction, 3) how the warp and fill are combined, termed
“fabric construction”, 4) how the plant runs the product, termed the "product-process
interface”, and 5) customers’ quality requirements®. Each category includes several
parameters. The problem, evident in employees’ descriptions of woven fabric is that the
specifications are not independent and are too numerous to incorporate simultaneously in a
test of the impact of product variety on performance. Common factor analysis is used to
reduce the product specifications to a parsimonious set of attributes that retain the information

of the original data (Harmon, 1976; Rummel, 1970).

3.1.1 Factor Analysis

One a priori test of whether a common factor model is reasonable is that partial
correlations between pairs of variables controlling for all other variables are smaller than the
original correlations between the variables. Kaiser's measure of sampling adequacy (0< MSA
<1), measures the amount by which the original correlations are reduced when the other
variables are included. The variables included in the factor analysis have a high overall MSA
of .81, indicating that a common factor model is reasonable and that the variables adequately
define product attribute space. '

The maximum likelihood method™ of extracting common factors is used to identify a
smaller set of orthogonal product attributes from engineering specifications of products
produced from 1986 to 1990 (Table 4). The maximum likelihood method was chosen

because, if as in this study an entire population is analyzed, the data is not required to be

® Customer quality requirements may seem to be an unusual component of engineering specifications.
However, virtually all of the plants’ products are designed for a specific customer. Consequently there are
rarely multiple uses or quality standards for a product.

' Factor analysis is performed using the FACTOR (Method=ML, Priors=SMC) and SCORE procedures
of the SAS software package (ver. 6.02). The Maximum Likelihood methodology "is equivalent to Rao’s
(1955) canonical factor solution” (SAS User’s Guide: Statistics, 1985 p. 340). Estimated communalities used
to start the iterative procedure are squared multiple correlations, the best value when a population of cases
is examined (Rummel, p. 122). The iterative procedure weights individual variables by the reciprocal of
unique variance; thus variables with the greatest portion of their variance in common factor space are most
influential in defining factor space. lteration stops when successive values of factor loadings agree to within
.001 (Harmon, pp. 207-11).
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multivariate normal and the factor solution obtained is invariant to the scale of the raw data.
Moreover, "the appropriate number of factors will be those with eigenvalues greater than or
equal to unity * (Rummel, p. 122). The resulting factor solution is rotated using the varimax
rotation criteria of minimizing the number of variablyes that contribute to each of the factors.
Two criteria are used to evaluate the goodness-of-fit of the factor model. One is the
extent to which the model predicts actual correlations between variables. The square root of
the mean squared difference between predicted and actual correlations of all variables with
one another measures this aspect of fit. A value of .02 for the factor solution of Table 4 is
evidence of a good fit between the estimated factor model and the actual product data. A
second test of goodness-of-fit is that correlations among variables, removing the effects of
common factors, are approximately zero. The square root of the mean squared partial
correlations for all variables with one another provides a measure of this aspect of fit. A value

of .07 for the factor solution further validates the model.

38.1.2 Factor Interpretation

The sum of squared factor loadings for a variable, termed "communality”, reflects the
extent to which the variable is found in common factor space. With orthogonal factor
solutions, the correlation between the variables and factors is equal to the variable's factor
loading. Thus factor loadings are the basis for interpreting the product attributes underlying
the seven factors. The following section describes the variables which weigh heavily in
identifying the factors (Table 4).

The dominant factor that explains product variation distinguishes differences in

product’s raw material content. Consistent with the firm's facilities focus strategy, products

produced in Plants A and B are tightly clustered in different segments of the raw material
scale while products produced in Plant C span the scale and overlap the products of Plants A
and B. The firm’s use of raw material as the basis for defining facilities focus indicates that
raw material variety is believed to be detrimental to operating performance.

The second factor differentiates products on the basis of fabric weight. This factor is
influenced by the weight of a linear yard of fabric, which in turn is correlated with the weight of

constituent warp and fill threads, the density of fabric construction, and the warp contraction
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that results from intertwining warp and fill threads. Unlike Factor 1 which revealed a tight
clustering of products in Plants A and B, Factor 2 identifies a form of product variation in
which Plant A's product mix is almost as broad as Plant C's.

Factor 3 distinguishes products on the basis of expected machine downtime as

reflected by the product-specific rated machine efficiency and stop level. A critical source of
downtime and off-quality fabric is thread breakage, or the "machine stop level”, expressed as
breaks per 100,000 picks. Stop levels are statistically predictable given the thread thickness
(denier); the thicker the thread the lower the expected downtime. Breakage rates may be
reduced by adding extra sizing to strengthen the warp threads or by running the machine
slower to reduce the force on the threads. Thus Factor 3 is positively related to the amount of
size applied and negatively related to machine speed. Products produced in Plant C have a
wider range of anticipated production difficulties than products of Plants A or B.

The fourth factor segments products on the basis of warp beam construction. Warp

beam length, machine speed and fabric density (picks per inch) determine the batch size and . .
throughput time for a typical production run. The diameter of the full warp beam is limited by
the loom’s capacity. Given the permissible warp beam diameter, warp beam length is
determined by the denier (thickness) of individual warp threads and the number of individual
threads on the beam (as measured by the weight of warp threads in a linear yard of fabric).
Thus Factor 4 is heavily influenced by warp length, warp denier, warp weight, and because
warp thread comprise approximately half of fabric weight, by fabric weight. The plants’
products differ little in warp beam variety.

Factors 5 and 7 distinguish differences in fill and warp thread constructions,

respectively. Both factors are influenced by the denier or thickness of the individual fill and
warp threads. In addition, Factor 5 depends on whether the fill has been "finished" or treated
to have a luster or shine and Factor 7 depends on how many individual warp filaments are
twisted together to form a single, stronger warp thread. Plant C's products exhibit the widest
range of warp and fill thread variation, followed closely by Plant A .

Factor 6 distinguishes products based on their defect tolerance. Standards for

acceptable quality depend largely on a product's eventual use. For example, fashion apparel

fabrics typically are produced to tighter tolerances than industrial fabrics. An artifact of
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Weaving Industries’ product mix is that the highest quality standards are required by
customers for high density (picks per inch) fabrics, thus the dependency of Factor 6 on fabric
density. Differing tolerances are likely to result in confusion and mistakes. Evidence of this
emerged when while touring one plant | noticed pieces of paper taped to the looms. The
operator left notes to remind herself of problems encountered earlier so that she would
monitor the condition on subsequent visits to the machine. Plant A’s products exhibit the
widest range of tolerances, followed closely by Plants C and B.

in summary, factor analysis identifies systematic patterns of variation among products
but leaves to the researcher the task of interpreting and linking the factor solution to
meaningful constructs. Before the factor solution was calculated engineers, schedulers and
production workers were interviewed to discover anticipated sources of product variation. In
the course of the interviews they were asked to describe the production process, to explain
differences among products, and to discuss the impact of the these differences on
performance (Appendix A). Confidence in the interpretation of the factors that emerge:to ..
explain sources of product variation is provided by the extent to which the factors mirror the
four categories that were consistently used to describe woven fabrics. Moreover, the linkages
among product specifications that engineers described are borne out in the factor loadings.
Finally, the emergence of raw material as the dominant factor and the observation that the raw
material factor scores of products exhibit large between-plant variation and small within-plant
variation for the focused plants (A and B), links the factor solution to an independent

assessment of critical sources of product variation: the firm's facilities focus strategy.

3.2 Measuring Product Mix Heterogeneity

Factor analysis specifies the attribute space, which in turn provides the basis for
determining product similarities and differences. The next step is aggregating the factor
scores of products produced in a period to create measures of product mix heterogeneity.
One possibility is the Euclidean distance in attribute space between products (Rummel pp.
490-513). The problem with this approach is its implication that equal changes in magnitude
along each attribute scale have the same impact on performance. The common factor model

extracts factors which explain variation among products. It does not follow, however, that the
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attribute which explains the greatest source of product variation is the primary determinant of
productivity. For this reason the multi-attribute distance measure is rejected and separate
measures of product heterogeneity for each attribute are used. |

The measure of product mix heterogeneity used for each product attribute is the
standard deviation of factor scores of products produced at time t, weighted by the number of
machine hours devoted to the product in the four week period."" There is no basis provided in

| the theoretical literature for selecting a method to aggregate product information into a single
statistic of product mix complexity. The standard deviation was chosen because it is a widely
understood measure of dispersion. The scores are weighted to control for the distribution of
products across machines. Thus a plant that produces 2 products equally divided among 100
machines is distinguished from a plant that specializes in producing one product, devoting
only a fraction of capacity to the second product. The weighting scheme is consistent with the
underlying theory that performance declines when employees divide their efforts among a
variety of activities.

Figures 1.a-g plot the longitudinal product mix heterogeneity series for the seven
product attributes. Two insights emerge. Unlike the number of products produced, product
mix heterogeneity did not increase steadily over the period. On the contrary, some forms of
product heterogeneity changed very little while others decreased. Another insight concerns
the relative product mix complexity of the three plants. While the number of products
produced and the level of product mix change (Section 2) cause the plants to be ordered from
most to least complex: C, B, A, during 1986-90, Figures 1.a-g indicate that the plant ranking

is neither unambiguous nor constant.

3.4 Univariate Time Series Properties of Performance and Product Mix Heterogeneity
There are several difficulties in establishing the relation between performance and
product mix heterogeneity using time series data. First, it is likely that performance and

product mix heterogeneity are nonstationary because production experience and product

" Machine hours differ from linear output because fabrics are produced at different rates. The actual
number of machine hours by product was unavailable. Consequently, the number of hours devoted to a
particular product are calculated from the actual yardage produced (including off-quality production), the
fabric density and the rated machine speed.
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heterogeneity have grown over time. Second, performance levels and product mix
heterogeneity are likely to persist because production of a single batch typically spans two
production periods. Nonstationarity and persistence increase the probability of spurious
correlations being documented if performance is regressed directly against measures of
product mix variety (Box & Jenkins, 1976; Harvey, 1981; McCleary & Hay, 1981). To counter
this possibility, the dependent and independent variables are first subjected to univariate time
series modelling to remove variation that is predictable given the historical pattern of the
variable itself. Then innovations in product heterogeneity variables --- the residual variation of
the time series models--- are regressed against innovations in performance to determine
whether heterogeneity is negatively related to performance. Excluding as they do sources of
performance variation that are predictable without explicit knowledge of the product mix, the
results of Section 4 are strong tests of the relation between operating performance and
product mix heterogeneity (Cook and Campbell, 1979 p. 331).

Modelling product mix heterogeneity, capacity utilization (EXCESS), the. number of.
major (DRAWS) and minor (TIES) setups, the number of products produced (WPFL: unique
warp-fill thread combinations) and operating performance as ARIMA processes, most of the
variables are found to be well represented by first order autoregressive processes.'? in order
to distinguish whether a variable is more accurately modelled as a random walk process or a

first-order autoregressive process with a large value of p, equation 2 is estimated.
(YY) =(p-1)Yiy*a; (2)

The t-statistic of the Y,, coefficient is used to test whether p=1. However, because the t-
statistic obtained under the null hypothesis is not asymptotically normally distributed, modified
critical t-values (t-values) tabulated by Schmidt (1990) are used."® The Box-Jenkins Q-
statistics of the specified ARIMA models' residuals are statistically insignificant, indicating that

sources of variation that arise from predictable patterns in the variables are removed.

2 The specified ARIMA models are available from the author upon request.

3 This class of tests for a unit root are known as Dickey-Fuller tests. See Kennedy (1992, p. 265).
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4. EMPIRICAL RESULTS

Previous attempts to empirically establish whether product mix complexity impairs
operating performance have used the number of products produced as a proxy for product
mix complexity. The results have typically not supported widespread management beliefs that
product mix complexity impairs performance. One explanation is that the proxies used to
capture product mix complexity are inadequate because they do not distinguish products
based on the similarities and differences of demands they place on manufacturing. This
suggests that a useful baseline for evaluating the descriptive validity of the product mix
heterogeneity measures developed in this paper is the improvement these measures provide
over the number of products produced in explaining performance variation.

The section begins by replicating the traditional approach of measuring product mix
complexity as the number of products produced. The results are consistent with previous
work, finding no evidence that the number of products produced is related to TFP, efficiency
or off-quality. Subsequent sections examine the relationship between measures of product:
mix heterogeneity and operating performance. Three results emerge. First, the measures of
product mix heterogeneity developed in this paper provide significant incremental explanatory
power for TFP, efficiency and off-quality relative to previous efforts to establish a relation
between product mix and operating performance. Second, some forms of product mix
heterogeneity impair performance; although, each performance measure is influenced by
different aspects of product mix heterogeneity. Finally, there is weak evidence that the penalty

associated with producing a heterogeneous product mix is mitigated with experience.

4.1 Replication of Previous Research Findings

The results of regressing innovations in TFP, actual efficiency and percent off quality
on innovations in excess capacity, the number of products (defined as a unique warp-fill
combination), and the number of major (draws) and minor (ties) machine setups using the

method of seemingly unrelated regressions are found in Table 5.'* With the exception of

" Since the plants produce similar products for similar markets it is likely that the vectors of
disturbances of independently estimated OLS regressions are correlated between the plants (Kmenta, 1986
p. 637). The method of seemingly unrelated regressions exploits this linkage to increase the efficiency of
the coefficient estimates.
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weaving efficiency in Plant B, none of the performance measures are significantly related to
the number of products produced. This is consistent with previous studies that have reported
limited correlation between manufacturing performance or cost and the number of products
produced.

As predicted, TFP is significantly related to excess capacity. The productivity
depressing effect of excess capacity indicates the presence of inputs that are fixed in the
short run. Setups, the fixed effect of sequential product mix heterogeneity, also play a
significant role in explaining productivity. TFP increases with more minor setups and fewer
major setups. These variables provide significant explanatory power for productivity.in Plants
A and C, but offer little explanatory power for TFP in Plant B.

The estimated models for weaving efficiency are poor for all of the plants. This is not
particularly surprising since the weaving efficiency measure does not include machines idled
by depressed market conditions or time spent in setup. However, the absence of a significant
positive influence of excess capacity does suggest that the fixed inputs that become idle .
during periods of depressed demand are not redeployed in a manner that increases the
operating efficiency of the productive machines. There is weak evidence that increasing the
number of products decreased weaving efficiency in Plant B. The number of products
produced has no significant influence for Plants A or C.

Off-quality production is expected to be related to setups and product mix complexity.
The estimated models do not support the latter claim when product mix complexity is
represented by the number of products produced. Setups have the predicted effect of
increasing off-quality output in Plants A and C. The absence of this effect for Plant B could
imply that setups are performed better at Plant B; that after being returned to production the
machine produces first quality output. Alternatively, it could mean that setups are more
debilitating for Plant B, and as a result the fabric produced after setup is of such poor quality it
is classified as waste rather than off-quality output. Lacking measures of waste it is
impossible to distinguish between these alternatives.

In sum, the results of Table 5 are consistent with findings of other researchers; there is
little or no relation between the number of products produced and measures of operating

performance. If managers’ intuition that product mix complexity impairs performance is to be
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empirically supported, new measures of product mix complexity are required.

4.2 Product Mix Heterogeneity and Operating Performance

This section examines whether measures of simultaneous product mix heterogeneity
have greater incremental explanatory power for operating performance than the number of
products produced. Tables 6, 7 and 8 present the results of regressing innovations in product
mix heterogeneity on innovations in performance (TFP, Weaving Efficiency and Percent Off-
Quality, respectively) using the method of seemingly unrelated regressions. The tables include
the results of three separate regressions: innovations in performance regressed on 1)
innovations in excess capacity utilization and setups--- the "base" model; 2) innovations in
excess capacity, setups and product mix heterogeneity--- the "complete” model; and, 3) on
variables which are most significant in the previous regression--- the "best" model. A caveat
to interpreting the "best” model is that it is selected after examining the results of the complete
model; the data is "overfit". Lacking a theory on which to base hypothesized differences in the
impact of different forms of product mix heterogeneity on operating performance, this research
is best classified as exploratory data analysis and should be evaluated in this light.
Nonetheless, in aimost every instance the complete model outperforms the traditional
approach of measuring product heterogeneity as the number of products producéd. Thus the
claim that the product attribute model is superior to previous attempts to measure product mix

complexity does not depend on the overfit model. The following sections discuss each table.

4.2.1 Productivity and Product Mix Heterogeneity

In contrast to the results of Table 5, increased product mix complexity is related to
decreased productivity in Plants A and B when direct measures of product mix complexity that
comprehend product mix heterogeneity are used (Table 6). Plant C's productivity is
influenced by setups and excess capacity but is less influenced by diversity in the
characteristics of products produced. Surprisingly, the least focused of the three plants is able
to produce substantially more complex product mixes without sustaining a significant
productivity penalty. One possible explanation is that Plant C invests more in resources

devoted to coordination and control than its sister plants. Since these resources are typically
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considered fixed in the short term, we expect Plant C’s productivity to suffer more in periods
of excess capacity if this is the case. In fact, as Table 6 indicates, the effect of excess
capacity on productivity is virtually identical for all three plants. It would seem that Plant C
has developed a proficiency in producing a heterogeneous product mix.

Table 6 also provides evidence on the specific types of product mix heterogeneity that
influence productivity. Productivity decreases are related to increased warp thread variety in
Plants A and C. As Figure 1.g illustrates, Plant A experienced the lowest level of warp thread
variety although the range of warp threads produced during the five years did not differ greatly
from that of Plant B. One possibility is that weaving machines are inherently more productive
producing products with warp threads that fall in a certain range of the warp thread spectrum.
If this were the case we would expect the average warp thread factor score of products
produced to have greater explanatory power than our warp thread variety measure. In a
separate test that included both variables, warp thread variety remained statistically significant
while the average warp thread factor score did not enter significantly in the estimated model.
Thus | conclude that productivity in Plants A and C is impaired by increased variety in warp
threads produced. Since productivity of Plant B is not influenced by warp thread variety
despite experiencing consistently higher levels of warp thread variety (Fig. 1.g), this type of
product mix heterogeneity may be amenable to experience-based learning.

Significant determinants of Plant B's productivity include raw material variety and warp
beam variety. The firm's facilities focus strategy, in which Plants A and B are limited to
producing fabrics from particular raw material inputs, suggests that management believes raw
material variety is most likely to impair plant performance. Indeed, the focus strategy was so
well implemented in Plant A that no measurable raw material variety emerged during the five
years (Fig. 1.a); thus, raw material variety is excluded for Plant A in Tables 6, 7 and 8. In
contrast, Plant B was subjected to raw material variety when in 1988 managers decided to
produce very long continuous bolts of fabric from the input that had historically been Plant A’s
specialty. The demand for long bolts was driven by an unusual customer request. The
decision to produce the products in Plant B reflects the avoidance of an investment in auxiliary
equipment for Plants A or C that was already present in Plant B (customers for Plant B's

specialty input have historically required long, continuous fabric bolts). The injéction of raw
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material variety into a production environment that had never been exposed to and had been
consciously spared such variety had significant negative consequences (Table 6). Plant C,
which was strategically positioned as the "swing" plant and was exposed to high levels of raw
material variety, exhibited no ill-effects of raw material variety.

More pu;zling is the significant positive coefficient on warp beam variefy for Plant B.
When faced with these results the engineers of the plant explained that from 1986 to 1990
they worked closely with product designers to encourage them to use existing warp beams
wherever possible and to use existing warp threads to create new warp beams. The pattern of
declining warp thread variety in combination with increasing warp beam variety (Fig. 1.d and
g) in conjunction with the result that warp beam variety increases productivity may simply
reflect the relative merit of the new strategy. Another possible explanation is that multi-
collinearity between measures of product mix heterogeneity and excess capacity reduces our
ability to interpret individual regression coefficients for Plant B. The significant change in the
coefficient for excess capacity that occurs with the inclusion of product heterogeneity.
measures is symptomatic of this problem. Multi-collinearity between capacity utilization and
product mix heterogeneity is not surprising; there is often a tendency to accept marginal
business during periods of depressed demand in an effort to recoup fixed costs. This
tendency appears to have been more pronounced in Plant B than in the other plants.

A final result that emerges in examining the relation between productivity and product
mix heterogeneity is the relative improvement in descriptive power of the product attribute
model (Table 6) over traditional abproaches of measuring product mix complexity as the
number of products produced (Table 5). The power to explain changes in productivity is
increased with the inclusion of measures of critical forms of variety--- typically those with
which the plant has little experience. This improvement is more pronounced for Plants A and
B. For Plant C, product mix heterogeneity offers little improvement in explaining productivity
over a simple model that includes only the fixed effects of sequential product mix-
heterogeneity--- setups. This is consistent with the explanation that Plant C, faced with the
highest level of product mix heterogeneity learned to accommodate it, in effect becoming
flexible. In its strongest form this conclusion raises an interesting argument against factory

focus and reinforces Abernathy and Wayne's (1974) point that focused plants lose the ability
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to adapt to product mix change.

4.2.2 Weaving Efficiency and Product Mix Heterogeneity

Weaving efficiency--- the degree to which actual operating performance exceeds or
falls short of expectations--- is better explained by product mix heterogeneity (Table 7) than by
the number of products produced for all of the plants (Table 5). Moreover, increased product
mix heterogeneity is correlated with reductions in production efficiency. Table 7 confirms that
excess capacity and setups play no role in explaining changes in weaving efficiency.

In Plant A expected downtime variety and defect tolerance variety are found to
significantly reduce efficiency. That variety in expected downtime, distinctly different from
average expected downtime, reduces weaving efficiency suggests that basing weaving
standards on the ability to produce a product in isolation misses the important effect of
product mix interactions.'® Defect tolerance variety acts to reduce efficiency in Plant A, the
plant that consistently served the widest range of quality tolerances (Fig. 1.f) but exhibits a.
puzzling positive relation to efficiency in Plants B and C.

Plant B's weaving efficiency is negatively related to fabric weight variety. Plant C's
efficiency is also negatively related to fabric weight variety. However, fabric weight variety is
approximately twice as costly for Plant B as they are for Plant C. Referring to Figure 1.b we
find again that Plant B has the lowest and Plant C the highest level of experience with fabric
weight variety. Performance penalties associated with fabric weight variety appear to be
mitigated with experience.

Weaving efficiency in Plant C is also adversely effected by fill thread variety and warp
thread variety. As Figures 1e and g illustrate, Plant C's product mix changed rather
dramatically in 1988. The firm adopted a new product development strategy of proliferating
products by combining new fill threads with existing warp threads. This strategy was most
applicable from a technical standpoint to products made of inputs on which Plant C was

focused; thus the pronounced increase in fill thread variety accompanied by reductions in

'S When included in the regression, average expected downtime is not found to be significantly related
to actual operating efficiency for any plant, precluding the explanation that actual efficiency measures arise
as a result of systematic over or under-estimation of expected efficiencies.
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warp thread variety. However, the coefficients on fill and warp thread variety for Plant C
(Table 7) indicate no significant difference in the impact of fill and warp thread variety. There
is no evidence that substituting fill thread variety for warp thread variety improved operating
efficiency. However, Table 6 provides evidence that productivity was improved when warp
thread variety was reduced in Plants A and C. It seems that balancing nonfinancial
performance measures will be as great a challenge in the era of multi-dimensional

performance measurement as balancing financial and nonfinancial performance measures.

4.2.3 Off-Quality Output and Product Mix Heterogeneity

As section 2.3.3 described, Off-quality output includes both expected and unexpected
off-quality production. Expected off-quality arises with setups, with scheduled and
unscheduled (but stétistically predictable) machine downtime, and with customer demands for
higher quality over time. Unexpected off-quality is hypothesized to arise with product mix
heterogeneity. Table 8 presents the results of regressing innovations in the percent of off-
quality output on innovations in product mix heterogeneity. The first column for each plant
provides the results of regressing off-quality on variables designed to capture expected levels
of off-quality output: the number of setups, the average downtime factor score, the average
warp beam factor score (a measure of warp length, hence setup frequency) and the average
defect tolerance factor score. The second and third columns present the results of the
"complete” model--- including all product heterogeneity variables, and the "best" model---
including only those variables that emerge as significantly related to off-quality. For Plant A
the third column is omitted because the results of the first column represent the "best" model.

Off-quality in Plant A is little affected by product mix heterogeﬁeity. One possibility is
that expected off-quality so greatly exceeds unexpected off-quality that the tests lack the
power to distinguish the effect of product mix heterogeneity on unexpected off-quality. The
best model is the model that includes only sources of expected off-quality. Nonetheless, the
product attribute model is valuable for identifying sources of expected off-quality and offers
considerable improvement over the traditional approach of Table 5. The fixed effect of
sequential product mix heterogeneity is revealed in a reduction of off-quality with increased

minor setups and in the increased off-quality that accompanies short warp beams (high
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average warp factor scores) that cause more frequent setups. The greatest contributor to off-
quality is expected downtime. Plant A produces products made of fine thread that breaks at a
higher rate than threads used in other products. Depending on customers’ tolerance for minor
flaws the break may cause the fabric to be rated as second quality. Thus high average defect
tolerance factor scores (low tolerance for flaws) increase the rate of off-quality production.

Off-quality in Plants B and C is determined by measures of both expected and
unexpected off-quality. Like Plant A, off-quality in Plant B is incfeased with decreased
tolerance of customers for fabric flaws. Warp thread variety is correlated with reductions in
off-quality production; however, multi-correlation between warp thread variety, setups and
average warp beam length cause this coefficient to be suspect. Given the low overall
significance of the model, the most reasonable conclusion is that off-quality output in Plant B
differs from Plants A or C in some fundamental way that defies explanation using the
traditional theory of what causes off-quality production. Off-quality in Plant C is increased with
major setups and with expected downtime variety. However, the changing coefficient of
expected downtime variety between the complete and the best model suggests that multi-
collinearity is a problem that limits the precision of the coefficient estimates.

In sum, the product attribute model provides better measures of control variables that
are expected to influence off-quality output than were available in previous studies, but
provides little evidence that producing heterogeneous products increases off-quality. One
possibility is that the unexpected component of off-quality is swamped by the larger
component of expected off-quality. Measures of unexpected off-quality are required before

this question can be fully explored.

5. CONCLUSION

Empiricists have long sought a useful measure of product mix complexity. The inability
to operationalize concepts of similarity and difference in a measure of product mix complexity
iimited the power of tests of the relation between product mix complexity and operating
performance. This paper uses an attribute-based model of product mix heterogeneity
developed in the group technology literature to test the relation between plant operating

performance and product mix heterogeneity. The attribute model is made operational by
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factor analyzing product engineering specifications. Regression analysis is used to test the
hypothesis that peﬁormaﬁce--- total factor productivity, efficiency and off-quality production---
is negatively related to product mix heterogeneity. The results provide support for the
hypothesis that product mix heterogeneity reduces performance through increased setup costs
and through interaction costs of producing different products. Moreover, weak evidence that
the cost of product mix complexity déclines with experience in producing a broad product mix
is provided by comparing the impact of setups and product mix heterogeneity on Plant C's
performance with their impact on performance of the focused plants, Plants A and B.

The attribute model of product mix heterogeneity improves the explanatory power of
tests of the impaét of product mix on plant operating performance relative to previous
approaches. Using measures of product mix complexity that offer greater power to
discriminate among products, the paper offers the first empirical evidence that product
heterogeneity impairs manufacturing performance. In addition, by specifying different forms
that product heterogeneity takes, the attribute model provides a richer context in which to .
consider managerial actions to enhance flexibility. As Adler (1988, p. 51) writes:

"For managers, flexibility is potentially advantageous--- and indeed, only becomes
meaningful as a concept--- against a backdrop of potential stabilities. The managerial
question is therefore not simply how to reduce rigidities, but how to find the right mix of
stabilities and flexibilities."

Unlike the traditional approach which suggests that performance improvements are possible
only with gross reductions in the number of products produced, the product attribute model
offers helps managers identify the right mix of stabilities and flexibilities.

Identifying especially costly forms of product heterogeneity, this paper offers managers
three avenues for improved performance in an environment of rapidly changing, fragmented
demand. First, they can discontinue products that are "attribute outliers". This has the same
effect of reducing the number of products produced as the traditional approach would suggest;
however, the selection of products to discontinue is based on performance costs of
complexity. Second, managers can reassign products among the plants to minimize costly
forms of product heterogeneity. By reducing product mix heterogeneity instead of reducing
the number of products produced, managers create the illusion of broad product lines by

proliferating products along dimensions of product heterogeneity that are easily
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accommodated by the~plant. These solutions operationalize Skinner's prescription of factory
focus. As such they are subject to Abernathy and Wayne's (1974) criticism; namely, that if
the environment changes and the focus strategy is inappropriate to new competitive
conditions, the plant may vbe unable to adapt. A third avenue for improving performance in an
environment of increased product mix heterogeneity is learning through experience---
becoming flexible. The evidence of this study shows that Plant C, the plant with the highest
level of variety, was least influenced by variety. Though this may hold only up to a point---
suggesting that firms may need to experiment to discover the limits of product mix
heterogeneity--- that point seems beyond our current definition of high product mix
heterogeneity. In sum the findings of this paper provide managers a road map for becoming
flexible and a measure for assessing flexibility. Management accountants’ role in supporting
manufacturing’s effort to become more responsive includes assessing the impact of prbduct
variety on plant performance, identifying channels through which variety undermines
performance, and devising yardsticks for evaluating progress in achieving product mix

flexibility. This paper is a first attempt to address these challenges.
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Appendix A: Product Diversity of Woven Fabrics

Heterogeneity of woven fabrics stems from unlimited combinations of different threads.
In order to determine product attributes that contribute to product mix complexity and
degradation of operating performance and to identify relationships between product attributes,
| conducted interviews with process and industrial engineers at each plant and at the
manufacturing division. Though over 30 engineering parameters were mentioned in these
interviews, they can be loosely organized into four categories: filament construction, warp

beam construction, fabric construction. and the product-process interface.

Filament construction parameters describe the warp and fill threads that comprise a

fabric. One aspect of filament construction is fiber specifications: fiber content, weight, and
filament treatments. Fiber content refers to the raw fibers used (i.e. rayon, polyester). "Denier"
is the industry’s measure of weight per unit length. Chemicals used in the extrusion of
manmade filaments may further differentiate filaments of the same fiber, changing their luster
or shine, or imparting color. A second aspect of filament construction reflects upstream textile
processes: spinning, twisting, dyeing and texturing.

The above discussion applies to warp and fill threads. Warp threads require additional

description of the warp beam construction. The denier of the warp thread and the width of the

warp beam indicates the density of the warp threads on the beam and the maximum width of
the finished fabric. A related parameter is the length of each thread on the warp beam. Warp
length determines the duration a loom runs before requiring set-up. Warp threads must be
stronger than fill threads because they are under constant tension on the loom and are
abraded with each pick. Consequently a chemical, called "size", is applied to warp threads
during warp beam construction. There are two size-related specifications: size take-up, the
absorption of size as a percent of warp weight, and slasher stretch, the extent to which warp
contraction caused by sizing is reversed in weaving.

The third category of product specifications, fabric construction, describes the way that

warp and fill threads are combined. The weave pattern describes designs on the fabric face.
Common weave patterns are: satin, twill, and herringbone. Complex patterns are produced at
slower machine speeds. Another aspect of fabric construction is the dimension of the finished
product. Though largely governed by warp construction and raw material content, product
dimensions are also determined by fabric density (picks per inch)--- how tightly the threads
are packed together, and by warp contraction--- the percent of warp length lost in weaving as
a result of inserting picks.



The most important feature of fabric, its uniformity, is largely a function of machine

settings, or process specifications. The primary cause of fabric defects is loom stoppage.

Process interruptions leave a perceptible line across the fabric. Loom stops occur with thread

breakage, preventive maintenance or machine failures and are influenced by machine speeds,

raw material uniformity and fabric construction complexity. Machine speeds are set to the

fastest rate consistent with quality requirements of the customer. The machine speed chosen

implies an expected operating efficiency, stop level, and quantity of off-quality production.

The following table summarizes engineering parameters and specifications of products:

VARIABLE

VARIABLE MEASURE

|. Raw Material
1. Fiber Content
2. Denier or Count

3. Finish
* 4, Dye
* 5. Texture

* 6. Twist Multiple
7. Number of Filaments

Il. Warp Beam Construction
1. Warp Length
2. Slasher Stretch
3. Size Take-up
4. Reed Width

lll. Fabric Construction
* 1. Type Weave
2. Picks per inch
3. Fabric Weight
4. Warp Contraction
5. Filament Weight

IV. Product-Process Interface
1. Picks per Minute
2. Machine Stop Level
3. Expected Efficiency

Binary Variable, 0-1 for each of 3 input types

Weight per unit length

Categorical Variable, 1-5, 1=bright, 4=dull, 5=unfinished
Binary Variable, 1=dyed

Binary Variable, 1=textured

Twists per unit length

Number of threads twisted to form a single strand

Length of a warp thread

Percent warp length increase in weaving
Percent warp weight increase in sizing
Fabric Width

Pattern on face of fabric

Fabric thread density

weight per linear yard

Percent Warp length reduction in weaving
Warp Weight and Fill weight per linear yard

Machine Speed

Thread Breakage rate

Run time as a percentage of machine throughput time,
excluding setup time

V. Customer Quality Requirements

1. Defect Tolerance

Categorical Variable, 1-5, 1= wide tolerance range, 5=
narrow tolerance range

* Although these variables were mentioned in several interviews, upon further investigation
they related to fewer than 10% of the 600+ products produced during 1986-90. Rummel
(1970) advises against including variables in a factor solution that are relevant for fewer than
10% of the observations. Thus these product attributes are excluded in the factor analysis..



TABLE 1
Average Product Mix Breadth

The average number of products produced in the 13, 4-week production periods of
1986-1990 using three definitions of "product”

Panel A:  Product= A unique Warp Beam, which may be combined with a variety of
crosswise fill threads
1986 1987 1988 1989 1990
Plant A 23 24 24 29 29
Plant B 14 15 22 25 35
Plant C 21 31 28 27 35
Panel B:  Product= A unique combination of a lengthwise warp beam with a
crosswise fill thread
1986 1987 1988 1989 1990
Plant A 31 29 30 42 37
Plant B 30 30 42 51 67
Plant C 35 54 55 56 59
Panel C:  Product= A unique combination of a lengthwise warp beam and a
crosswise fill thread, treating generations of the same product as a single
product
1986 1987 1988 1989 1990
Plant A 28 28 28 34 33
Plant B 21 23 30 39 54
Plant C 30 45 45 46 51

NOTE: Adjustments are made for minor differences in plant scale, measured by the
number of looms. The adjustment factors applied to the actual number of products
produced are: Plant A: .83, Plant B: 1, Plant C: .91.



TABLE 2
Product Mix Change

The average number of times the product mix changed during the five years, 1986-
1990, calculated by dividing the total number of products produced during 1986-90 by
the average number of products produced in a 4-week period for each of three
definitions of a "product”.

Number Products Avg. Number Product Mix
Product = 1986-90 Products/ Period Turnover
Warp
Plant A 77 25 : 3.0
Plant B 62 22 2.8
Plant C 155 29 5.3
Warp-Fill
Plant A 162 34 4.8
Plant B 237 44 54
Plant C 404 53 7.6
Multi-Generation
Warp-Fill
Plant A 102 30 3.4
Plant B 128 33 3.9
Plant C 275 45 6.1
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TABLE 4
Rotated Factor Pattern
The results of using the maximum likelihood method of factor extraction and the
varimax rotation criteria to identify independent sources of product variation from
product engineering specifications.

Variable

Slasher Stretch
Input 2 Warp

Input 2 Fill

Reed Width

Input 1 Fill

Input 1 Warp

Fill Weight

Warp Contraction
Fabric Weight

Fill Finish

Size Pick up
Machine Stop Level
Rated Efficiency
Warp Weight

Rated Machine Speed
Warp Length

Fill Denier

Input 3 Fill

Quality Tolerance
Picks Per Inch

No. Warp Filaments
Warp Denier

% Common Product
Variation Explained

NAME:

Squared Multiple
Correlation of
Variables with
Factors

Factor
1

95
95
68
-.55
-.67
-84
-.08
-23
A1
-.06
-.06
-.14
14
23
A8
-11
30
A8
-22
-42
.03

27%

Raw
Material
Content

.98

(1) C= Variable Communality

Factor
2

-.09
-.09
-18
.05
-22
1
.85
8
.66
52
-.03
25
-.14
26
-20
-.08
-12
42
-.26
-43
A3
0

17%

Fabric
Weight

Factor
3

-24
-.26
-18
19
-22
-22
23
-15
.16
39
.80
T2
-76
-.05
-12
-12
-27
-.01
16
-29
-24
-17

16%

Expected
Downtime

Factor

4

10
.08
-.14
07
-15
-32
24
.08
.56
08
-13
A8
-.30
91
-34
-70
14
{1
-.01
-29
19
Sl

15%

Warp

" Beam

Factor  Factor
5 6
-.05 -01
-03 -.02
52 -.09
-18 26
-.04 .19
-.08 .06
-13 -15
-25 -11
-.08 -.10
-40 -.16
.06 23
-40 -01
.26 g2
.03 -07
22 -13
-.05 02
.70 -10
-.66 -20
.08 719
-07 52
-.08 .06
-.09 -19
11% 7%
Fill Defect
Thread Tolerance
.85 .80

Factor
7

03
04
-.07
-.06
-11
-01
07
07
05
.08
-11
-13
20
07
-20
-17
-.06
.08
06
-12
15
58

7%

Warp
Thread

C(l)

87
.67
98
.88
55
96
.63
.69

.63
.69
81
.88

a7
98
73
31
.83
81
78
.80




TABLE 5
Replication of Previous Research Methods:

The relation of the three measures of operating performance to setups and the
number of products produced, where a product is defined as a unique warp-fill
combination.®

Seemingly Unrelated Regression Results

c Excess Major Minor Number of | F-Stat [ Adj.
Capacity Setups Setups Products R?
TFP:
Plant A .868 -433 -947E-3 | 459E-3 | -217E-3 | 494 | .20
(113)** (3.49)** (1.07) (2.16)* (.10) *k
Plant B 927 -.082 -131E-2 | 915E4 | -773E-3 | 1.20 | .02
(169)** (41 2.16)* (.98) 79
Plant C 920 -.343 -192E-2 | .183E-3 | -.645E4 | 540 | .27
(125)** (2.02)* (3.45)** (1.63) (.05) *k
Weaving
Efficiency:
Plant A 070 -705 -792E-2 | 319E-2 -047 .80 | -.01
(46) (29) (43) (719) (1.12)
Plant B 014 2.05 .013 -.267 E-3 -.036 1.20 | .01
(.15) (.82) (1.51) (.16) (1.87)*
Plant C -15E-2 1.09 J43 E-2 | 382 E-3 -013 07 | -.06
01 (.37) (.14) (.18) (.54)
Percent Off-
Quality
Plant A .042 -3.37 -.010 -011 029 1.96 | .06
(.29) (1.46) (.60) (2.86)** (.73)
Plant B | -.266 E-2 -1.72 -217E-2 | 954 E-3 -013 76 | -.02
(.04) (.93) (.34) (79) (.92)
Plant C | -981 E-2 -2.83 .032 149 E-2 .031 299 | .11
07 (.90) (2.96)** (.66) (1.21) *

Absolute t-statistics in parentheses; N=63 for all plants and all performance measures, except
TFP for Plants B (N=50) and C (N=48).
** = significant at 1%, one tail

* = significant at 5%, one tail

(1) The results are substantially unchanged using the alternative definitions of a product.



TABLE 6

Product Mix Heterogeneity and Total Factor Productivity:
The relation of TFP to capacity utilization, setups and product mix heterogeneity

Seemingly Unrelated Regression Results

PlantA | PlantA | PlantA | PlantB | PlantB | PlantB | PlantC | PlantC | PlantC
c .868 .868 .868 .926 924 925 .920 919 .920
(113)* | (120)** | (118)** | (170)* | (191)* | (185) | (125)" | (123)* | (129)*
excess capacity -.428 -.441 -.404 -.122 -378 -411 -.343 -.260 -.293
(3.59) | (3.47** | (3.57)"* (.63) (1.98)* | (2.19)* | (2.10)* (1.52) | (1.82)*
Major Setup -96 E-3 | -69E-3 -12E2|-12E2 | -14E2 | -19E-2 | - 19E-2 | -.19E-2
(1.06) (.78) (2.06)* [ (2.20)* | (2.56)* | (3.47)** | (3.28)** | (3.45)"*
Minor Setup 46E-3 | 47TE3 | 42E3 | 94E4 | -34E-4 .19E-3 | .20E-3 | .20E-2
(2.17)* | (2.27)* | (2.09)* | (1.00) (-34) (1.73)* | (1.95)" | (1.89)"
Product
Variety:
Raw Matsrial -.030 -.041 .088
Variety (1.27) | (2.11) (.39)
Fabric Weight 214 -.138 .015
Variety (.69) (.81) (.14)
Expected -.303 877 -.026
Downtime (.87) (1.53) (.27)
Warp Beam -.030 .403 .492 .019
Variety (.87) (1.97)* | (2.84)** (.12)
Fill Thread -.108 -173 .050
Variety (.33) (1.00) (.35)
Defect -.199 .366 .190 .186
Tolerance (1.09) (1.63) (1.13) (.74)
Warp Thread -.348 -.408 -.074 , -.368 -.292
Variety (1.86)* | (2.72)* (.37) (1.89)* | (1.94)*
F-Statistic 6.69** | 3.07 8.65" 1.63 1.78 2.89" 737 2.31* 6.31"*
Adjusted R? .22 .23 .27 .05 A7 .20 .29 .22 .31

N=63 Plant A, N=50 Plant B and N=48 Plant C, absolute t-statistics in parentheses
** indicates significant at 1%, one-tail
* indicates significant at 5%, one-tail



TABLE 7
Product Mix Heterogeneity and Weaving Efficiency:

The relation of weaving efficiency to capacity utilization, setups
and product mix heterogeneity

Seemingly Unrelated Regression Results

PlantA | PlantA | PlantA | PlantB | PlantB | PlantB | PlantC | PlantC | PlantC
c . .075 -.008 -.069 .003 -.060 -.020 -.004 .004 .042
(-49) (.07) (.50) (.03) (.66) (-22) (.03) (.03) (.34)
excess capacity| -1.93 1.62 1.80 1.75 .810 .810
(.86) (.79) (.70) (.74) (-.30) (-:30)
Major Setups -.01 .84 E-2 .010 .012 .012 JA1E2 | -32E2
(.59) (.60) (1.18) (1.51) (1.46) (.10) (.33)
Minor Setups | -.32 E-2 | -.26 E-2 -23E-3| -52E-3 ..16 E-3 | .65 E-3
(-79) (.80) (.14) (.32) (.08) (.35)
Product
Variety:
Raw Material .380 -2.68
Variety (1.10) (1.18)
Fabric Weight 4.19 -3.76 -5.54 -2.42 -3.11
Variety (.84) (1.41) | (2.18) (1.35) | (1.79)
Expected -12.5 -20.0 -6.32 -.954
Downtime (2.24) | (3.64)"* (1.17) (.58)
Warp Beam 3147 -3.93 -3.13
Variety (1.38) (1.75) (1.20)
Fill Thread 2.33 -2.42 -3.50 -3.45
Variety (-44) (.71) (1.51) | (1.59)
Defect -4.43 -6.43 707 6.69 7.15
Tolerance (152) | (2.07)* (1.85)* | (1.99) (1.63)
Warp Thread 3.27 -5.00 -6.40 -4.07
Variety (1.10) (1.12) (213 | (1.72)*
F-Statistic .66 1.60 7.51"" .57 1.49 3.31* .02 1.18 2.67
Adjusted R? -.02 .08 A7 -.02 .07 .10 -.05 .03 .07

N=63 for all plants, absolute t-statistics in parentheses
** indicates significant at 1%, one-tail
* indicates significant at 5%, one-tail




TABLE 8
Product Mix Heterogeneity and Off-Quality Output:
The relation of Off-Quality output to capacity utilization, setups, sources of
expected off-quality output, and product mix heterogeneity

Seemingly Unrelated Regression Results

PlantA | PlantA | PlantB | PlantB | PlantB | PlantC | PlantC | PlantC
c -.036 -.051 -.009 -.040 -.013 -.002 -.004 .00
(-31) (.44) (.12) (-58) (.19) (.01) (.03) (.00)
excess capacity -2.88 -2.84 -1.43 -1.40 -2.25 -2.66
(1.26) (1.13) | (.80) (-79) (.72) (.85)
Expected
Off Quality:
Major Setups -.018 -023 | -19E2 | -17E-2 .036 .032 .034
(1.30) (1.61) (.32) (.29) (3.02)* | (2.57)** | (3.09)*
Minor Setups -.010 -010 | S0E-3 | 48E-3 21E2 | .15E-2
(8.14) | (295 | (.76) (.39) (.95) (.68)
Average Expected 13.1 12.6 2.96 5.61 4.40 1.93 -5.04
Downtime (.15 | (1.72) (.89) (1.09) (1.35) (.75) (1.00)
Average Warp Beam 6.15 4.59 -75 1.91 .69 -
(2.11)* | (1.24) (.36) (.73) (-25) (.21)
Average Defect 593 6.00 2.90 3.81 3.35 -1.38 -2.51
Tolerance (5.41)** | (4.56)** | (2.15)* | (2.03)* | (2.48)* | (.46) (.73)
Product Variety:
Raw Material Variety -.059 -.91
(-20) (-33)
Fabric Weight Variety -2.93 1.88 -1.08
(-52) (.85) (.48)
Expected Downtime .861 -4.15 592 1.78
Variety (.14) (.70) (1.63) | (1.13)
Warp Beam Variety -.68 -.93 .88
(-27) (.51) (.26)
Fill Thread Variety 7.70 -2.32 ' 295
(1.33) (.73) (1.07)
Defect Tolerance 1.05 1.50 -56.06
Variety (.30) (.43) (.93)
Warp Thread Variety -.809 -6.76 -4.96 1.26
(.24) (1.79)* | (1.59) (-34)
F-Statistic 6.30* | 3.07* .98 .85 2.64* 1.78 1.16 5.16*
Adjusted R? .34 .28 .00 -.03 .07 .07 .03 12

N=63 for all plants, absolute t-statistics in parentheses
** indicates significant at 1%, one-tail ; * indicates significant at 5%, one-tail
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